
Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Tianlai and the Foreground Removal Problem

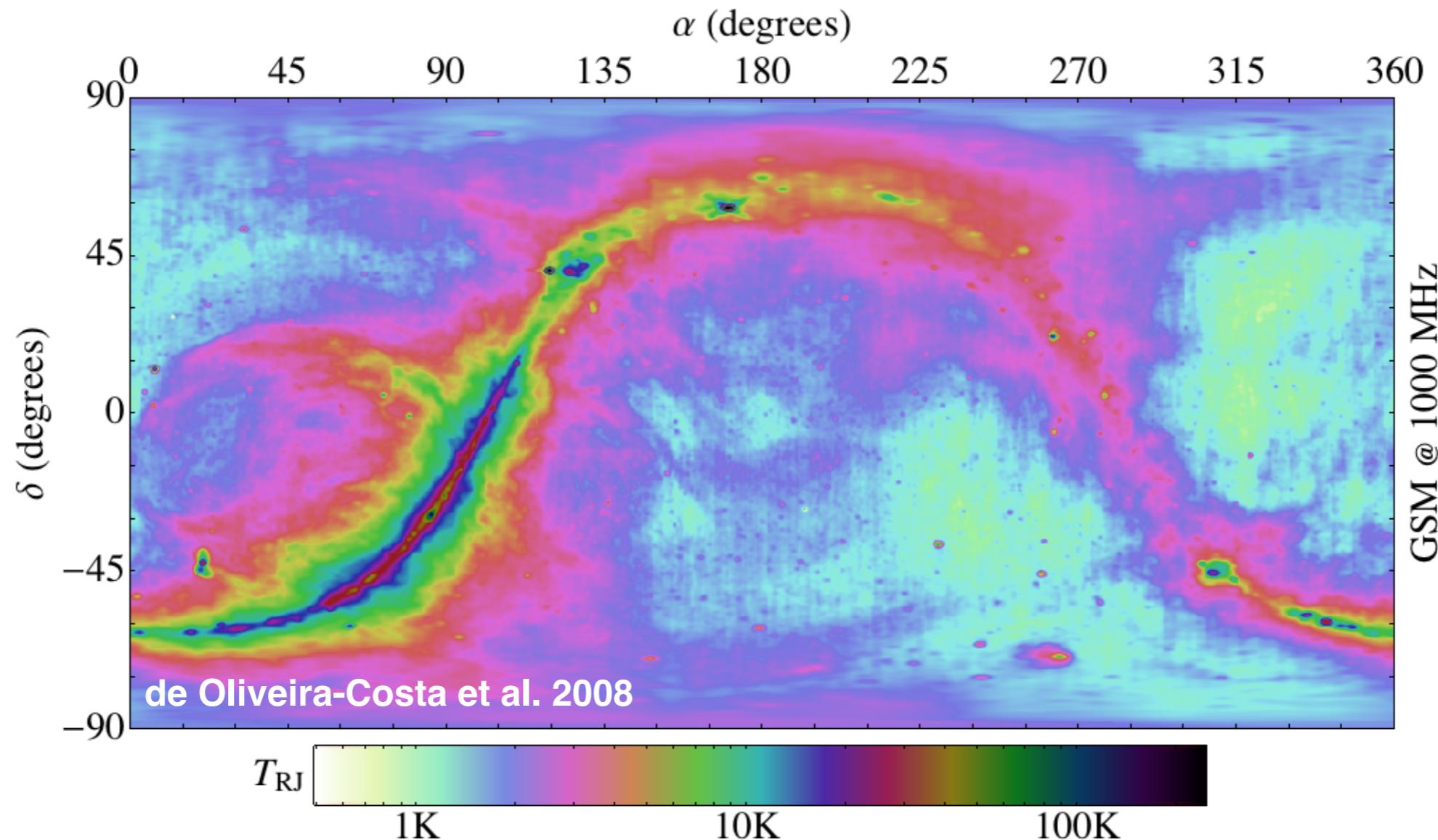
Albert Stebbins

2015 Tianlai 21cm Workshop

Balikun, Xinjiang, China

9 September 2015

Foreground removal efficacy remains a significant issue

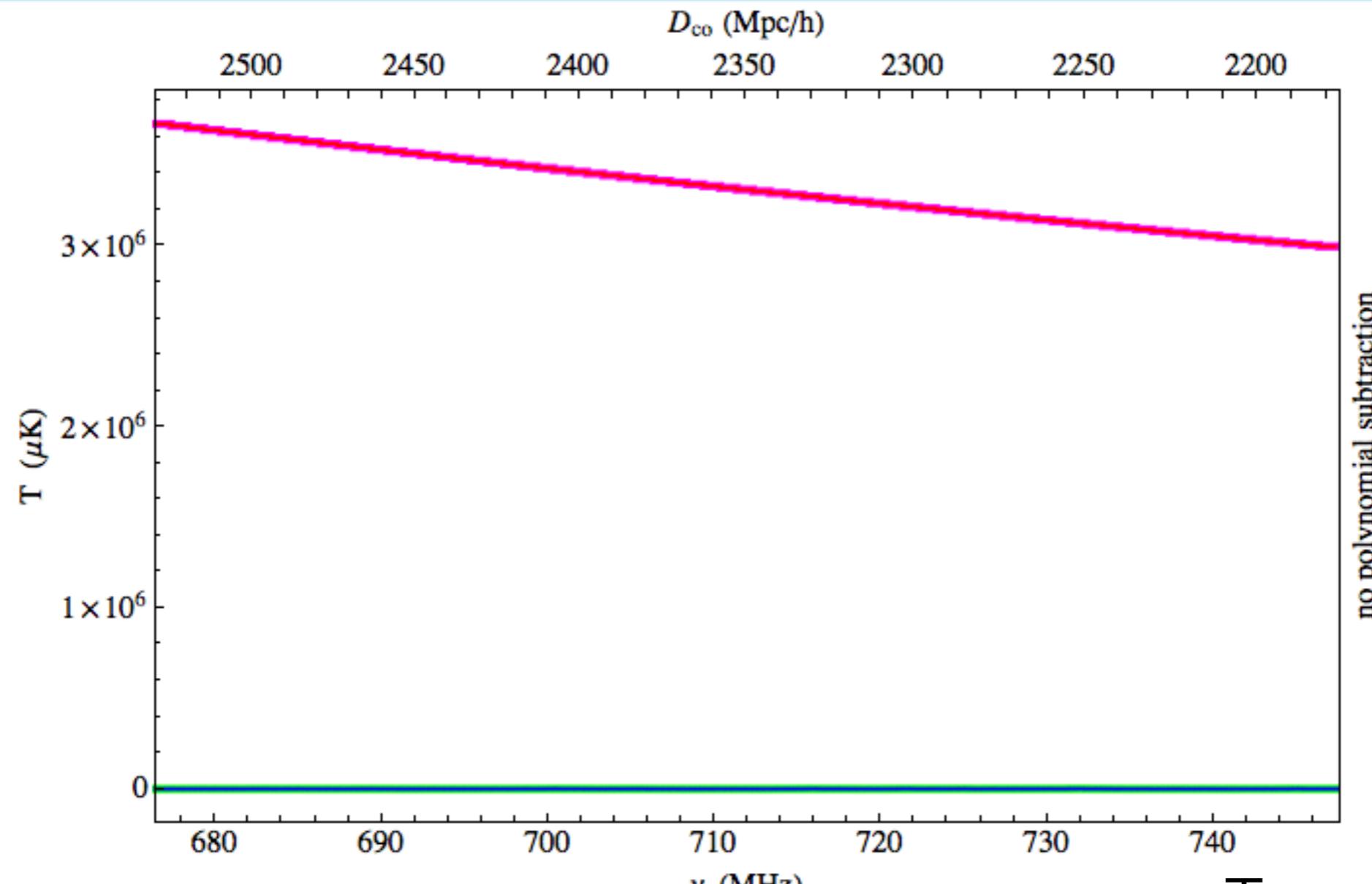


Even for dark radio sky $\sim 1K$ foreground is $\sim 10^4$ larger than $\sim 100\mu K$ signal
Foregrounds are expected to be smooth in frequency
... but are they?

