

Neutron β-decay study with the spectrometer aSPECT

R. Maisonobe ${ }^{1}$, S. Baeßler², M. Beck³, F. Glück ${ }^{4}$, P. Guimera Milan¹, W. Heil ${ }^{3}$, M. Klopf ${ }^{5}$, G. Konrad ${ }^{5,6}$, C. Schmidt ${ }^{3}$, M. Simson ${ }^{1}$, T. Soldner ${ }^{1}$, R. Virot ${ }^{1}$, A. Wunderle ${ }^{3}$, O. Zimmer ${ }^{1}$

${ }^{1}$ Institut Laue-Langevin, Grenoble, France ; ${ }^{2}$ Physics Department, University of Virginia, Charlottesville, USA ;
${ }^{3}$ Institut für Physik, Universität Mainz , Germany ; ${ }^{4}$ IEKP, Universität Karlsruhe, Germany ;
${ }^{5}$ Institute of Atomic and Subatomic Physics, TU Wien, Austria ; ${ }^{6}$ Stefan-Meyer-Institute, ÖAW Wien, Austria

Congrès Général de la Société Française de Physique $24^{\text {th }}-28^{\text {th }}$ August 2015, Strasbourg

Inside matter:

The neutron:

- 1932, discovery
- $\mathrm{Mn}=939.565 \mathrm{MeV} / \mathrm{c}^{2}$
- $\mathrm{q}=(-0.4 \pm 1.1) \cdot 10^{-21} \mathrm{e}$
- $1 / 2$ spin

Free neutron:

- $\tau_{\mathrm{n}} \approx(880.3 \pm 1.1) \mathrm{s}$
- $\mathrm{n} \rightarrow \mathrm{p}+e+{ }_{e}^{-}+782.3 \mathrm{keV}$

Further down:

Weak interaction process described by the $V-A$ theory and is governed by two free parameters:

$$
V_{\mathrm{ud}} \text { and } \lambda=\frac{g_{\mathrm{A}}}{g_{\mathrm{V}}}
$$

Within the Standard Model formalism, the β-decay is the conversion of a down quark into an up quark via the emission of a W^{-}boson.

The Cabbibo-
KobayashiMaskawa matrix:

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
V_{\mathrm{ud}} & V_{\mathrm{us}} & V_{\mathrm{ub}} \\
V_{\mathrm{cd}} & V_{\mathrm{cs}} & V_{\mathrm{cb}} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right)
$$

Both currents occur in neutron decay.

Differential decay rate:
(Jackson et al., PR 106, 517, 1957)

$$
\frac{\mathrm{dW}}{\mathrm{~d}{ }_{e}^{\mathrm{d}-\mathrm{d} E_{e}}} \propto 1+b \frac{m_{e}}{E_{e}}+a \frac{\overrightarrow{p_{e}} \cdot \overrightarrow{P_{e}}}{E_{e} E_{-}}+\overrightarrow{P_{\mathrm{e}}}\left[A_{E_{e}}^{\overrightarrow{p_{e}}}+B \vec{p}_{E_{-}}^{\vec{p}_{-}} \underset{E_{e} E_{-}}{E_{e}}\right]
$$

Neutron β-decay in particle physics

Within the Standard Model:
The coefficients are expressed in term of the weak coupling constants ratio:

$$
\lambda=\frac{g_{\mathrm{A}}}{g_{\mathrm{V}}}
$$

$>e^{-}-\overline{\nu_{e}}$ angular correlation coefficient: $a=\frac{1-\lambda^{2}}{1+3 \lambda^{2}}$

$$
\begin{array}{ll}
>e^{-} \quad \text { beta asymmetry: } & A=-2 \frac{\lambda^{2}+\lambda}{1+3 \lambda^{2}} \\
> & \overline{v_{e}} \\
\text { antineutrino asymmetry: } & B=+2 \frac{\lambda^{2}-\lambda}{1+3 \lambda^{2}}
\end{array}
$$

$>p$ proton asymmetry: $C=x_{C} \frac{4 \lambda}{1+3 \lambda^{2}}$

Neutron β-decay in particle physics

The β-decay

The correlation coefficients
Within/beyond the Standard Model

Contribution to test the Standard Model:

Determination of the ratio λ with different experimental systematics.

