Foreground Subtraction Method
in Hl intensity mapping
&

Tianlai Offline Data analysis



Outline

Introduction

Model dependent method
Model independent method
PCA method

Tianlai offline data analysis



Introduction

* |Intensity mapping (IM)
— High redshift HI
— IM with other emission lines - ,*"v;‘,
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Introduction

* Highly contaminated by Foreground
— The Galaxy Synchrotron emission
— Nearby Radio Galaxies
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Introduction

* Foreground Subtraction Method

— The foreground emission have smooth radio
spectrum (power law)

— Line of sight (LoS)
— Model dependent & Model independent



Model Dependent Method

* Foreground models

— Galactic synchrotron emission
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Model Dependent Method

* Polynomial Fitting

 Karhunen-Loeve
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Model Dependent Method

e The Problem

— The foreground spectrum may NOT be fully
described by the foreground model.
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Model Independent Method

* |CA (Independent component analysis)
— FastICA ( Hyvarinen, et. al. 1999):

e assume that the sources are statically independent
from each other

J(¥) ~ > k(G — (Gi(ya))e]
G(y) = e V2 G(y) = 2log cosh(ay), 1 <a <2.

— HIEMICA (Le, et. al. 2015)

 PCA
— Find the eigenvectors (modes) of foreground



PCA Method

* SVD

— Find frequency frequency covariance of the
foreground

Cpp =((@,X )@, X)) =UAV'
— Find the line-of-sight (LoS) modes, by SVD
U=(u1,u2...) V=(v1,v2...)
— Subtract N nodes from each LoS

xgened = (I-Suu )X,
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Eigenvalue
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PCA Method
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PCA Method

Power spectrum com pensation

— Due to the non-smooth foreground modes,
subtractions may kill power signal.

— Subtract the signal only simulation map to get the
signal loss transfer function - —
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PCA Method
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Figure 2. Cross-power between the 15 hr and 1 hr GBT fields and Wiggl 107 0.1 0.2 03 04 05 0.6
Negative points are shown with reversed sign and a thin line. The solid lin k(h/Mpc)

the mean of simulations based on the empirical-NL model of Blake et al. (2011)

processed by the same pipeline.

(A color version of this figure is available in the online journal.)

K. W. Masui et. al. 2012

E. R. Switzer et. al. 2013




* Tianlai offline data analysis
— Data reformat (uvfits, hdf5)
— Data edit & RFI flagging
— Calibration (phase, amplitude, polarization)
— Foreground Subtraction & Map making
— Power spectrum estimation
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Table 1: The fitting results of 9 antennas
« B 0%

Ant. Best fit Cent. 10 + 20 Best fit Cent. 10 + 20 Best fit Cent. +10 + 20
Ant01 | —0.0230  —0.0230F00°20T0-1019 | —0.0440  —0.04407( 0220192820 0.0160 0.01601 ) 9290+0.1710
Ant02 | 0.1480 0.1480717-0520H0.0970 —0.0350  —0.035010- 093001859 0.0640 0.064010- 959001150
Ant03 | 0.2160 0.216071 0 039010.0950 0.6000 0.600010-0850+0.1710 0.0330 0.033010 0290 H0. 2050
Ant06 | 0.3420 0.342010-9530+0-1010 1 _0.0050 ~ —0.00501 7 9990H0-1770 1 0.1910 0.191019-9590+0.1710
Ant07 | 0.0230 0.023010- 0220401010 | —0.1020  —0.102070 DS00F0- 1920 | —0.0020  —0.00201( 0250 +0- 1130
Ant09 | 0.5770 0.57701 0 0o o bose | —0.7250  —0.7250F0 0001790 1 —0.1080  —0.10807F 0038001600
Antl0 | 0.2120 0.212010-0220H0-0970 1 —0.0630  —0.06301 0 055001719 1 0.1490 0.14907190590+0-1180
Antll | 0.1090 0.10907F(0520+0- 1010 0.1920 0.19207F(0930+0- 1740 0.1700  0.1700F0-0390+0- 1190

+0.0520+0.1010 +0.0880+0.1670 +0.0590+4+0.1150
Antl5 | 0.1370 0.137010-0520+0-10°0 1 —0.0160  —0.016010 0550H0-1670 1 0.0020 0.0020719-9590+0-1150
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