Non-Smooth Spectrum Foregrounds

- While it is true that optically thin free-free or synchrotron emission is smooth in the optically thin limit for any electron energy distribution - yet it need not be so when self-absorption is present.
- There is evidence for synchrotron self-absorption in gigahertz peaked sources (GPS).
- Faraday rotation linearly polarized light can cause the linearly polarization to have oscillatory behavior which can leak into the inferred intensity.
- Peter Timbie presented evidence yesterday for this effect in the GBT data.
- It is unlikely that these could have spectral features as sharp as those expected in 21cm spectrum it can contaminate the low k modes which are important for measuring quantities like f_{NL} .

Ideally Smooth foreground subtraction should work well



$$T_{\text{fit}} = \sum_p a_p \ln[v]^p$$

- Many algorithms proposed to take advantage of this
- See excellent overview yesterday by Yichao Li
- Would like to get noise down to $\sim 50\mu\text{K}$ level to see real non-linear structures

Mode Mixing

- An interferometer with a finite number of elements will only “see” a finite number of “beams” on the sky.
- The Hilbert space of all linear combinations of beams we call the **space of beams**.
- This space of beams generally depends frequency. This frequency dependence of the Hilbert spaces is called **mode mixing** because it mixes frequency dependence and angle dependence.
- If we could remove mode mixing one can directly measure the angular average spectrum with no assumption about angular structure.
- For this filtering smooth spectrum foregrounds is better when the amount of mode mixing is minimized.

Beam Projection and Purity

- Given a metric, \cdot , on the space of beam define the **beam projection operator**:

$$\mathfrak{B}[v] \equiv \sum_{i,j} \mathbf{B}_i[v] \cdot (\mathbf{B}_i[v] \cdot \mathbf{B}_j[v])^{-1} \cdot \mathbf{B}_j[v]$$

where $\mathbf{B}_i[v]$ are the frequency dependent beam in the Stokes parameter space.

- $\mathfrak{B}[v]$ has n_{beam} (number of beams) unit eigenvalues and the rest zero.
- Define the **purity operator** by

$$\mathcal{P} \equiv \int dv W[v] \mathfrak{B}[v] = \sum_a p_a \ \boldsymbol{p}_a \otimes \boldsymbol{p}_a$$

where $W[v]$ is a v weight function (or **purity band**) such that: $\int dv W[v] = 1$

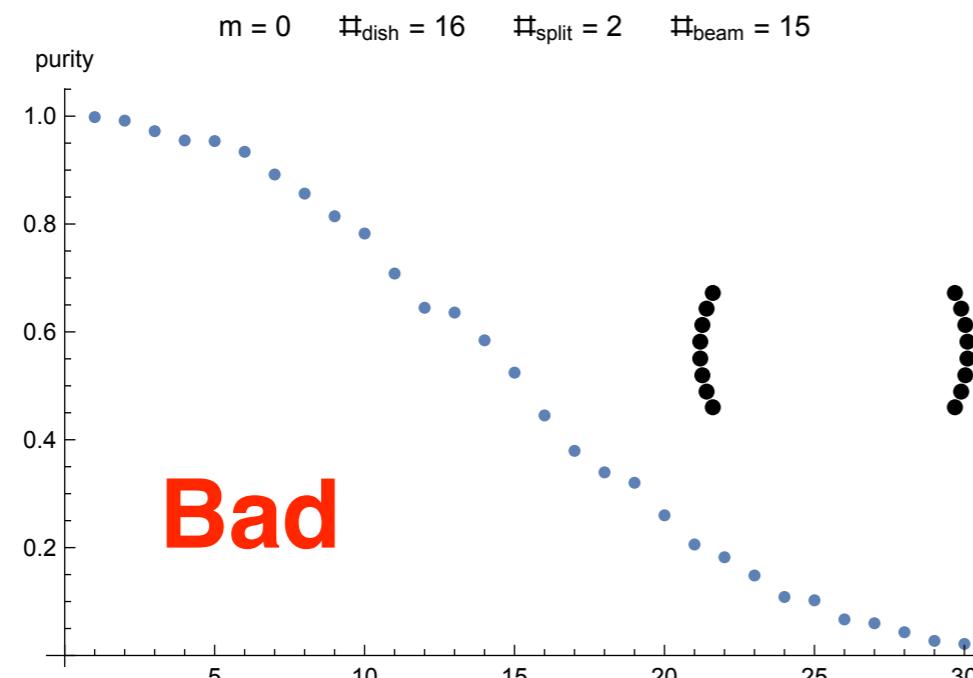
the \boldsymbol{p}_a (eigenvectors) are **purity eigenbeams**: $\boldsymbol{p}_i \cdot \boldsymbol{p}_j = \delta_{ij}$

the p_a (eigenvalues) are **purities**: $0 \leq p_a \leq 1$ and $\sum_a p_a = 1$

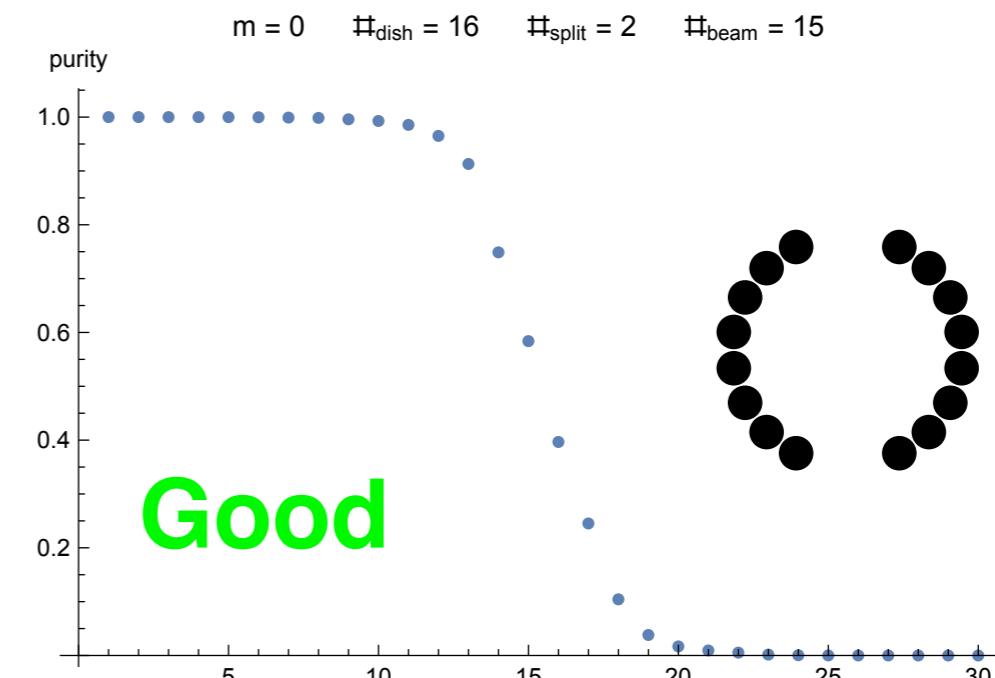
- The \boldsymbol{p}_a with the largest purity have the least mode mixing!
- The \boldsymbol{p}_a with $p_a \ll 1$ have large amounts of mode mixing and high pass filtering is less effective at removing smooth but highly anisotropic foregrounds.

Purity and Telescope Design

- There are at most n_{beam} very pure ($p_a \approx 1$) modes \mathbf{p}_a .
- N.B. $p_a \rightarrow 1$ in the limit of zero bandwidth: $W[v] \rightarrow \delta[v - v_0]$
- A **high purity interferometer** is one which for a given bandwidth has close to n_{beam} very pure modes. They are useful for understanding the underlying spectra of the emission.