Sensitivities towards $\lambda=-1.2694(28)$:

$$
\frac{\mathrm{d} a}{\mathrm{~d}}=0.298, \quad \frac{\mathrm{~d} A}{\mathrm{~d}}=0.374, \quad \frac{\mathrm{~d} B}{\mathrm{~d}}=0.076, \quad \frac{\mathrm{~d} C}{\mathrm{~d}}=0.124
$$

The ratio λ is used with the neutron lifetime τ_{n} to calculate the first element of Cabbibo-Kobayashi-Maskawa matrix.

$$
\left|V_{\mathrm{ud}}\right|^{2}=\frac{(4908.7 \pm 1.9) \mathrm{s}}{\tau_{\mathrm{n}}\left(1+3 \lambda^{2}\right)}
$$

Unitarity test of the CKM matrix:

$$
\left|V_{\mathrm{ud}}\right|^{2}+\left|V_{\mathrm{us}}\right|^{2}+\left|V_{\mathrm{ub}}\right|^{2}=1
$$

- Non-unitarity could indicate a new quarks generation.

Search for new physics beyond the Standard Model:

$$
\begin{aligned}
& a=\frac{1}{\xi}\left(\left|L_{V}\right|^{2}-\left|L_{S}\right|^{2}+\left|L_{T}\right|^{2}-\left|L_{A}\right|^{2}+\left|R_{V}\right|^{2}-\left|R_{S}\right|^{2}+\left|R_{T}\right|^{2}-\left|R_{A}\right|^{2}\right) \\
& A=\frac{2}{\xi} \operatorname{Re}\left(-\left|L_{A}\right|^{2}-L_{V} L_{A}^{*}+\left|L_{T}\right|^{2}+L_{S} L_{T}^{*}+\left|R_{A}\right|^{2}+R_{V} R_{A}^{*}-\left|R_{T}\right|^{2}-R_{S} R_{T}^{*}\right)
\end{aligned}
$$

> Different sensitivity to new physics,
> Searches for scalar S and tensor T currents,
> Possible contribution of right-handed interaction to the weak process, new gauge boson...
N. Severijns, M. Beck, O. Naviliat-Cuncic,

Reviews of Modern Physics, 2006, 78, 991

Neutron β-decay in particle physics

The β-decay
The correlation coefficients
> Within/beyond the Standard Model

Beyond the theory:

Primordial nucleosynthesis

$n+\nu_{\mathrm{e}} \rightarrow p+e^{-}$

$n+e^{+} \rightarrow p+\overline{\nu_{\mathrm{e}}}$

Neutrino detection

$\nu_{\mathrm{e}}+D^{+} \rightarrow p+p+e^{-}$

Pion decay
W and Z bosons production
...

Neutron star formation

The Universe in a nutshell... neutron!

The experiment aSPECT

Measurement of the electron-antineutrino angular correlation coefficient a :
$>$ Last determination in 2002 by Byrne et al.
$>$ The aim of the experiment a SPECT
$>$ Difficulty: the antineutrino is hard to detect.
$\rightarrow \Delta a / a=5 \% \quad$ Byrne et al., J. Phys. G. Nucl. Part. Phys. 28 (2002) 1325-1349
$\Rightarrow \Delta a / a=0.3 \%$

Kinematics description:
The coefficient is tied to the shape of the proton recoil spectrum
 which is theoretically described by $W(T)$.

$$
W(T) \mu g_{1}(T)+a \times g_{2}(T)
$$

The actual world average value for a is -0.103 .

The endpoint of the proton energy is $\mathbf{7 5 1 . 4} \mathbf{~ e V}$.
\Rightarrow High-precision measurement of the coefficient a can be realised from a high-precision measurement of the proton recoil spectrum.

The experiment aSPECT

 ?
Neutron source at the ILL:

High-flux reactor (58 MW) delivers a cold neutron beam in the zone PF1b ($\phi_{\mathrm{n}}=2 \cdot 10^{10} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}$).

aSPECT:
Cryostat ($\varnothing=0.76 \mathrm{~m}$; $\mathrm{h}=3.3 \mathrm{~m}$) with a central bore tube ($\varnothing=200 \mathrm{~mm}$):
$>\mathrm{T} \approx 70 \mathrm{~K},>\mathrm{P} \approx 10^{-9} \mathrm{mbar}$.

Set of electrodes inside the bore tube surrounded by a set of superconducting coils.

Measurement of the proton recoil:

Adiabatic conversion: The momentum of the proton is transferred to its parallel component.

The transmission function:
In the adiabatic limit the condition for a proton to overcome the AP depends on the kinetic energy T_{0}.

$$
F_{\mathrm{tr}}\left(T_{0}\right)=\begin{array}{ll}
0 & \text { if } T_{0}<e U \\
1 & \text { if } \sqrt{1-\frac{1}{r_{\mathrm{B}}} 1-\frac{e U}{T_{0}} \div} \\
\text { otherwise } \\
\text { if } T_{0}>e U /\left(\begin{array}{ll}
1 & r_{\mathrm{B}}
\end{array}\right)
\end{array}
$$

The experiment aSPECT

The angular correlation coefficient a The retardation spectrometer

The extraction of the coefficient a

NEUTRONS FOR SCIENCE ©

Pulseheight spectra:

Measurement with different voltages Ua for the potential barrier at AP.

