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In the cleaning step, we find our best-fit parameter vector a by
minimizing !2 ¼ ( y" Xa)tN"1( y" Xa), obtaining (Tegmark
1997)

a ¼ X tN"1X
! ""1

X tN"1y; ð9Þ

whereN is the covariance matrix of the contributions from the de-
tector noise and the 21 cm signal. We then subtract the total fitted
foreground contribution Xa from the simulated measurement
vector, thus obtaining what we will refer to as the cleaned signal y.

Although this cleaning technique is only optimal if N is known
and the contributions from noise and 21 cm signals are Gaussian
(Tegmark 1997), we use equation (9) anyway and quantify the
residual noise using our simulations. Since equation (9) mini-
mizes the rms residual even in the presence of non-Gaussianity
(Tegmark 1997), it is a robust general-purpose fit that does not
require detailed foreground or signal modeling. We simply set
N ¼ I, the identity matrix, which will be essentially optimal if
white detector noise dominates. If desired, this can be further
improved bymodeling the foreground power spectrum found in
real data and iterating.

Since the cleaning step uses a single polynomial in log-log
space, it cannot fit exactly a simulation including detector noise
or more than one foreground component (since adding the ex-
ponential of two polynomials does not give the exponential of a
polynomial). We will see that this simple cleaning algorithm is
nonetheless very successful, able to fit any of our foreground
models well over the limited frequency range that is relevant.

3.2. Foreground and Detector Noise Models

The foregrounds we consider in this paper include Galactic
synchrotron emission, Galactic free-free (thermal) emission, and
extragalactic point sources. For more information on models of
foregrounds in the 100 MHz range, please see, for example,
Di Matteo et al. (2002, 2004), Haslam et al. (1982), Haverkorn
et al. (2003), Morales & Hewitt (2004), Oh & Mack (2003),
Platania et al. (2003), Santos et al. (2005), and Shaver et al. (1999).
As emphasized above, the foreground models we describe here
are used only in our simulation step, not for the cleaning process.

3.2.1. Galactic Synchrotron Radiation

For Galactic synchrotron emission, which probably causes
most contamination of all foregrounds (perhaps of order 70% at
150 MHz; Platania et al. 2003; Shaver et al. 1999), we assume
its intensity to be a running power law in frequency,

Isyn ¼ Asyn
"

"%

# $"#syn"!#syn log "="%ð Þ
; ð10Þ

with a spectral index #syn ¼ 2:8 (Tegmark et al. 2000) and a
spectral ‘‘running’’ index!#syn ¼ 0:1 (Haverkorn et al. 2003;
Platania et al. 2003; Shaver et al. 1999; Tegmark et al. 2000).
Here "% & 150MHz.We assume the amplitude of the synchrotron
foreground to beAsyn ¼ 335:4 K, an extrapolation fromHaverkorn
et al. (2003) and Tegmark et al. (2000). We also explore other
normalizations that are Asyn orders of magnitude higher than the
value we define here in our calculations. Similarly, we try other
values of the spectral index and spectral running index in the
calculation to test the robustness of our method. We discuss the
details in x 4.

3.2.2. Galactic Free-Free Emission

We model the Galactic free-free emission (which might con-
tribute a contamination of order 1% at 150 MHz; Shaver et al.

1999) as a running power law as well (Haverkorn et al. 2003;
Platania et al. 2003; Tegmark et al. 2000):

IA ¼ AA
"

"%

# $"#A"!#A log "="%ð Þ
; ð11Þ

where#A ¼ 2:15,!#A ¼ 0:01, and AA ¼ 33:5K, extrapolated
from Haverkorn et al. (2003) and Tegmark et al. (2000).

3.2.3. Extragalactic Point Sources

Point sources have been estimated to cause about 30% of the
contamination at 150MHz (Shaver et al. 1999) and are typically
less smooth in frequency than the Galactic foregrounds. When
looking in a given direction, we are observing the same point
sources as we change frequency, so there are not small-scale
fluctuations in the same sense as when we change observing
directions.5 A serious complication compared to the Galactic
synchrotron and free-free cases is that when we observe many
point sources in a pixel, they can each have quite different spectral
indices, possibly making their combined intensity a quite com-
plicated function of frequency.
One approach would be to model this complicated function

as a running power law over the narrow frequency range involved,
just as we did for the synchrotron and free-free foregrounds:

Ips ¼ Aps
Scut
mJy

# $$ "

"%

# $"#ps"!#ps log "="%ð Þ
; ð12Þ

where#ps ¼ 2:81,!#ps ¼ 0:25, and $ ¼ 0:125 (Tegmark et al.
2000).
However, we wish to be as conservative as possible in this

paper, and we therefore adopt a more complicated point source
model in our simulations. We therefore simulate a large number
of random point sources i ¼ 1; : : : in the pixel that we are con-
sidering and sum their intensity contributions in units of kelvins:

Ips ¼
dB

dT

# $"1

""1
sky

X

i

S %
i

150 MHz

"

# $# i

" hIpsi; ð13Þ

where

hIpsi¼
dB

dT

# $"1Z Scut

0

S
dN

dS
dS

Z
150

"

# $#
f (#) d# ð14Þ

is the average value of the point-source foreground intensity.
The conversion factor dB/dT ¼ 6:9 ; 105 mJy K"1. The as-
sumed sky area per pixel is approximately "sky ¼ 12 arcmin2.
In equation (13), S%

i is the flux of the ith point source at 150MHz.
It is generated randomly from the source count distribution
dN/dS ¼ 4(S /1 Jy)"1:75 (Di Matteo et al. 2004), which is trun-
cated at a maximum flux Smax ¼ Scut ¼ 0:1 mJy, above which
we assume that point sources can be detected and their pixels

5 There is, however, the subtle effect of off-beam point sources dimming
toward higher frequencies because the beam gets narrower (Oh & Mack 2003;
Zaldarriaga et al. 2004). For the narrow frequency intervals !ln " that we are
considering, this effect will be around the percent level for individual sources, in
the same ballpark as the intensity change due to the frequency dependence of the
emission mechanism. This means that it will not imprint sharp spectral features
in the total foreground emission and should be well fitted by our blind cleaning
algorithm. We have not included this complication in the present analysis; it
would be worth incorporating it in a more detailed foreground analysis, par-
ticularly in one including explicit modeling of the sky pixelization.
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and the contributions from noise and 21 cm signals are Gaussian
(Tegmark 1997), we use equation (9) anyway and quantify the
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its intensity to be a running power law in frequency,
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with a spectral index #syn ¼ 2:8 (Tegmark et al. 2000) and a
spectral ‘‘running’’ index!#syn ¼ 0:1 (Haverkorn et al. 2003;
Platania et al. 2003; Shaver et al. 1999; Tegmark et al. 2000).
Here "% & 150MHz.We assume the amplitude of the synchrotron
foreground to beAsyn ¼ 335:4 K, an extrapolation fromHaverkorn
et al. (2003) and Tegmark et al. (2000). We also explore other
normalizations that are Asyn orders of magnitude higher than the
value we define here in our calculations. Similarly, we try other
values of the spectral index and spectral running index in the
calculation to test the robustness of our method. We discuss the
details in x 4.