Bad



Good

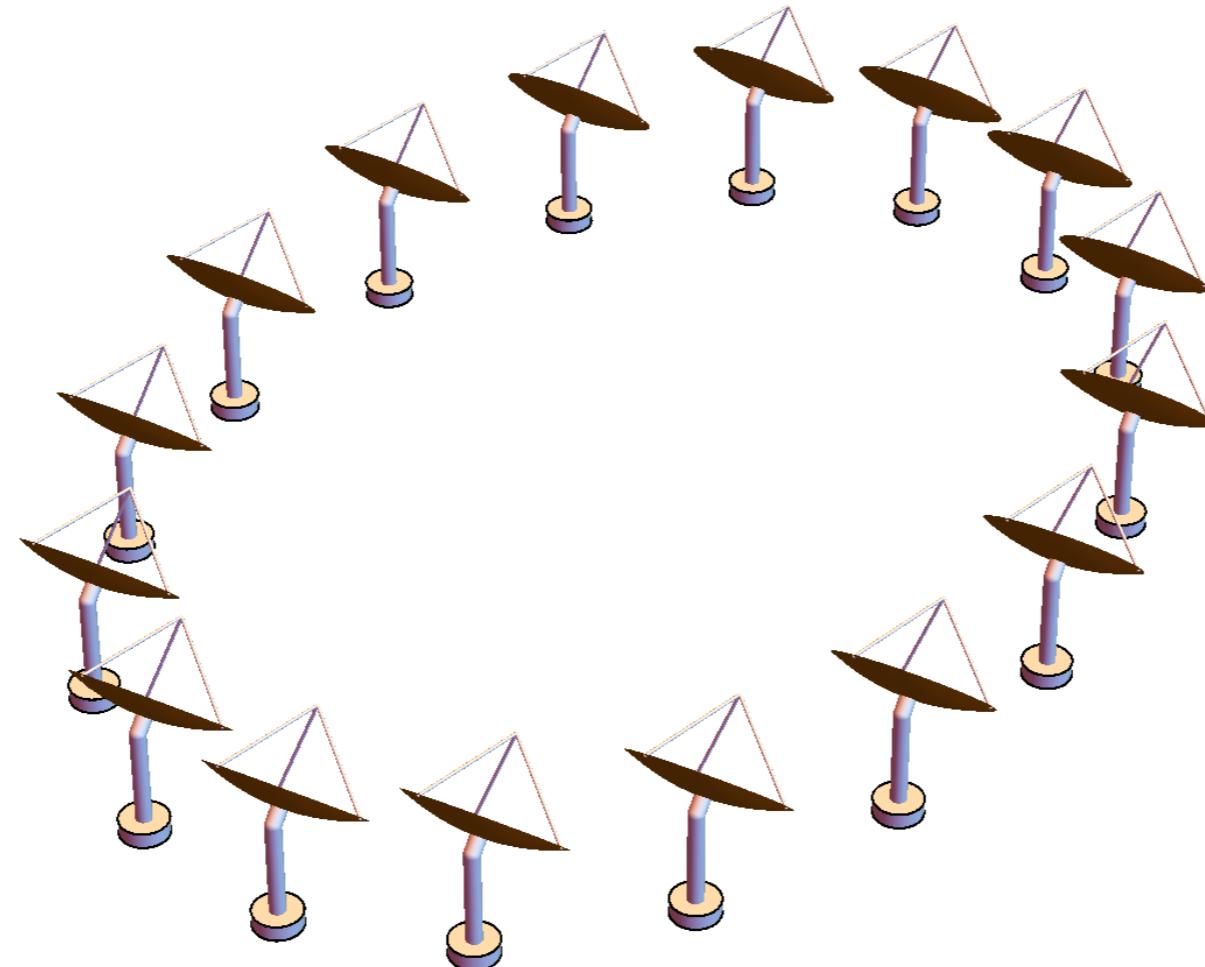
- Define the **purity number** $= -\ln[1-p_a]$ which is large for very pure modes
- Dense arrays with large overlap, $\mathbf{B}_i[v] \cdot \mathbf{B}_j[v]$, do better than sparse arrays (see Reza's talk).
- One never does worse by adding an additional element to an existing array (but $\neq \$$)

Purity and Telescope Design and Tianlai

Polarscope

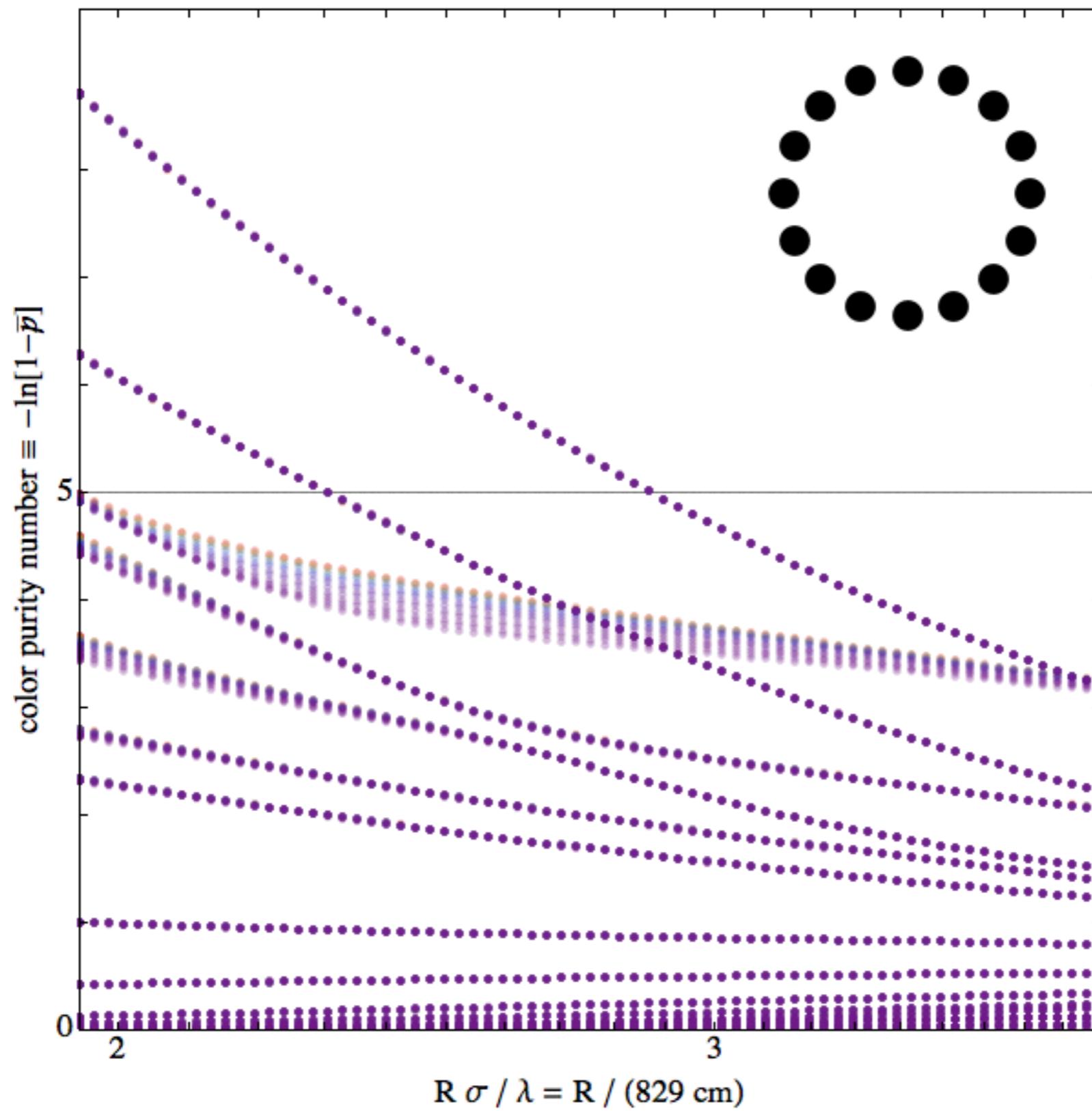
A **polarscope** is a transit interferometer consisting of a number antenna each pointing directly at a Celestial Pole, North or South.