Integration + Analysis, simulations, corrections Test the systematics effects with different configurations and settings.

Measurement

- New approach for the characterization
- Reduction of the background

Measurement time sequence:

Mean count rate in proton region evolution, AP at $780 \mathrm{~V}, \mathrm{Pad} 2$

Mean count rate in the proton region evolution, Pad 2

Dependence on the shutter open time:

Related to the "residual" count rate after closing the shutter =>

Dependence on the AP voltage Ua:

Count rate difference (Close2-Close1)

The "residual" count rate which is dependent on the AP voltage Ua.

This AP-dependence can be approximated by different fit:

\checkmark	Linear	$b+c \not \bigcup_{\mathrm{A}}$
\checkmark	Quadractic	$b+c \bigcup_{\mathrm{A}}^{2}$
\checkmark	Exponential	$b+c \times \exp \left(U_{\mathrm{A}} / d\right)$

Non-constant background depends on the shutter open time $t_{\text {op }}$ and the AP voltage U_{A} :

$$
B G\left(U_{\mathrm{A}}, t_{\mathrm{op}}\right)
$$

Measurement

New approach for the characterization

Reduction of the background

Technical solution:

The non-constant background is probably related to trapped charged particles above the AP electrode.

The electrode e15 above the AP was tested in asymmetric settings.

Reduction of the timedependence: the fit function tends to a constant.

Reduction of the AP-
dependence:
the "residual" count rate tends to be constant

Systematics on the coefficient a

Background correction

Mathematical description:

An equation to calculate the amount of the non-constant background for each AP voltage and each open time for the shutter.

$$
\begin{aligned}
B G\left(U_{\mathrm{A}}, t_{\text {op }}\right) & =\int_{0}^{t_{\text {op }}} p_{1} \cdot\left(1-\mathrm{e}^{-t / \tau}\right) \mathrm{d} t \\
& =p_{1}\left(U_{\mathrm{A}}\right) \times t_{\text {op }} \quad \times\left(1 \mathrm{e}^{t_{\text {op }}} /\right) \div
\end{aligned}
$$

$\Rightarrow p_{1}$ (Ua) from the description of shutter Open at 780 V and the description of the AP-dependence of Close2-Close1.

Count rate difference (Close2-Close1)

Subtraction of the non-constant background:

Relative variation on the coefficient a_{blind} with $t_{\mathrm{Open}}=200 \mathrm{~s}$

Shift on $a_{\text {blind }}$ from the value without background correction:
$>$ with e15 sym., and with quad./exp. models: about 3-4\%.
> with e15 asym. and without correction: about 3\%.

Systematics variations of the

 coefficient aPreliminary results the coefficient a :
The following values are obtained for one pad of the detector and without any corrections.

\Rightarrow Encouraging results: $\left(\Delta a_{\text {blind }} / a_{\text {blind }}\right)_{\text {stat. }}$ of $\mathbf{1 \%}$ and $\left(\Delta a_{\text {blind }} / a_{\text {blind }}\right)_{\text {syst. }}$ of about $\mathbf{5 \%}$.
$\Rightarrow\left(\Delta a_{\text {blind }} / a_{\text {blind }}\right)_{\text {syst. }}$ should be reduced by considering corrections: background, edge effect, ...

Test of the Standard Model at low-energy:
> Weak coupling constants ratio λ and $1^{\text {st }}$ element of the CKM matrix
> Contribution to the unitarity test of the CKM matrix,
> Search for new physics beyond the Standard Model.

Encouraging preliminary results:
$>\left(\Delta a_{\text {blind }} / a_{\text {blind }}\right)_{\text {stat. }}$ of 1%
$>\left(\Delta a_{\text {blind }} / a_{\text {blind }}\right)_{\text {syst. }}$ of 5%
> Non-constant background correction about 3-4\%

New analysis for the background:
> Characterization of different backgrounds,
> Models for the non-constant background,
> Electrode e15 as a dipole to reduce it.

Future:

$>$ New beam time with a SPECT: measurement of the coefficient a, measurement of the coefficient C (with polarized neutron beam).
New neutron source at the European Spallation Source (ESS) at Lund: long pulsed neutron beam.

Thanks for your attention

${ }_{z}^{A} N \rightarrow{ }_{z}{ }_{1}^{A} M+e+{ }_{e}$

Theory of Fermi (1934): point-like interaction with hadronic and leptonic currents.

