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Transit visibilities

* Avisibility for a direction on the sky

Vij = // dQ21(£2)

* Transit telescope : Full East-West scan for a fixed §,
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e Sky rotation will bring us a phase factor :
I(u,v) — I(u,v) x e2mueo
e Measurement : a set of Vi‘;" as a function of time = V,-?-O(a = wt)
which corresponds to a beam for a given pointing 6,
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Full East-West scan means we could perform Fourier transform
on the set of %§°(ak) to obtain the ﬁff(u) for each u-mode

V{;" (ag) O< o <2m) — fo (u) for all u modes

There is a track to take into account of both +u and —u modes, which corresponds to real sky with only +u modes



In spherical geometry, Full East-West scan means we could
perform Fourier transform on the set of Vi?(¢x) to obtain the
Vi(m) for each m-mode

Spherical geometry
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VGO (pr) (0< pp <2m) — Vgp(m) for all m modes

Vo (m) = Z(Vi2 (k) = > Z(l,m)L(l,m) + noise
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Map reconstruction principle

 We could express the relation between sky and visibilities in
matrix form (we keep only one V;? for a set of antenna with
the same baseline and same pointing to simplify numerical

handling)

* The full problem of all Vj(u) could be separated into a set of
independent problems for each u.
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 The map reconstruction principle are similar for spherical

geometry from (6,®p) to (m,l)



Maximum likelihood estimation

* We currently assume that the noise covariance matrix N is
positive and symmetric n — pt, >

* Using maximum likelihood estimation, the Likelihood function

1S :
1

p(V|T) = TN

exp(—N (Y — AT)?)

* The maximum likelihood soulution dInp/dZ = 0 is given by
pseudo-inverse (singular value decomposition)

B=(AIN"1A) AN = (N"24)" N2



For each u, the Fourier transform
estimated sky of Visibility

/ o \ Noise weighted pseudo-inverse / L \
f(v)uz — <(NéAuz)1N%) X 175’“

i
Here, we define a threshold, which is touchy, to reject small

eigenvalue A to avoid numerical instability and large noise. i.e. if
Ai<thr, then 1/A;=0.

> i.sky (Ua U) or /i-sky(la m)
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Error covariance matrix

* We compute observed sky error covariance matrix for each u/

m modes R

0% =< Z(v)y,Z(v');, >= BNB'

e Error covariance matrix o2(u, v) is gathered from each diagonal.

Z
v
u/m=0;
V/ o(ug,v)
or(mg ) |/
u/m=1;

V/| or(uy,v)
oe(my,l)

we do not recontruct single I-modes,
but a linear combination of modes.



B X A matrix

B * A matrix would be more easily showing the fact that we
measure linear combination of several modes.

Reconstructed sky True sky

f:Bﬁ;‘;:B*AZ

This matrix tell us how well we
can recover the sky, and how well
the mode mixing is under control.




Modes modification

* Reject reconstructed modes with large errors by smoothly cutting
off larger value based on o2 (u, v)

* Applying a weight function on fkeep(u, v)to control the noise effect.
For example, we use a global Gaussian beam response.

* A global beam independent of frequency can be used to decrease
mode mixing.

A e N A W A

A

f(u, ’U) — i-keep(ua ’U) — 2\-wez'ghted(ua 'U) — I(aa IB)

Reject large error modes weight function Inverse Fourier transform

There are also the same steps in spherical, replacing (u,v) by (m, |)



Instrument configuration

PAON4
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Some results

Synthesized beam
Reconstructed sky map
Error covariance matrix
Transfer function

Noise power spectrum
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Reconstructed sky map

Instrument configuration B; 9 scan per 1.5 degrees; local latitude 0 = 45 deg

Input map

“observed” map




Error covariance matrix o3 (,m)

N
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Noise power spectrum
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PAONA : Noise power spectrum
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conclusions

Optimal method to combine beams (including several delta
pointings) to reconstruct the sky map, and to compute the
covariance matrix (in the Fourier plane (u,v)/spherical
harmonics (I,m))

Reasonably efficient (fast) implementation — parallel (multi-
thread) for cross-corr beam computation and sky-map
reconstruction (m-modes computed in parallel)

Possibility to have different compromise between the noise
level in the reconstructed map and the beam quality / side

lobes through the eigenvalue threshold and the cut/weight
on the I(u,v)

More work needed to compare different setups and scan
strategies