Since it always points at same spot it integrates to low noise very rapidly

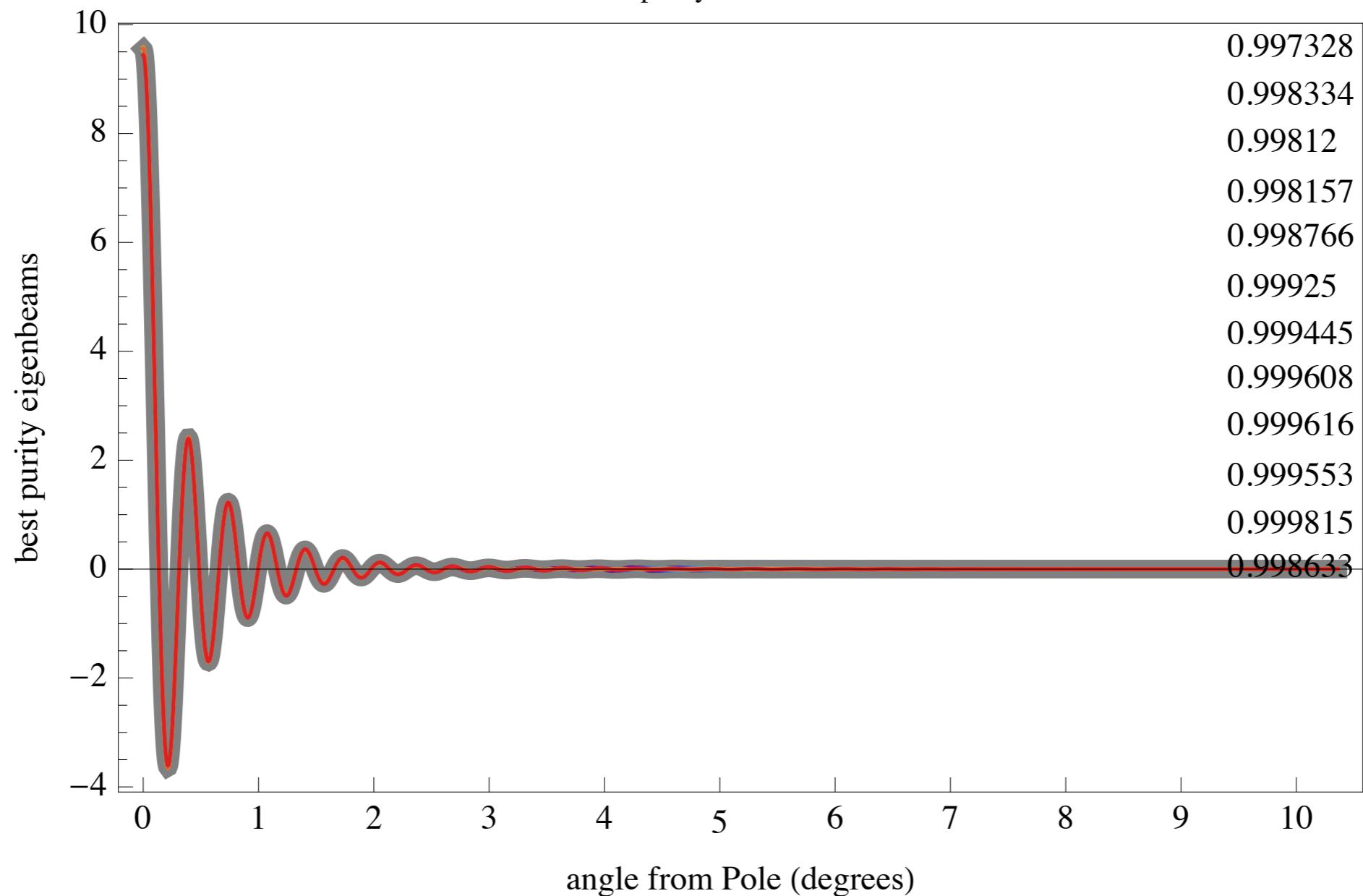


DISCLAIMER: Celestial sources near poles move slowly so a polarscope has very little handle on day timescale transients, *e.g.* ground pickup. N.B. Signals repeat every half day not every day.

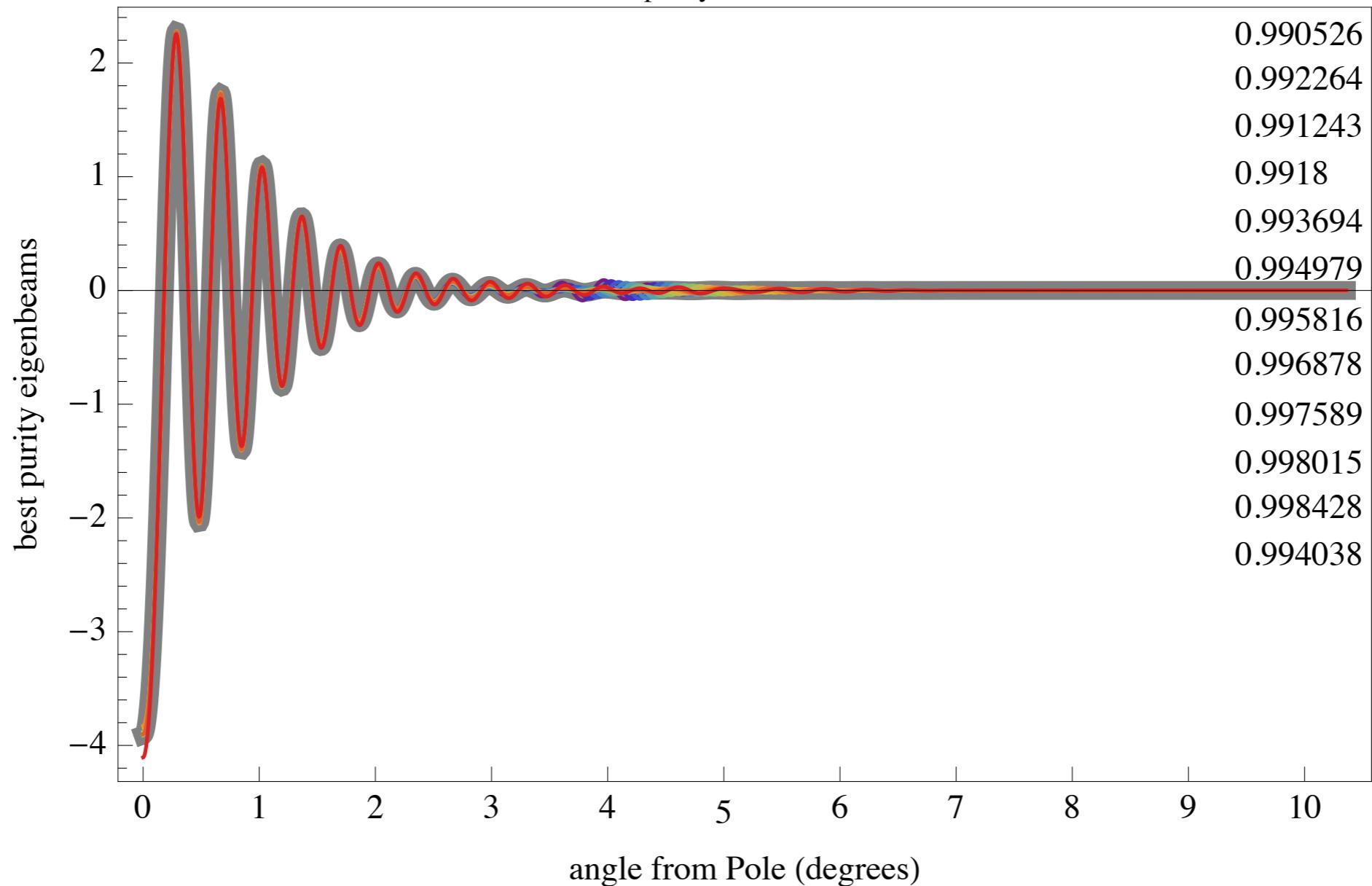
$\#_{\text{dish}} = 16$ $\#_{\text{split}} = 0$ $\nu \in [700, 800] \text{ MHz}$ spaced 630 cm