3.2.2. Galactic Free-Free Emission

We model the Galactic free-free emission (which might con-
tribute a contamination of order 1% at 150 MHz; Shaver et al.
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Platania et al. 2003; Tegmark et al. 2000):
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where#A ¼ 2:15,!#A ¼ 0:01, and AA ¼ 33:5K, extrapolated
from Haverkorn et al. (2003) and Tegmark et al. (2000).

3.2.3. Extragalactic Point Sources

Point sources have been estimated to cause about 30% of the
contamination at 150MHz (Shaver et al. 1999) and are typically
less smooth in frequency than the Galactic foregrounds. When
looking in a given direction, we are observing the same point
sources as we change frequency, so there are not small-scale
fluctuations in the same sense as when we change observing
directions.5 A serious complication compared to the Galactic
synchrotron and free-free cases is that when we observe many
point sources in a pixel, they can each have quite different spectral
indices, possibly making their combined intensity a quite com-
plicated function of frequency.
One approach would be to model this complicated function
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However, we wish to be as conservative as possible in this
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is the average value of the point-source foreground intensity.
The conversion factor dB/dT ¼ 6:9 ; 105 mJy K"1. The as-
sumed sky area per pixel is approximately "sky ¼ 12 arcmin2.
In equation (13), S%

i is the flux of the ith point source at 150MHz.
It is generated randomly from the source count distribution
dN/dS ¼ 4(S /1 Jy)"1:75 (Di Matteo et al. 2004), which is trun-
cated at a maximum flux Smax ¼ Scut ¼ 0:1 mJy, above which
we assume that point sources can be detected and their pixels

5 There is, however, the subtle effect of off-beam point sources dimming
toward higher frequencies because the beam gets narrower (Oh & Mack 2003;
Zaldarriaga et al. 2004). For the narrow frequency intervals !ln " that we are
considering, this effect will be around the percent level for individual sources, in
the same ballpark as the intensity change due to the frequency dependence of the
emission mechanism. This means that it will not imprint sharp spectral features
in the total foreground emission and should be well fitted by our blind cleaning
algorithm. We have not included this complication in the present analysis; it
would be worth incorporating it in a more detailed foreground analysis, par-
ticularly in one including explicit modeling of the sky pixelization.
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1997)
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whereN is the covariance matrix of the contributions from the de-
tector noise and the 21 cm signal. We then subtract the total fitted
foreground contribution Xa from the simulated measurement
vector, thus obtaining what we will refer to as the cleaned signal y.

Although this cleaning technique is only optimal if N is known
and the contributions from noise and 21 cm signals are Gaussian
(Tegmark 1997), we use equation (9) anyway and quantify the
residual noise using our simulations. Since equation (9) mini-
mizes the rms residual even in the presence of non-Gaussianity
(Tegmark 1997), it is a robust general-purpose fit that does not
require detailed foreground or signal modeling. We simply set
N ¼ I, the identity matrix, which will be essentially optimal if
white detector noise dominates. If desired, this can be further
improved bymodeling the foreground power spectrum found in
real data and iterating.

Since the cleaning step uses a single polynomial in log-log
space, it cannot fit exactly a simulation including detector noise
or more than one foreground component (since adding the ex-
ponential of two polynomials does not give the exponential of a
polynomial). We will see that this simple cleaning algorithm is
nonetheless very successful, able to fit any of our foreground
models well over the limited frequency range that is relevant.
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For Galactic synchrotron emission, which probably causes
most contamination of all foregrounds (perhaps of order 70% at
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its intensity to be a running power law in frequency,
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with a spectral index #syn ¼ 2:8 (Tegmark et al. 2000) and a
spectral ‘‘running’’ index!#syn ¼ 0:1 (Haverkorn et al. 2003;
Platania et al. 2003; Shaver et al. 1999; Tegmark et al. 2000).
Here "% & 150MHz.We assume the amplitude of the synchrotron
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normalizations that are Asyn orders of magnitude higher than the
value we define here in our calculations. Similarly, we try other
values of the spectral index and spectral running index in the
calculation to test the robustness of our method. We discuss the
details in x 4.

3.2.2. Galactic Free-Free Emission

We model the Galactic free-free emission (which might con-
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where#A ¼ 2:15,!#A ¼ 0:01, and AA ¼ 33:5K, extrapolated
from Haverkorn et al. (2003) and Tegmark et al. (2000).

3.2.3. Extragalactic Point Sources

Point sources have been estimated to cause about 30% of the
contamination at 150MHz (Shaver et al. 1999) and are typically
less smooth in frequency than the Galactic foregrounds. When
looking in a given direction, we are observing the same point
sources as we change frequency, so there are not small-scale
fluctuations in the same sense as when we change observing
directions.5 A serious complication compared to the Galactic
synchrotron and free-free cases is that when we observe many
point sources in a pixel, they can each have quite different spectral
indices, possibly making their combined intensity a quite com-
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One approach would be to model this complicated function
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The conversion factor dB/dT ¼ 6:9 ; 105 mJy K"1. The as-
sumed sky area per pixel is approximately "sky ¼ 12 arcmin2.
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It is generated randomly from the source count distribution
dN/dS ¼ 4(S /1 Jy)"1:75 (Di Matteo et al. 2004), which is trun-
cated at a maximum flux Smax ¼ Scut ¼ 0:1 mJy, above which
we assume that point sources can be detected and their pixels
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toward higher frequencies because the beam gets narrower (Oh & Mack 2003;
Zaldarriaga et al. 2004). For the narrow frequency intervals !ln " that we are
considering, this effect will be around the percent level for individual sources, in
the same ballpark as the intensity change due to the frequency dependence of the
emission mechanism. This means that it will not imprint sharp spectral features
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discarded. In other words, when we talk about the contamina-
tion from point sources below, we refer only to the contribution
from unresolved point sources. To avoid having to generate in-
finitely many point sources, we also truncated the distribution
at a minimum flux Smin ¼ 10"3 mJy, since we find that the total
flux contribution has converged by then.We generate!i, the spec-
tral index of the ith point source, randomly from the Gaussian
distribution

f (!) ¼ 1ffiffiffiffiffiffiffiffiffi
(2")

p
#!

exp " (! " !0)
2

2#2
!