Theory by Gamow and Teller (1936): five possible current-current interaction.
$J_{\mu}^{\text {had }}(x)=\overline{\Psi_{p}}(x) \gamma_{\mu} \Psi_{n}(x) \quad J_{\mu}^{\text {lep }}(x)=\overline{\Psi_{e}}(x) \gamma_{\mu} \Psi_{v}(x)$

	Scalar (S)
-	Vector (V)
-	Pseudo-scalar (P)

Selection rules for the β-transitions:
$\begin{array}{lll}>J_{M}-J_{N}=0 \text { and } S_{\text {lept }}=0 & \longrightarrow \text { Fermi decay } & \longrightarrow \text { Scalar and Vector couplings } \\ >J_{M}-J_{N}=0,1 \text { and } S_{\text {lept }}=1 & \longrightarrow \text { Gamow-Teller decay } & \longrightarrow\end{array}$ Tensor and Axial-vector coupling
Parity violation in β-decay found by Wu et al. (1957): only left-handed components of Vector and Axial-vector currents.

S. Baeßler, « Neutron beta decay correlations», Summer School on the Fundamentals of Neutron Scattering, NIST Center for Neutron Research, 2009.

One example concerning new physics : predictions for right-handed W boson.

$$
\binom{W_{1}}{W_{2}}=\left(\begin{array}{cc}
\cos \zeta & \sin \zeta \\
-\sin \zeta & \cos \zeta
\end{array}\right)\binom{W_{\mathrm{L}}}{W_{\mathrm{R}}}
$$

Projected future limits

G. Konrad, W. Heil, S. Baeßler, D. Počanić, F. Glück , "Impact of neutron decay experiments on non-standard model physics", World Scientific, November 2, 2012

Recent results for the coefficients:

Coeff.	Value	Experiments	Comments
A	$-0.11952(110)$	UCNA (Mendenhall et al., 2013)	At LNL with polarized UCN. Detector of electrons by low-pressure multiwire proportional chamber
	$-0.11996(58)$	PERKEO II (Mund et al., 2012)	At ILL with polarized cold neutrons. Detection of electrons by two plastic scintillator detector.
B	$0.9802(50)$	PERKEO II (Schumann et al., 2007)	At ILL with polarized cold neutrons. Protons and electrons are detected in coincidence.
C	$-0.2377(26)$	PERKEO II (Schumann et al., 2008)	At ILL with polarized cold neutrons. Protons and electrons are detected in coincidence.
a	$-0.1054(55)$	Spectrometer (Byrne et al., 2002)	Proton recoil spectrum using a cryogenic ion trap.

Ongoing experiments with neutron:

- aCORN for a at NIST by detecting protons and electrons in coincidence,
- aSPECT for a at ILL by measuring the proton recoil spectrum,
- PERKEO III for A, a and C at ILL by measuring protons and electrons.

Ongoing experiments with nuclei:

- WITCH at ISOLDE (CERN): measurement of the coefficient a in the β-decay of ${ }^{35} \mathrm{Ar}$,
- LPCTrap at SPIRAL (GANIL): measurement of the coefficient a in the β-decay of ${ }^{6} \mathrm{He}^{1+},{ }^{35} \mathrm{Ar}^{1+},{ }^{19} \mathrm{Ne}^{2+}$

Backup Installation of aSPECT at the ILL

The PF1b zone is shared by several fundamental physics experiments.

Backup Low-energy proton detection

The Silicon Drift Detector:

Semi-conductor based on the principle of the sidewards depletion (P. Lechner et al., 1996).

Formation of a potential valley where electrons drift toward the anode.

The electronic processing:

Offline measurements in 2012:

Variation of the acceleration voltage allowed to identify the peaks.

Mean lons count rate dependence on the AP voltage

Backup The environmental background

The PF1b zone is surrounded by several neutron guides and experimental zones:

Count rate in the proton region with reactor ON and shutters closed

$\checkmark \quad$ Some fluctuations seemed to correspond to an action of neighbouring zones,
\checkmark This can superpose the "internal" background,
$\checkmark \quad 0.02 \mathbf{s}^{-1}$ of difference in count rate in the worst case.

Example of the edge effect in aSPECT.

This is related to the size difference between the detector and the width of the neutron beam profile.

Additional parameters participating to the edge effect:
$>$ Settings of the electrodes uExB and e15,
$>$ Position and orientation of the detector.

Standard beam profile.

Count rate in proton region with AP at 50 V

Backup
 The proton asymmetry

Perspectives with aSPECT:

The spectrometer would be used with a polarized neutron beam.

$$
C_{\exp }=\frac{N \quad N}{N+N}=\frac{1}{2} C
$$

Considerations:
>10 days measurements (by alternating the spin orientation),
$>$ Detector with 5 pads to increase the statistics,
Estimation on the coefficient C :

$$
(C / C)_{\mathrm{stat}} \approx 0.08 \%
$$

Backup
The new neutron source

European Spallation Source (ESS) in Lund, Sweden:

- pulsed neutron beam => new systematics,
- long pulses of 2.86 ms at a frequency of 14 Hz .