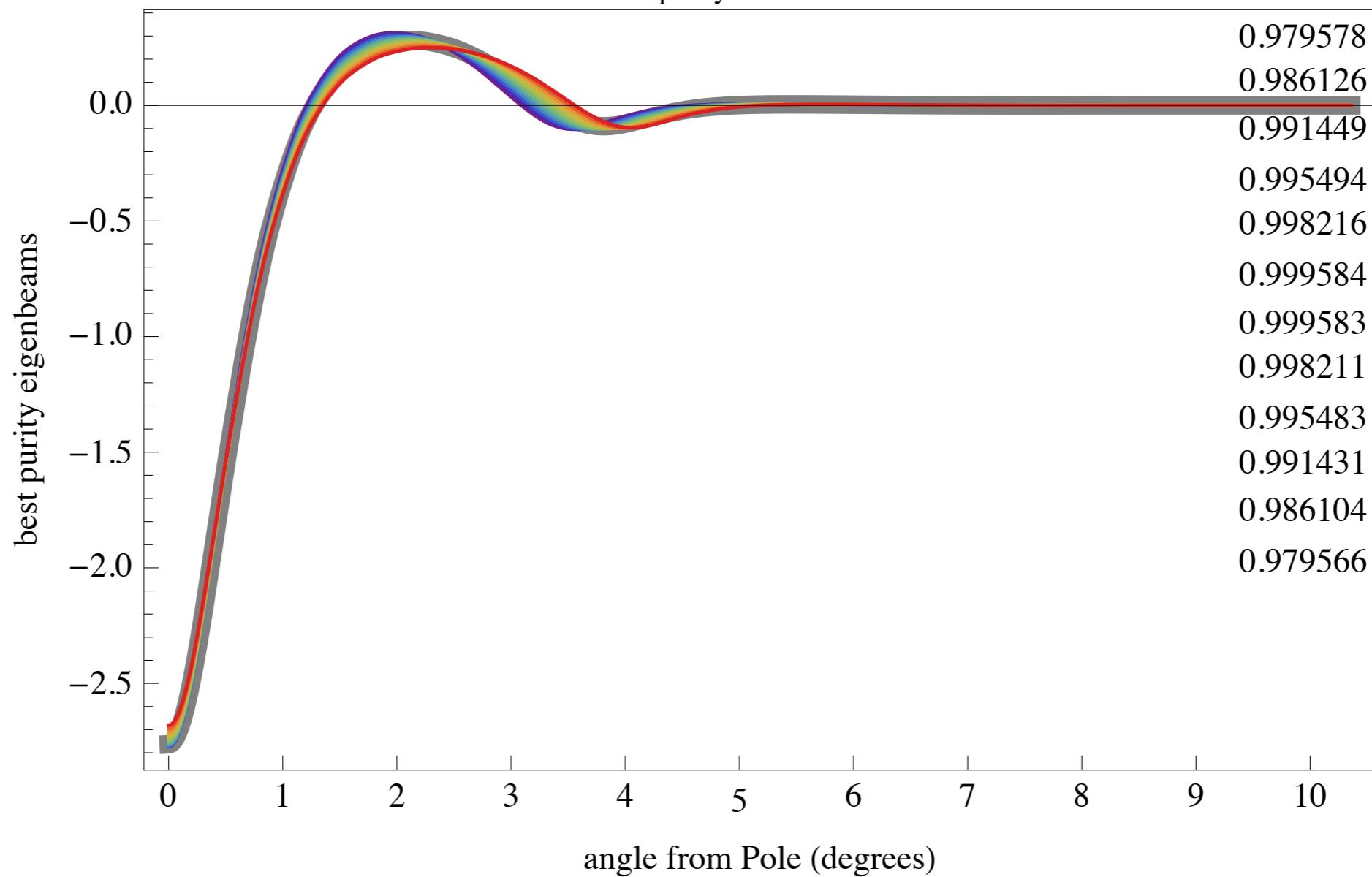
$m = 0$ $\#_{\text{beams}} = 15$ $i_{\text{purity}} = 1$ mean purity = 0.998885



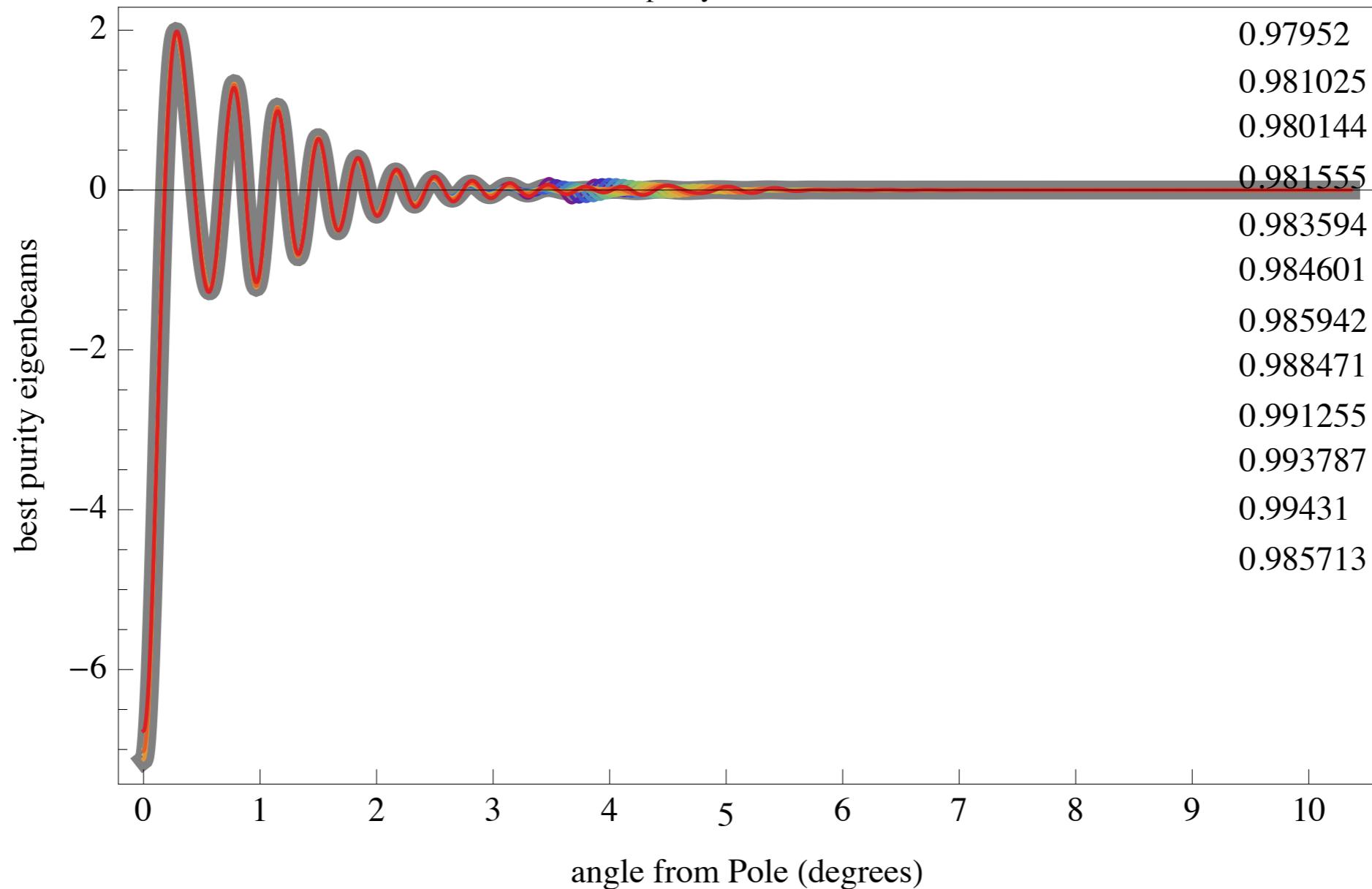
$m = 0$ $\#\text{beams} = 15$ $i_{\text{purity}} = 2$ mean purity = 0.994606