" #
; ð15Þ

with the spectral index ! in the range of ½!0 "!!;!0 þ!!',
where !! ¼ 5#! . To be conservative, we allow the spectral
index to vary in a fairly large region, #! ¼ 10, through our
calculations.

3.2.4. Detector Noise

We treat detector noise as white noise. In the Rayleigh-Jeans
limit, the rms detector noise in a pixel can be approximated as

#T ¼ k2

2kB
B ¼ k2

2kB

S

A
; ð16Þ

where kB is the Boltzmann constant and k is the redshifted
wavelength of 21 cm emission. The specific brightness B is
related to the point-source sensitivity S by dividing it with the
pixel area A.

At redshift 8.47, $ ¼ 150 MHz, k ¼ 2m, with the LOFAR
virtual core configuration,6 for a 5A2 pixel with 4MHz bandpass
and 1 hr integration, the sensitivity S is approximately 0.17mJy,
and from equation (16) we get

#LOFAR
T ¼ 108 mKð Þ 4 MHz

!$

$ %0:5 1 hr

t

$ %0:5
; ð17Þ

where!$ is the channel width and t is the total integration time.
Similarly, for the MWA experiment,7 a 4A6 pixel with 32 MHz
bandpass and 1 hr integration has a point-source sensitivity of
S ¼ 0:27 mJy, so we get the MWA detector noise of

#MWA
T ¼ 218 mKð Þ 32 MHz

!$

$ %0:5 1 hr

t

$ %0:5
: ð18Þ

We should mention that although at 4 MHz bandwidth, the
sensitivity for MWA is worse than that for LOFAR, MWA has a
larger bandpass and field of view. This larger field of view leads
to vastly more pixels, which is an advantage for foreground re-
moval, as we will see in later sections. The detector thermal noise
is only one of the many concerns in the experiment, such as
calibration, systematics, etc. Thus, it should not be considered
as the only criterion to judge an experiment.

The 1D power spectrum of the detector noise can then be
written as

Pdet ¼ 2"#2
T : ð19Þ

In our simulation, we consider two scenarios. One scenario as-
sumes a fiducial future experimentwithGaussian randomdetector
noise down to the #T ¼ 1mK level. The other scenario assumes
a currently achievable detector noise level of(200 mK. This is

based on equations (17) and (18) for the LOFAR and MWA
experiments, assuming 1000 hr of integration time and 4Y8 kHz
frequency resolutions, respectively.

4. RESULTS

As we showed previously in Figure 2, the signal wiggles
rapidly with frequency. This is the key advantage of removing
foregrounds in frequency space, since foregrounds are typically
relatively smooth functions of frequency.

We simulate the 21 cm signal as a Gaussian random field,
although in reality, the signal is of course highly non-Gaussian.
We make this Gaussianity approximation for simplicity, since
the key quantity that we are interested in (the power spectra of
the residual noise and foregrounds) depends mainly on the power
spectra of the signal, foregrounds, and noise, not on whether the
statistics are Gaussian or not.

4.1. Baseline Example 1: Long-Term Potential
(NoiseT Signal )

The results for the baseline example with noise much smaller
than the signal are shown in Figure 3. The top panel shows the
total contaminant in a pixel, including Galactic synchrotron ra-
diation, Galactic free-free emission, extragalactic point sources,
and detector noise with # ¼ 1 mK, which is the fiducial value
for a future-generation experiment. The foregrounds are modeled
as in the previous section, with parameters (given in the figure
caption) corresponding to a rather pessimistic assumption about
the foreground properties.

6 See http://www.lofar.org.
7 See http://web.haystack.mit.edu/MWA/MWA.html.

Fig. 3.—Spectrum in a single pixel before and after foreground cleaning. The
top panel shows the total contaminant signal, consisting of synchrotron radia-
tion (Asyn ¼ 335:4 K, !syn ¼ 2:8,!!syn ¼ 0:1), free-free emission foreground
(AA ¼ 33:5 K, !A ¼ 2:15,!!A ¼ 0:01), extragalactic point sources (#! ¼ 10),
and detector noise (# ¼ 1 mK). The middle panel has the cosmological 21 cm
signal added. The bottom panel shows the recovered 21 cm signal (dashed curve)
compared with the true simulated signal (solid curve) and the residual (recovered
minus simulated 21 cm signal; gray curve). The three horizontal black dashed lines
correspond to "0.004, 0, and 0.004 K, respectively. (Note the different vertical
axis limits.) The small-scale wiggles in the residual represent detector noise,
whereas the smoothed parabola-shaped component of the residual indicates the
error in the foreground fitting. [See the electronic edition of the Journal for a
color version of this figure.]
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measured temperature maps the components corresponding to the
eigenvectors of the frequency covariance matrix with the Nfg largest
associated eigenvalues. The explicit method is as follows.

(i) Compute the frequency covariance matrix from the data by
averaging over the available Nθ lines of sight:

Cij = 1
Nθ

Nθ∑

n=1

T (νi , n̂n)T (νj , n̂n). (11)

(ii) Diagonalize the covariance matrix:

Û
T
Ĉ Û = #̂ ≡ diag(λ1, . . . , λNν ), (12)

where λi > λi + 1 ∀i are the (ordered) eigenvalues of Ĉ, and Û is an
orthogonal matrix whose columns are the corresponding eigenvec-
tors.

(iii) At this stage, we identify Nfg eigenvalues corresponding to
the foregrounds as those that are much larger than the rest. Depend-
ing on the frequency structure of the foregrounds and the different
instrumental effects this number will be more or less evident (see
the discussion in Section 5.1). We then build the matrix Ûfg from
the columns of Û corresponding to these eigenvalues and model the
brightness temperature for each line of sight as

x = Ûfg s + r, (13)

which is analogous to equation (4). The foreground maps s are then
found by projecting x on the basis of eigenvectors of Ĉ, yielding

s = Û
T
fg x. (14)

Note that, since Û is orthogonal, Û
T
fgÛfg = 1, and, except for the

presence of the covariance N̂ , equations (13) and (14) are equivalent
to equations (4) and (6).

In the presence of N̂, the frequency covariance must be computed
using an inverse-variance scheme:

Cij = 1
Nθ

Nθ∑

n=1

T (νi , n̂n)
σi

T (νj , n̂n)
σj

, (15)

which is equivalent to carrying out the steps above using the
weighted maps xi = T(ν i)/σ i and multiplying by σ i in the end
to obtain the de-weighted temperature maps. It is easy to see that
doing this we introduce the missing N̂

−1
factors that make the

equivalence between equations (14) and (6) complete.
We thus see that the PCA method is in fact equivalent to the

polynomial fitting method, with the set of basis functions Aik given
by the data themselves in the form of those that that contain most of
the total variance (i.e. the principal eigenvectors of the covariance
matrix).

Finally, let us note that in a real experiment the situation will be
more complicated, for example due to the presence of correlated
instrumental noise. This problem was addressed in the pioneering
analysis done by the Green Bank Telescope team (Masui et al. 2013;
Switzer et al. 2013) by computing the frequency covariance matrix
through a cross-correlation of temperature maps corresponding to
different seasons. However, this yields a non-symmetric covariance
matrix, and therefore its singular value decomposition must be used,
instead of the PCA. The simulations used for this analysis however
do not contain correlated noise, and hence we will not worry about
these complications. We leave the analysis of such instrumental
issues for future work.

3.3 Independent component analysis

Independent component analysis (ICA) tries to solve the blind equa-
tion (equation 4) under the assumption that the sources s are statis-
tically independent from each other (P (s) =

∏
i Pi(si)). Explicitly

this is enforced by using the central limit theorem, according to
which, if x is made up of a linear combination of linearly indepen-
dent sources, its distribution should be ‘more Gaussian’ than those
of the independent sources. Therefore, we can attempt to impose
statistical independence by maximizing any statistical quantity that
describes non-Gaussianity.

FASTICA (Hyvärinen 1999) is a relatively popular and computa-
tionally efficient algorithm to apply ICA to a general system. Here,
we will outline the operations carried out by FASTICA as well as its
similarities with PCA. As before, we label the brightness tempera-
ture measured in different frequencies along a given line of sight n̂
by a vector x; however, the reader must bear in mind that FASTICA

is provided with a number of samples of x (i.e. different pixels),
which it uses to compute the expectation values in the equations
below.

FASTICA begins by ‘whitening’ the data x. This implies first of all
performing a full PCA analysis of the data, decorrelating them and
sorting them by the magnitude of the covariance eigenvalues. The
uncorrelated variables are then divided by their standard deviations
so as to impose a unit variance on all of them (this is done in order to
simplify the subsequent steps in the algorithm). We are then left with
the corresponding equation for the whitened data x̃ ≡ #̂−1/2 Û x:

x̃ = Â
′
s ≡ #̂−1/2 Û Â s, (16)

where as before Û and #̂ are the eigenvectors and eigenvalues of
the data covariance matrix. Note that although the data have been
whitened, FASTICA still preserves their PCA order. The problem is
further simplified by requiring that the sources be also ‘white’ (i.e.
uncorrelated and unit variance), since that implies that Â

′
must be

orthonormal.
FASTICA then tries to find the independent components by inverting

equation (16):

s = Ŵ x̃. (17)

and finding the rows of Ŵ by maximizing the non-Gaussianity of
the individual components. FASTICA parametrizes the level of non-
Gaussianity in terms of the negentropy J(y) = H(yG) − H(y), where
H(y) is the entropy of the variable y and yG is a unit-variance Gaus-
sian random variable. Since for all variables with the same variance
the entropy is maximal for a Gaussian variable, the negentropy J
is always positive for non-Gaussian variables. However, computing
the negentropy requires an intimate knowledge of the probability
distribution, which in general we lack. For this reason FASTICA uses
an approximation to J given by

J (y) ∼
∑

i

ki [〈Gi(y)〉θ − 〈Gi(yG)〉θ ] , (18)

where (ki) are positive constants, 〈·〉θ denotes averaging over all
available samples (i.e. pixels) and Gi is a set of non-quadratic func-
tions. FASTICA makes use of two functions in particular:2

G(y) = e−y2/2, G(y) = 1
a

log cosh(a y), 1 ≤ a ≤ 2. (19)

2 No significant difference in the final foreground-cleaned maps was found
for either choice of function.
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measured temperature maps the components corresponding to the
eigenvectors of the frequency covariance matrix with the Nfg largest
associated eigenvalues. The explicit method is as follows.

(i) Compute the frequency covariance matrix from the data by
averaging over the available Nθ lines of sight:

Cij = 1
Nθ

Nθ∑

n=1

T (νi , n̂n)T (νj , n̂n). (11)

(ii) Diagonalize the covariance matrix:

Û
T
Ĉ Û = #̂ ≡ diag(λ1, . . . , λNν ), (12)

where λi > λi + 1 ∀i are the (ordered) eigenvalues of Ĉ, and Û is an
orthogonal matrix whose columns are the corresponding eigenvec-
tors.

(iii) At this stage, we identify Nfg eigenvalues corresponding to
the foregrounds as those that are much larger than the rest. Depend-
ing on the frequency structure of the foregrounds and the different
instrumental effects this number will be more or less evident (see
the discussion in Section 5.1). We then build the matrix Ûfg from
the columns of Û corresponding to these eigenvalues and model the
brightness temperature for each line of sight as

x = Ûfg s + r, (13)

which is analogous to equation (4). The foreground maps s are then
found by projecting x on the basis of eigenvectors of Ĉ, yielding

s = Û
T
fg x. (14)

Note that, since Û is orthogonal, Û
T
fgÛfg = 1, and, except for the

presence of the covariance N̂ , equations (13) and (14) are equivalent
to equations (4) and (6).

In the presence of N̂, the frequency covariance must be computed
using an inverse-variance scheme:

Cij = 1
Nθ

Nθ∑

n=1

T (νi , n̂n)
σi

T (νj , n̂n)
σj

, (15)

which is equivalent to carrying out the steps above using the
weighted maps xi = T(ν i)/σ i and multiplying by σ i in the end
to obtain the de-weighted temperature maps. It is easy to see that
doing this we introduce the missing N̂

−1
factors that make the

equivalence between equations (14) and (6) complete.
We thus see that the PCA method is in fact equivalent to the

polynomial fitting method, with the set of basis functions Aik given
by the data themselves in the form of those that that contain most of
the total variance (i.e. the principal eigenvectors of the covariance
matrix).

Finally, let us note that in a real experiment the situation will be
more complicated, for example due to the presence of correlated
instrumental noise. This problem was addressed in the pioneering
analysis done by the Green Bank Telescope team (Masui et al. 2013;
Switzer et al. 2013) by computing the frequency covariance matrix
through a cross-correlation of temperature maps corresponding to
different seasons. However, this yields a non-symmetric covariance
matrix, and therefore its singular value decomposition must be used,
instead of the PCA. The simulations used for this analysis however
do not contain correlated noise, and hence we will not worry about
these complications. We leave the analysis of such instrumental
issues for future work.

3.3 Independent component analysis

Independent component analysis (ICA) tries to solve the blind equa-
tion (equation 4) under the assumption that the sources s are statis-
tically independent from each other (P (s) =

∏
i Pi(si)). Explicitly

this is enforced by using the central limit theorem, according to
which, if x is made up of a linear combination of linearly indepen-
dent sources, its distribution should be ‘more Gaussian’ than those
of the independent sources. Therefore, we can attempt to impose
statistical independence by maximizing any statistical quantity that
describes non-Gaussianity.