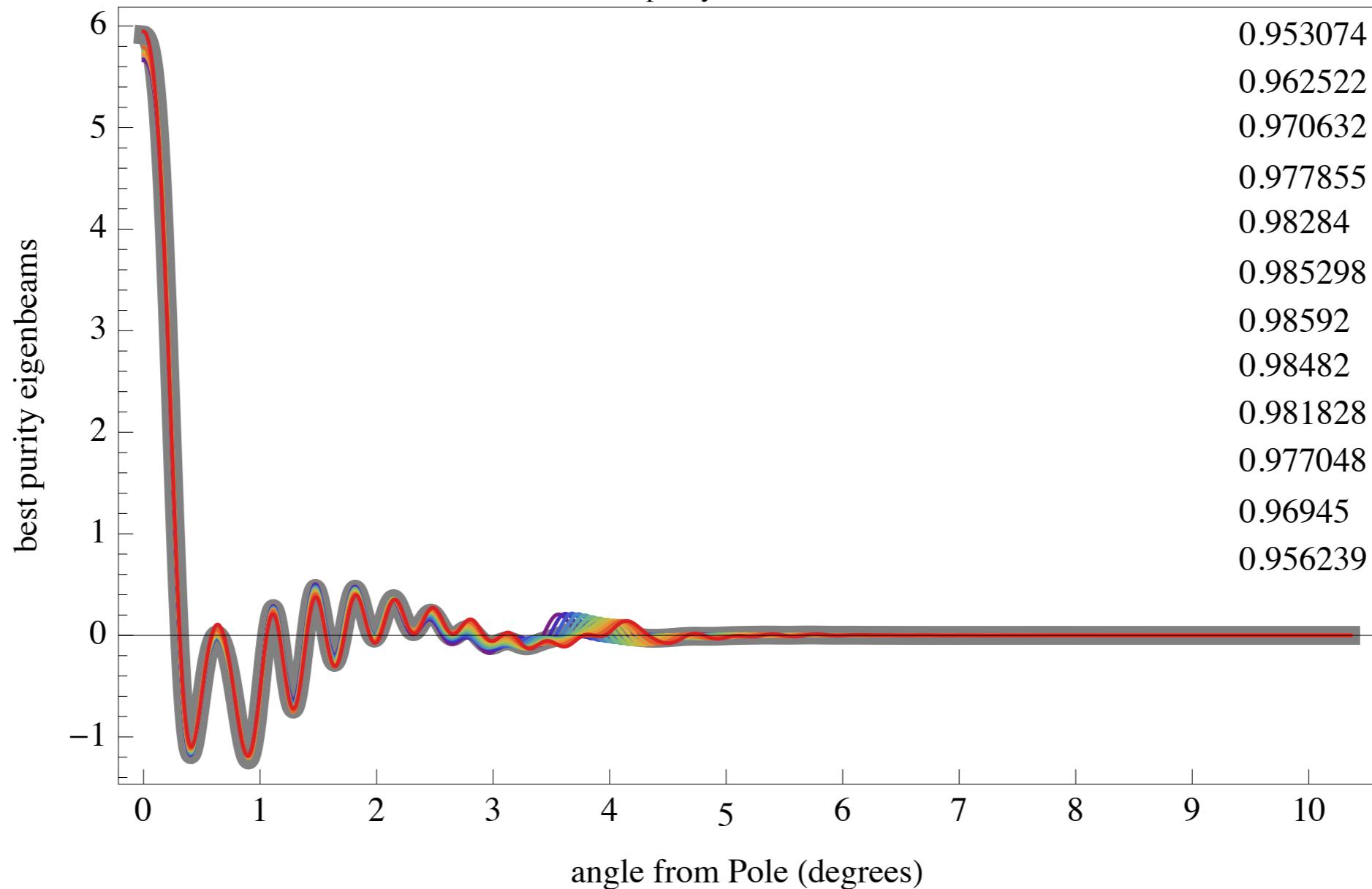
$m = 0$ $\#\text{beams} = 15$ $i_{\text{purity}} = 3$ mean purity = 0.991735



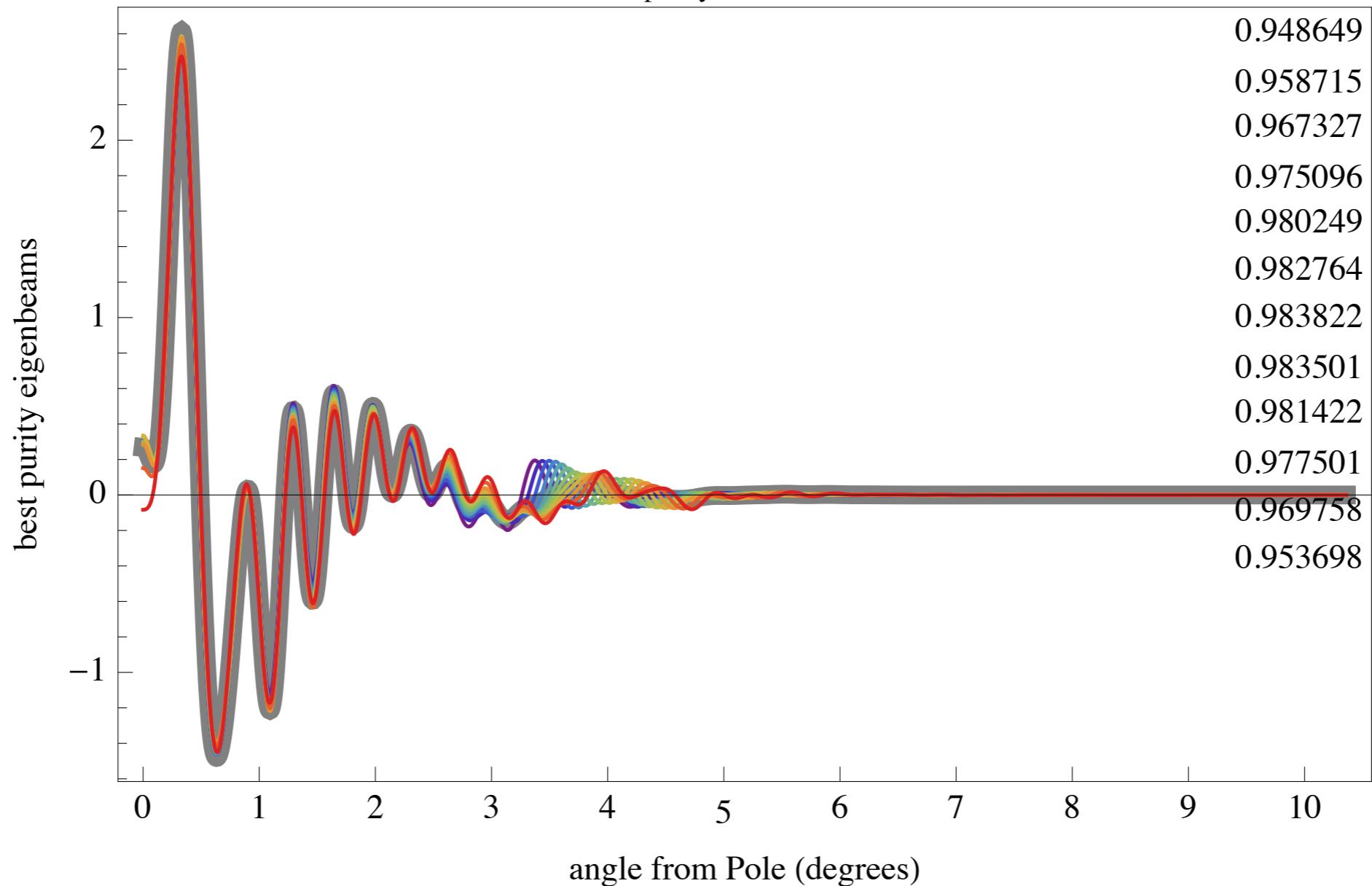
$m = 0$ $\#\text{beams} = 15$ $i_{\text{purity}} = 4$ mean purity = 0.985826