FASTICA (Hyvärinen 1999) is a relatively popular and computa-
tionally efficient algorithm to apply ICA to a general system. Here,
we will outline the operations carried out by FASTICA as well as its
similarities with PCA. As before, we label the brightness tempera-
ture measured in different frequencies along a given line of sight n̂
by a vector x; however, the reader must bear in mind that FASTICA

is provided with a number of samples of x (i.e. different pixels),
which it uses to compute the expectation values in the equations
below.

FASTICA begins by ‘whitening’ the data x. This implies first of all
performing a full PCA analysis of the data, decorrelating them and
sorting them by the magnitude of the covariance eigenvalues. The
uncorrelated variables are then divided by their standard deviations
so as to impose a unit variance on all of them (this is done in order to
simplify the subsequent steps in the algorithm). We are then left with
the corresponding equation for the whitened data x̃ ≡ #̂−1/2 Û x:

x̃ = Â
′
s ≡ #̂−1/2 Û Â s, (16)

where as before Û and #̂ are the eigenvectors and eigenvalues of
the data covariance matrix. Note that although the data have been
whitened, FASTICA still preserves their PCA order. The problem is
further simplified by requiring that the sources be also ‘white’ (i.e.
uncorrelated and unit variance), since that implies that Â

′
must be

orthonormal.
FASTICA then tries to find the independent components by inverting

equation (16):

s = Ŵ x̃. (17)

and finding the rows of Ŵ by maximizing the non-Gaussianity of
the individual components. FASTICA parametrizes the level of non-
Gaussianity in terms of the negentropy J(y) = H(yG) − H(y), where
H(y) is the entropy of the variable y and yG is a unit-variance Gaus-
sian random variable. Since for all variables with the same variance
the entropy is maximal for a Gaussian variable, the negentropy J
is always positive for non-Gaussian variables. However, computing
the negentropy requires an intimate knowledge of the probability
distribution, which in general we lack. For this reason FASTICA uses
an approximation to J given by

J (y) ∼
∑

i

ki [〈Gi(y)〉θ − 〈Gi(yG)〉θ ] , (18)

where (ki) are positive constants, 〈·〉θ denotes averaging over all
available samples (i.e. pixels) and Gi is a set of non-quadratic func-
tions. FASTICA makes use of two functions in particular:2

G(y) = e−y2/2, G(y) = 1
a

log cosh(a y), 1 ≤ a ≤ 2. (19)

2 No significant difference in the final foreground-cleaned maps was found
for either choice of function.
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Figure 1. Maps of the GBT 15 hr field at approximately the band-center. The purple circle is the FWHM of the GBT beam, and the color range saturates in some
places in each map. Left: the raw map as produced by the map-maker. It is dominated by synchrotron emission from both extragalactic point sources and smoother
emission from the galaxy. Right: the raw map with 20 foreground modes removed per line of sight relative to 256 spectral bins, as described in Section 3.2. The map
edges have visibly higher noise or missing data due to the sparsity of scanning coverage. The cleaned map is dominated by thermal noise, and we have convolved by
GBT’s beam shape to bring out the noise on relevant scales.
(A color version of this figure is available in the online journal.)

redshift-space power spectrum using the empirical-non-linear
(NL) model described by Blake et al. (2011).

3.2. From Maps to Power Spectra

The approach to 21 cm foreground subtraction in literature
has been dominated by the notion of fitting and subtracting
smooth, orthogonal polynomials along each line of sight. This
is motivated by the eigenvectors of smooth synchrotron fore-
grounds (Liu & Tegmark 2011, 2012). In practice, instrumental
factors such as the spectral calibration (and its stability) and
polarization response translate into foregrounds that have more
complex structure. One way to quantify this structure is to use
the map itself to build the foreground model. To do this, we
find the frequency–frequency covariance across the sample of
angular pixels in the map, using a noise inverse weight. We then
find the principal components along the frequency direction, or-
der these by their singular value, and subtract a fixed number of
modes of the largest covariance from each line of sight. Because
the foregrounds dominate the real map, they also dominate the
largest modes of the covariance.

There is an optimum in the number of foreground modes to
remove. For too few modes, the errors are large due to residual
foreground variance. For too many modes, 21 cm signal is lost,
and so after compensating based on simulated signal loss (see
below), the errors increase modestly. We find that removing
20 modes in both the 15 hr and 1 hr field maximizes the signal.
Figure 1 shows the foreground-cleaned 15 hr field map.

We estimate the cross-power spectrum using the inverse noise
variance of the maps and the WiggleZ selection function as
the weight for the radio and optical survey data, respectively.
The variance is estimated in the mapping step and represents
noise and survey coverage. The foreground cleaning process
also removes some 21 cm signal. We compensate for signal
loss using a transfer function based on 300 simulations where
we add signal simulations to the observed maps (which are
dominated by foregrounds), clean the combination, and find the
cross-power with the input simulation. Because the foreground
subtraction is anisotropic in k⊥ and k‖, we estimate and apply
this transfer function in two dimensions (2D). The GBT beam
acts strictly in k⊥, and again we develop a 2D beam transfer
function using signal simulations with the beam.
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Figure 2. Cross-power between the 15 hr and 1 hr GBT fields and WiggleZ.
Negative points are shown with reversed sign and a thin line. The solid line is
the mean of simulations based on the empirical-NL model of Blake et al. (2011)
processed by the same pipeline.
(A color version of this figure is available in the online journal.)

The foreground filter is built from the real map which has a
limited number of independent angular elements. This causes
the transfer function to have components in both the angular
and frequency direction (Nityananda 2010), with the angular
part dominating. This is accounted for in our transfer function.
Subtleties of the cleaning method will be described in a future
methods paper.

We estimate the errors and their covariance in our cross-
power spectrum by calculating the cross-power of the cleaned
GBT maps with 100 random catalogs drawn from the WiggleZ
selection function (Blake et al. 2010). The mean of these
cross powers is consistent with zero, as expected. The variance
accounts for shot noise in the galaxy catalog and variance in
the radio map either from real signal (sample variance), residual
foregrounds or noise. Estimating the errors in this way requires
many independent modes to enter each spectral cross-power bin.
This fails at the lowest k values and so these scales are discarded.
In going from the 2D power to the 1D powers presented here,
we weight each 2D k-cell by the inverse variance of the 2D
cross-power across the set of mock galaxy catalogs. The 2D–1D
binning weight is multiplied by the square of the beam and
foreground cleaning transfer functions. Figure 2 shows the
resulting galaxy–H i cross-power spectra.
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Figure 1. Maps of the GBT 15 hr field at approximately the band-center. The purple circle is the FWHM of the GBT beam, and the color range saturates in some
places in each map. Left: the raw map as produced by the map-maker. It is dominated by synchrotron emission from both extragalactic point sources and smoother
emission from the galaxy. Right: the raw map with 20 foreground modes removed per line of sight relative to 256 spectral bins, as described in Section 3.2. The map
edges have visibly higher noise or missing data due to the sparsity of scanning coverage. The cleaned map is dominated by thermal noise, and we have convolved by
GBT’s beam shape to bring out the noise on relevant scales.
(A color version of this figure is available in the online journal.)

redshift-space power spectrum using the empirical-non-linear
(NL) model described by Blake et al. (2011).

3.2. From Maps to Power Spectra

The approach to 21 cm foreground subtraction in literature
has been dominated by the notion of fitting and subtracting
smooth, orthogonal polynomials along each line of sight. This
is motivated by the eigenvectors of smooth synchrotron fore-
grounds (Liu & Tegmark 2011, 2012). In practice, instrumental
factors such as the spectral calibration (and its stability) and
polarization response translate into foregrounds that have more
complex structure. One way to quantify this structure is to use
the map itself to build the foreground model. To do this, we
find the frequency–frequency covariance across the sample of
angular pixels in the map, using a noise inverse weight. We then
find the principal components along the frequency direction, or-
der these by their singular value, and subtract a fixed number of
modes of the largest covariance from each line of sight. Because
the foregrounds dominate the real map, they also dominate the
largest modes of the covariance.

There is an optimum in the number of foreground modes to
remove. For too few modes, the errors are large due to residual
foreground variance. For too many modes, 21 cm signal is lost,
and so after compensating based on simulated signal loss (see
below), the errors increase modestly. We find that removing
20 modes in both the 15 hr and 1 hr field maximizes the signal.
Figure 1 shows the foreground-cleaned 15 hr field map.

We estimate the cross-power spectrum using the inverse noise
variance of the maps and the WiggleZ selection function as
the weight for the radio and optical survey data, respectively.
The variance is estimated in the mapping step and represents
noise and survey coverage. The foreground cleaning process
also removes some 21 cm signal. We compensate for signal
loss using a transfer function based on 300 simulations where
we add signal simulations to the observed maps (which are
dominated by foregrounds), clean the combination, and find the
cross-power with the input simulation. Because the foreground
subtraction is anisotropic in k⊥ and k‖, we estimate and apply
this transfer function in two dimensions (2D). The GBT beam
acts strictly in k⊥, and again we develop a 2D beam transfer
function using signal simulations with the beam.
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Figure 2. Cross-power between the 15 hr and 1 hr GBT fields and WiggleZ.
Negative points are shown with reversed sign and a thin line. The solid line is
the mean of simulations based on the empirical-NL model of Blake et al. (2011)
processed by the same pipeline.
(A color version of this figure is available in the online journal.)

The foreground filter is built from the real map which has a
limited number of independent angular elements. This causes
the transfer function to have components in both the angular
and frequency direction (Nityananda 2010), with the angular
part dominating. This is accounted for in our transfer function.
Subtleties of the cleaning method will be described in a future
methods paper.

We estimate the errors and their covariance in our cross-
power spectrum by calculating the cross-power of the cleaned
GBT maps with 100 random catalogs drawn from the WiggleZ
selection function (Blake et al. 2010). The mean of these
cross powers is consistent with zero, as expected. The variance
accounts for shot noise in the galaxy catalog and variance in
the radio map either from real signal (sample variance), residual
foregrounds or noise. Estimating the errors in this way requires
many independent modes to enter each spectral cross-power bin.
This fails at the lowest k values and so these scales are discarded.
In going from the 2D power to the 1D powers presented here,
we weight each 2D k-cell by the inverse variance of the 2D
cross-power across the set of mock galaxy catalogs. The 2D–1D
binning weight is multiplied by the square of the beam and
foreground cleaning transfer functions. Figure 2 shows the
resulting galaxy–H i cross-power spectra.
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第二章 中性氢观测前景减除与功率谱估计

水平，特征模受到噪声影响，频谱特征变得十分复杂，使得特征模不再与大尺

度结构信号正交，减掉过得的特征模的同时，会减掉大尺度结构信号。这部分

大尺度结构的信号损失，可以通过转移函数（ ）进行补偿。转

移函数通过模拟的中性氢大尺度结构天图估计，步骤如下：

首先，模拟生成中性氢大尺度结构的高斯随机场 T 。T 中只包含大尺度

结构信号，并不包含前景信号。

将 T 与未减除前景的天图 T 叠加，对叠加后的天图求解特征值与特征

模，ΠT +T ，其中 Π 为前景减除算子。此时的特征模中混入了模拟的大

尺度结构信号。

用这样构建出的特征模减除模拟天图，估计功率谱，与原始的模拟天图

的功率谱相比，得到转移函数，

TR =<
[wTΠT +T (T + T )− wTΠT (T )]× T

wAT × T
>

其中，< ... > 表示对多次模拟平均。实际的处理中我们用 100 次的蒙特

卡洛模拟估计转移函数。

最后，我们用转移函数的倒数补偿测量中的信号损失。可以看出，分子

表达式中是减除前景的模拟天图与原始模拟天图的互关联，所以 1/TR

补偿的是互关联功率谱测量中的信号损失。在自关联功率谱测量时，需

要用 (1/TR)2。

同时，在估计转移函数时，将模拟生成的天图卷积天线的波束宽度，再进行前

景减除，最终与没有卷积天线波束的模拟天图比较，以补偿由于望远镜分辨率

极限在小尺度造成信号损失。由于前景减除是沿视线方向，主要会影响径向的

傅里叶模；而望远镜的分辨率极限会平滑掉垂直视线方向小尺度的傅里叶模。

因此信号的丢失在视线方向与垂直视线方向并不对称，转移函数的补偿需要在

二维功率谱上进行。图 显示的为减掉 25 个特征模时的信号补偿转移函数的

倒数。其值越小，表示信号损失越大。可以看到在 k⊥ 方向小尺度的信号损失

比价大，这主要是因为望远镜分辨率极限的影响；而前景的减除主要影响 k‖

方向，且对大尺度的影响大于小尺度。

Cleaned Simulation Simulation  

Simulation  Simulation  × 
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Figure 1. Maps of the GBT 15 hr field at approximately the band-center. The purple circle is the FWHM of the GBT beam, and the color range saturates in some
places in each map. Left: the raw map as produced by the map-maker. It is dominated by synchrotron emission from both extragalactic point sources and smoother
emission from the galaxy. Right: the raw map with 20 foreground modes removed per line of sight relative to 256 spectral bins, as described in Section 3.2. The map
edges have visibly higher noise or missing data due to the sparsity of scanning coverage. The cleaned map is dominated by thermal noise, and we have convolved by
GBT’s beam shape to bring out the noise on relevant scales.
(A color version of this figure is available in the online journal.)

redshift-space power spectrum using the empirical-non-linear
(NL) model described by Blake et al. (2011).