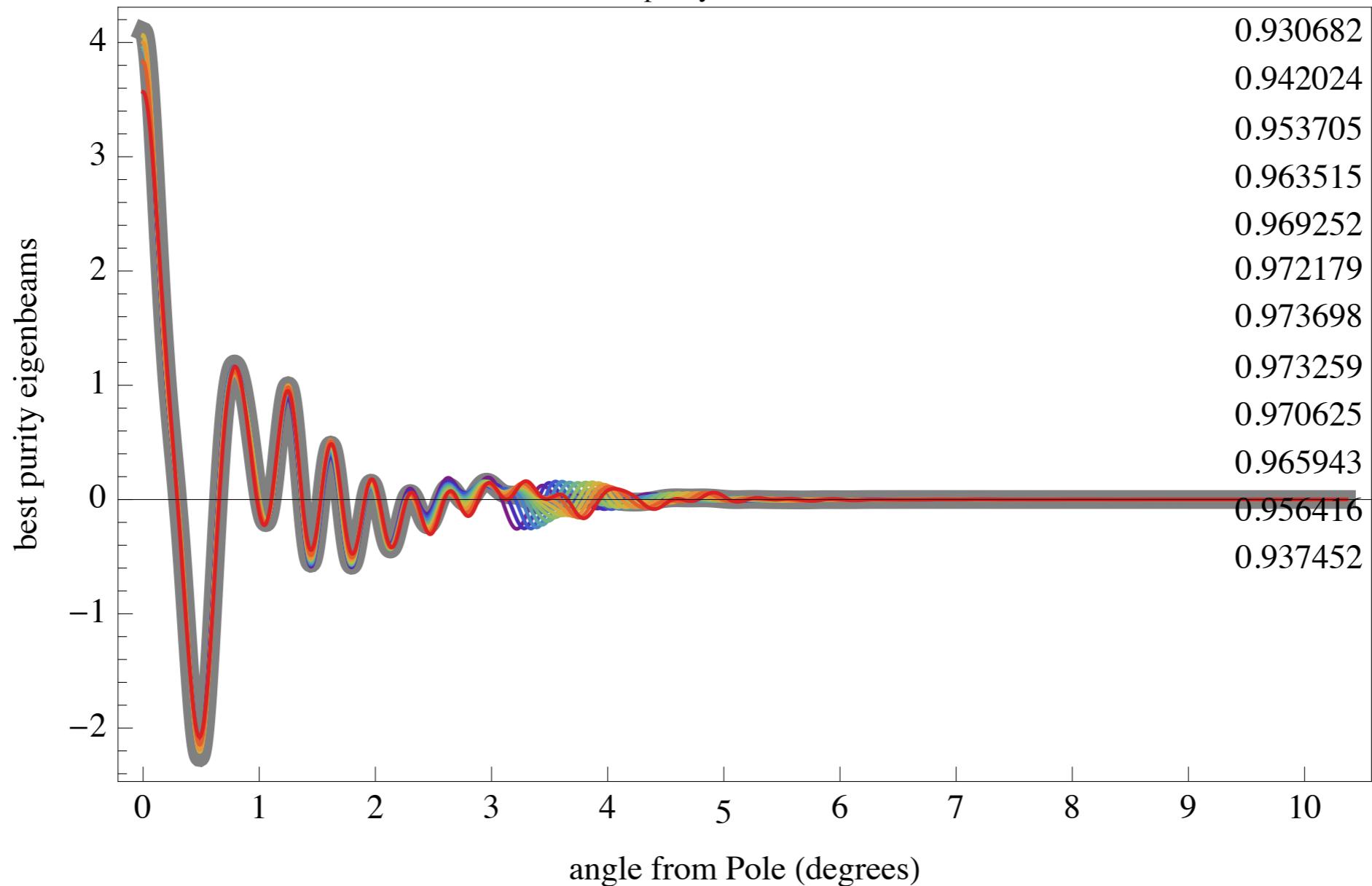
$m = 0$ $\#\text{beams} = 15$ $i_{\text{purity}} = 5$ mean purity = 0.973961



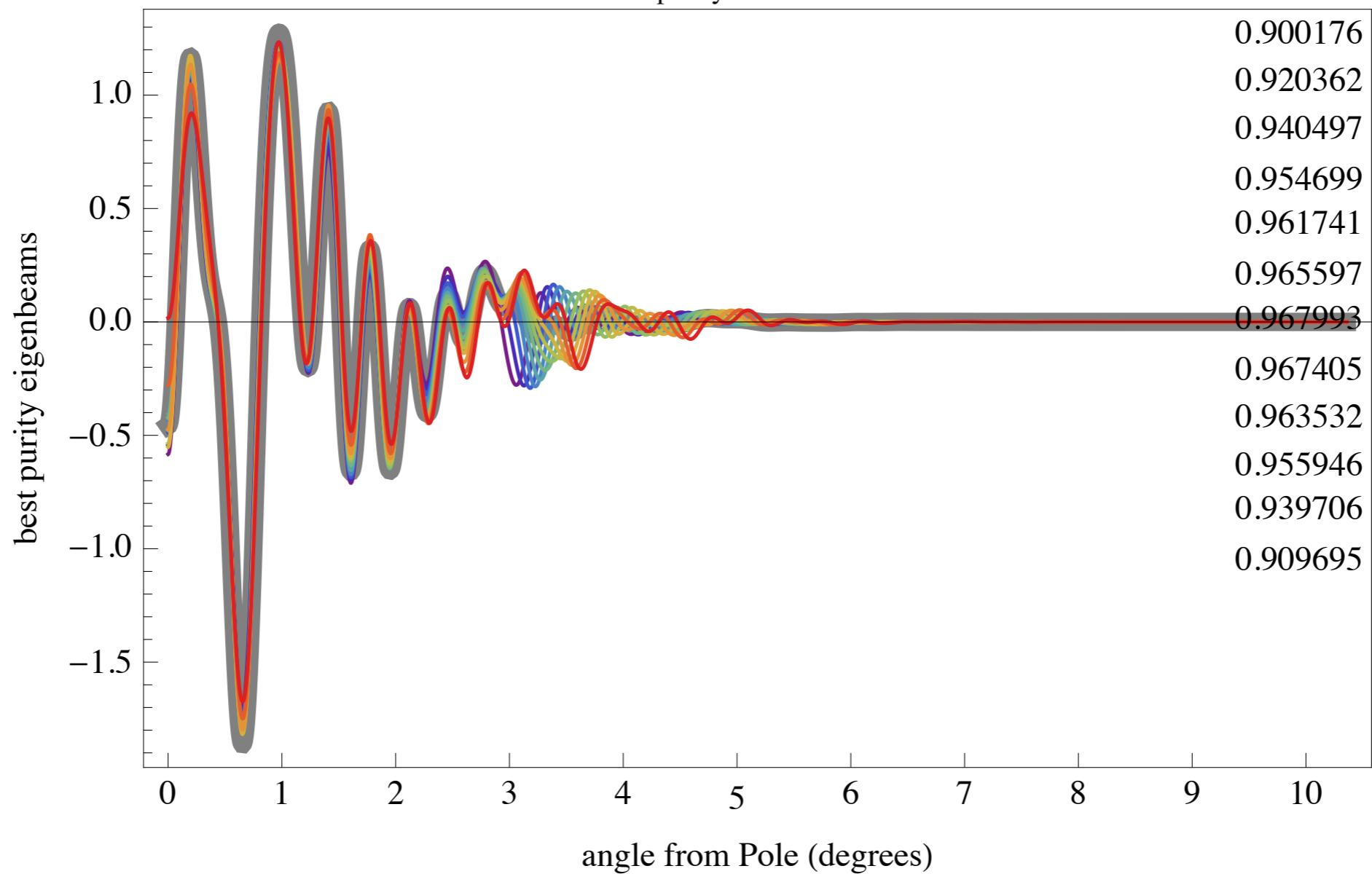
$m = 0$ $\#\text{beams} = 15$ $i_{\text{purity}} = 6$ mean purity = 0.971875