3.2. From Maps to Power Spectra

The approach to 21 cm foreground subtraction in literature
has been dominated by the notion of fitting and subtracting
smooth, orthogonal polynomials along each line of sight. This
is motivated by the eigenvectors of smooth synchrotron fore-
grounds (Liu & Tegmark 2011, 2012). In practice, instrumental
factors such as the spectral calibration (and its stability) and
polarization response translate into foregrounds that have more
complex structure. One way to quantify this structure is to use
the map itself to build the foreground model. To do this, we
find the frequency–frequency covariance across the sample of
angular pixels in the map, using a noise inverse weight. We then
find the principal components along the frequency direction, or-
der these by their singular value, and subtract a fixed number of
modes of the largest covariance from each line of sight. Because
the foregrounds dominate the real map, they also dominate the
largest modes of the covariance.

There is an optimum in the number of foreground modes to
remove. For too few modes, the errors are large due to residual
foreground variance. For too many modes, 21 cm signal is lost,
and so after compensating based on simulated signal loss (see
below), the errors increase modestly. We find that removing
20 modes in both the 15 hr and 1 hr field maximizes the signal.
Figure 1 shows the foreground-cleaned 15 hr field map.

We estimate the cross-power spectrum using the inverse noise
variance of the maps and the WiggleZ selection function as
the weight for the radio and optical survey data, respectively.
The variance is estimated in the mapping step and represents
noise and survey coverage. The foreground cleaning process
also removes some 21 cm signal. We compensate for signal
loss using a transfer function based on 300 simulations where
we add signal simulations to the observed maps (which are
dominated by foregrounds), clean the combination, and find the
cross-power with the input simulation. Because the foreground
subtraction is anisotropic in k⊥ and k‖, we estimate and apply
this transfer function in two dimensions (2D). The GBT beam
acts strictly in k⊥, and again we develop a 2D beam transfer
function using signal simulations with the beam.
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Figure 2. Cross-power between the 15 hr and 1 hr GBT fields and WiggleZ.
Negative points are shown with reversed sign and a thin line. The solid line is
the mean of simulations based on the empirical-NL model of Blake et al. (2011)
processed by the same pipeline.
(A color version of this figure is available in the online journal.)

The foreground filter is built from the real map which has a
limited number of independent angular elements. This causes
the transfer function to have components in both the angular
and frequency direction (Nityananda 2010), with the angular
part dominating. This is accounted for in our transfer function.
Subtleties of the cleaning method will be described in a future
methods paper.

We estimate the errors and their covariance in our cross-
power spectrum by calculating the cross-power of the cleaned
GBT maps with 100 random catalogs drawn from the WiggleZ
selection function (Blake et al. 2010). The mean of these
cross powers is consistent with zero, as expected. The variance
accounts for shot noise in the galaxy catalog and variance in
the radio map either from real signal (sample variance), residual
foregrounds or noise. Estimating the errors in this way requires
many independent modes to enter each spectral cross-power bin.
This fails at the lowest k values and so these scales are discarded.
In going from the 2D power to the 1D powers presented here,
we weight each 2D k-cell by the inverse variance of the 2D
cross-power across the set of mock galaxy catalogs. The 2D–1D
binning weight is multiplied by the square of the beam and
foreground cleaning transfer functions. Figure 2 shows the
resulting galaxy–H i cross-power spectra.
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3 R ESULTS

The auto-power spectra presented in Fig. 1 will be biased by an
unknown positive amplitude from residual foreground contami-
nation. These data can then be interpreted as an upper bound
on the neutral hydrogen fluctuation amplitude, !H IbH I. In addi-
tion, we have also measured the cross-correlation with the Wig-
gleZ galaxy survey (Masui et al. 2013). This finds !H IbH Ir =
[0.43 ± 0.07(stat.) ± 0.04(sys.)] × 10−3, where r is the WiggleZ
galaxy–neutral hydrogen cross-correlation coefficient (taken here
to be independent of scale). Since |r| < 1 by definition and is mea-
sured to be positive, the cross-correlation can be interpreted as a
lower bound on !H IbH I. In this section, we will develop a pos-
terior distribution for the 21 cm signal auto-power between these
two bounds, as a function of k. We will then combine these into a
posterior distribution on !H IbH I.

The probability of our measurements given the 21 cm signal auto-
power and foreground model parameters is

p(dk|θ k) = p(dc|sk, r)p
(
d

deep
k |sk, f

deep
k

)
p

(
dwide

k |sk, f
wide
k

)
. (2)

Here, dk = {dc, d
deep
k , dwide

k } contains our cross-power and
deep and wide field auto-power measurements, while θ k =
{sk, r, f

deep
k , f wide

k } contains the 21 cm signal auto-power, cross-
correlation coefficient, and deep and wide field foreground con-
tamination powers, respectively. The cross-power variable dc

represents the constraint on !H IbH Ir from both fields and the range
of wavenumbers used in Masui et al. (2013). The band-powers d

deep
k

and dwide
k are independently distributed following decorrelation of

Figure 1. Temperature scales in our 21 cm intensity mapping survey. The
top curve is the power spectrum of the input deep field with no cleaning
applied (the wide field is similar). Throughout, the deep field results are
green and the wide field results are blue. The dotted and dash–dotted lines
show thermal noise in the maps. The power spectra avoid noise bias by
crossing two maps made with separate data sets. The points below show the
power spectrum of the deep and wide fields after the foreground cleaning
described in Section 2.1. Individual modes in the map are dominated by
thermal noise rather than residual foregrounds or signal. Errors are the
thermal noise power divided by the number of modes in the k-bin, plus
sample variance. The negative values are shown with thin lines and hollow
markers. The red dashed line shows the 21 cm signal expected from the
amplitude of the cross-power with the WiggleZ survey (for r = 1) and based
on simulations processed by the same pipeline.

finite-survey effects. We assume that the foregrounds are uncorre-
lated between k-bins and fields, also. This is conservative because
knowledge of foreground correlations would yield a tighter con-
straint. We take p(dc|sk, r) to be normally distributed with mean
proportional to r

√
sk , and p(ddeep

k |sk, f
deep
k ) to be normally dis-

tributed with mean sk + f
deep
k and errors determined in Section 2.3

(and analogously for the wide field). Only the statistical uncer-
tainty is included in the width of the distributions, as the systematic
calibration uncertainty is perfectly correlated between cross- and
auto-power measurements and can be applied at the end of the
analysis.

We apply Bayes’ theorem to obtain the posterior distribution for
the parameters, p(θ k|dk) ∝ p(dk|θ k)p(sk)p(r)p(f deep

k )p(f wide
k ).

For the nuisance parameters, we adopt conservative priors. p(f deep
k )

and p(f wide
k ) are taken to be flat over the range 0 < fk < ∞. Like-

wise, we take p(r) to be constant over the range 0 < r < 1, which
is conservative given the theoretical bias towards r ≈ 1. Our goal
is to marginalize over these nuisance parameters to determine sk.
We choose the prior on sk to be flat, which translates into a prior
p(!H IbH I) ∝ !H IbH I. The signal posterior is

p(sk|dk) =
∫

p
(
sk, r, f

deep
k , f wide

k |dk

)
dr df

deep
k df wide

k . (3)

This involves integrals of the form
∫ 1

0 p(dc|s, r)p(r) dr which,
given the flat priors that we have adopted, can generally be written
in terms of the cumulative distribution function of p(dc|s, r). Fig. 2
shows the allowed signal in each spectral k-bin.

Taking the analysis further, we combine band-powers into a sin-
gle constraint on !H IbH I. Following Masui et al. (2013), we con-
sider a conservative k-range where errors are better estimated (k >

0.12h Mpc−1 to avoid edge effects in the decorrelation operation)
and before uncertainties in non-linear structure formation become
significant (k < 0.3 h Mpc−1). Fig. 3 shows the resulting posterior
distribution.

Our analysis yields !H IbH I = [0.62+0.23
−0.15] × 10−3 at 68 per cent

confidence with 9 per cent systematic calibration uncertainty. The
range of allowed !H IbH I is bracketed by the cross- and auto-power

Figure 2. Comparison with the thermal noise limit. The dark and light
shaded regions are the 68 and 95 per cent confidence intervals of the mea-
sured 21 cm fluctuation power from equation (3). The dashed line shows the
expected 21 cm signal implied by the WiggleZ cross-correlation if r = 1.
The solid line represents the best upper 95 per cent confidence level that we
could achieve given our error bars in both fields, in the absence of fore-
ground contamination. Note that the autocorrelation measurements, which
constrain the signal from above, are uncorrelated between k-bins, while a
single global fit to the cross-power (in Masui et al. 2013) is used to constrain
the signal from below. Confidence intervals do not include the systematic
calibration uncertainty, which is 18 per cent in this space.
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Dish Array Pointing Calibration

September 6, 2015

Method We setup the Cartesian coordinate with X-axis pointing to the North, Y-axis pointing to the East and Z-axis
pointing to the zenith. Because of the tilted antenna supports, the coordinate systems of the antennas are rotated around
the axes, compare to the coordinate system fixed on the ground. If we have the direction azimuth (φ) and altitude angle
(θ), the coordinate in the antenna coordinate system are,

Xant = cos θ cosφ;

Y ant = cos θ sinφ; (1)
Zant = sin θ.

The coordinate in the ground fixed coordinate system are,

D =





X

Y

Z



 = RXRY RZ





Xant

Y ant

Zant



 = RXRY RZD
ant (2)

in which,

RX =





1 0 0

0 cosα sinα

0 − sinα cosα



 , RY =





cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ



 , RZ =





cos γ sin γ 0

− sin γ cos γ 0

0 0 1



 , (3)

are the rotation matrix around the X-axis, Y-axis and Z-axis of the antenna coordinate system, and α, β and γ are the
parameters to fit.

We have 4 times observation of the sun. For each observation, when the shadow of the feed locates at the center of
the dish, the time ti (i = 0, 1, 2, 3) and the direction of the sun Dant

i (i = 0, 1, 2, 3), are recorded. Then,

χ2 =
∑

i

(
(RXRY RZD

ant
i −Dth(ti))

†C−1(RXRY RZD
ant
i −Dth(ti))

)
, (4)

where C = Iσ2, and σ = 0.01π/180 is the measurement precision. The fitting results of 9 antennas are list in Tab. 1.
Fig. 1 are the fitting contours for each antenna and each pair of parameters. Fig. 2 are the residuals before and after
calibration.
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Table 1: The fitting results of 9 antennas
α β γ

Ant. Best fit Cent. ±1σ ± 2σ Best fit Cent. ±1σ ± 2σ Best fit Cent. ±1σ ± 2σ

Ant01 −0.0230 −0.0230+0.0520+0.1010
−0.0490−0.0970 −0.0440 −0.0440+0.0930+0.1810

−0.0880−0.1570 0.0160 0.0160+0.0590+0.1110
−0.0590−0.1150

Ant02 0.1480 0.1480+0.0520+0.0970
−0.0520−0.1010 −0.0350 −0.0350+0.0930+0.1850

−0.0880−0.1620 0.0640 0.0640+0.0590+0.1150
−0.0560−0.1010

Ant03 0.2160 0.2160+0.0490+0.0950
−0.0520−0.1010 0.6000 0.6000+0.0880+0.1710

−0.0830−0.1570 0.0330 0.0330+0.0590+0.1080
−0.0590−0.1180

Ant06 0.3420 0.3420+0.0530+0.1010
−0.0530−0.1010 −0.0050 −0.0050+0.0940+0.1770

−0.0940−0.1820 0.1910 0.1910+0.0590+0.1110
−0.0590−0.1150

Ant07 0.0230 0.0230+0.0520+0.1010
−0.0520−0.1010 −0.1020 −0.1020+0.0800+0.1420

−0.0830−0.1530 −0.0020 −0.0020+0.0590+0.1150
−0.0590−0.1150

Ant09 0.5770 0.5770+0.0520+0.1010
−0.0490−0.0930 −0.7250 −0.7250+0.0930+0.1790

−0.0930−0.1790 −0.1080 −0.1080+0.0590+0.1150
−0.0560−0.1010

Ant10 0.2120 0.2120+0.0520+0.0970
−0.0520−0.1010 −0.0630 −0.0630+0.0880+0.1710

−0.0830−0.1440 0.1490 0.1490+0.0590+0.1180
−0.0590−0.1110

Ant11 0.1090 0.1090+0.0520+0.1010
−0.0520−0.1040 0.1920 0.1920+0.0930+0.1740

−0.0930−0.1790 0.1700 0.1700+0.0590+0.1150
−0.0590−0.1150

Ant15 0.1370 0.1370+0.0520+0.1010
−0.0520−0.1040 −0.0160 −0.0160+0.0880+0.1670

−0.0830−0.1620 0.0020 0.0020+0.0590+0.1150
−0.0590−0.1180

Figure 1:
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