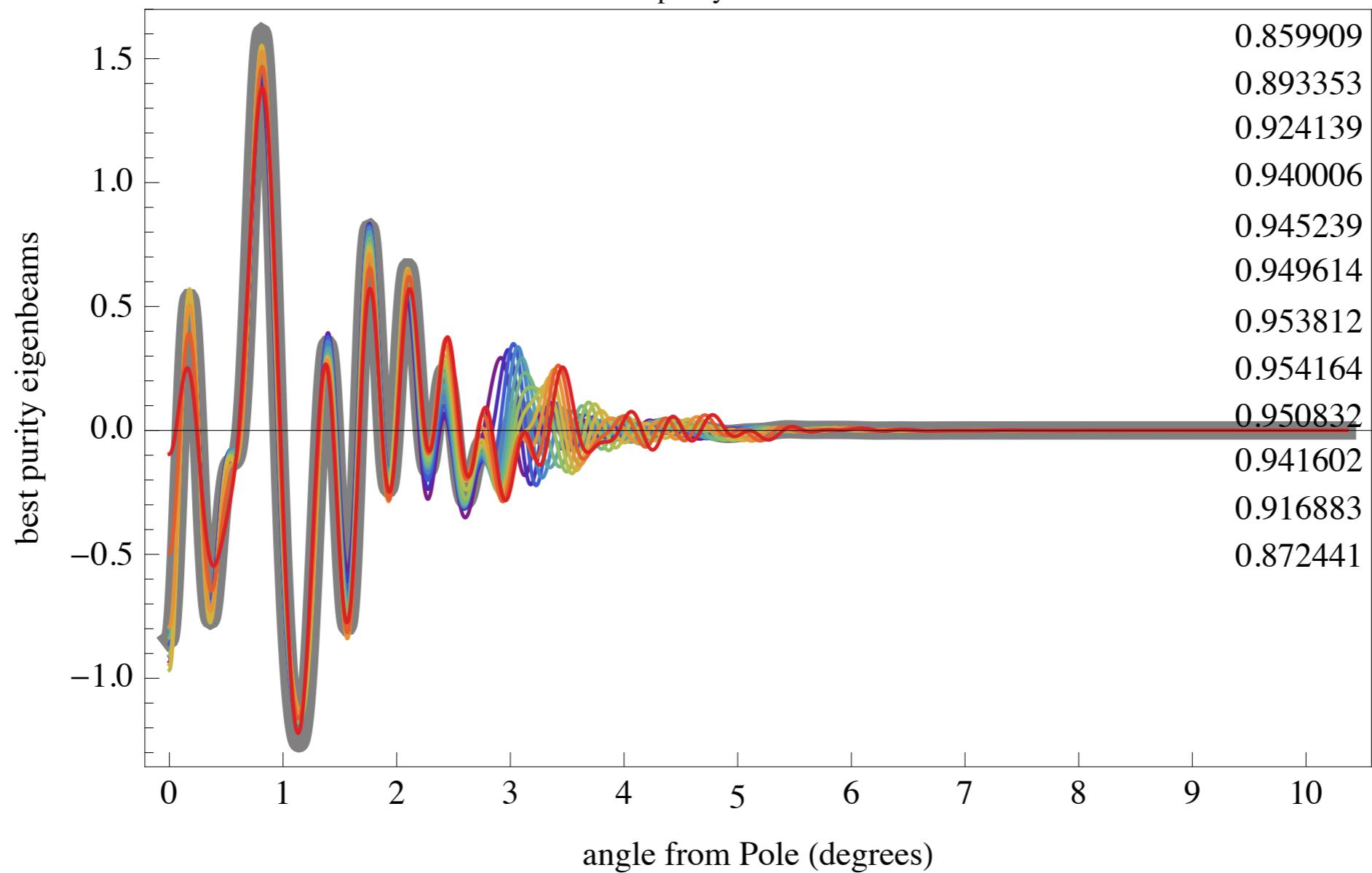
$m = 0$ $\#\text{beams} = 15$ $i_{\text{purity}} = 7$ mean purity = 0.959062



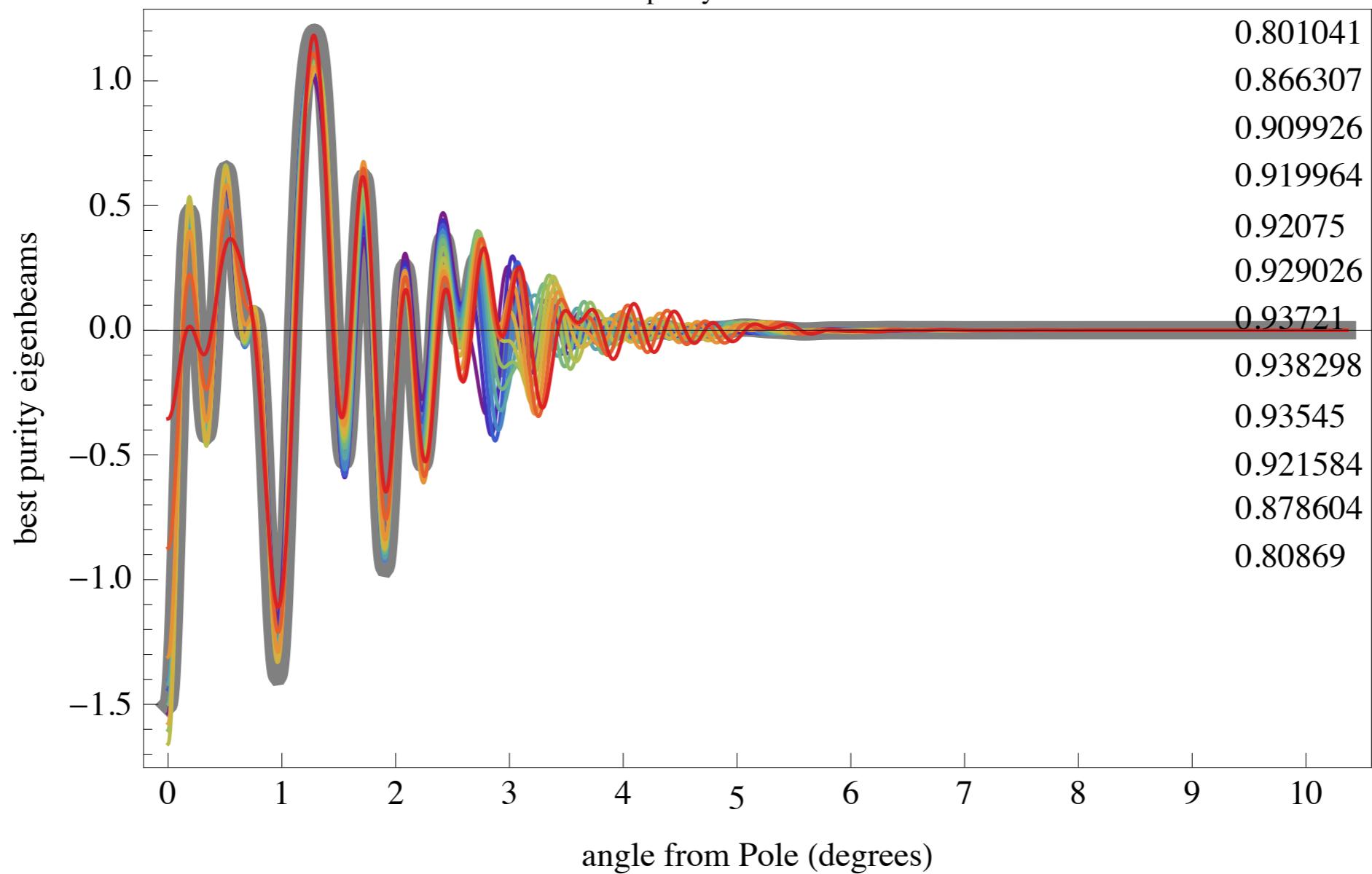
$m = 0$ $\#\text{beams} = 15$ $i_{\text{purity}} = 8$ mean purity = 0.945612



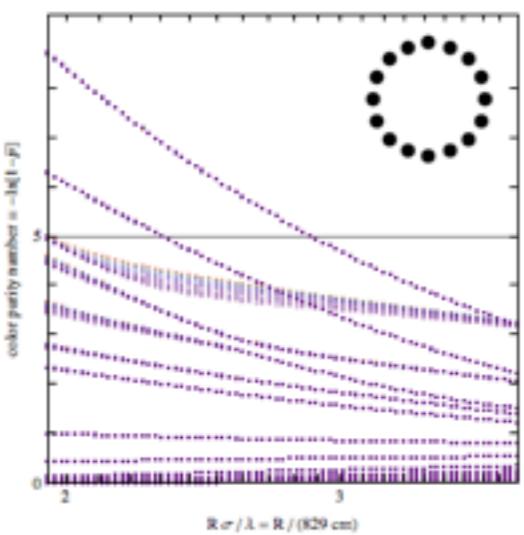
$m = 0$ $\#\text{beams} = 15$ $i_{\text{purity}} = 9$ mean purity = 0.925166



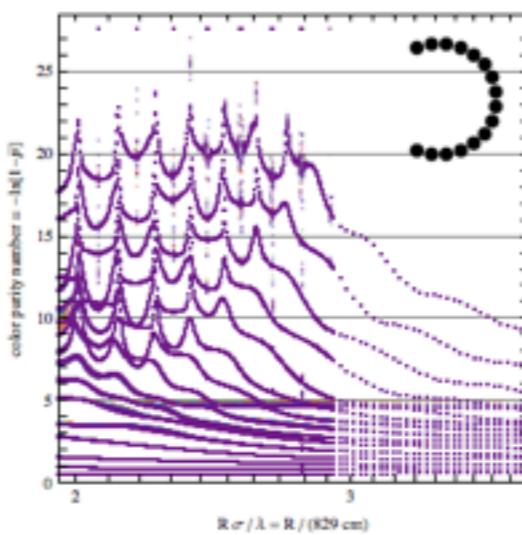
$m = 0$ $\#_{\text{beams}} = 15$ $i_{\text{purity}} = 10$ mean purity = 0.897237



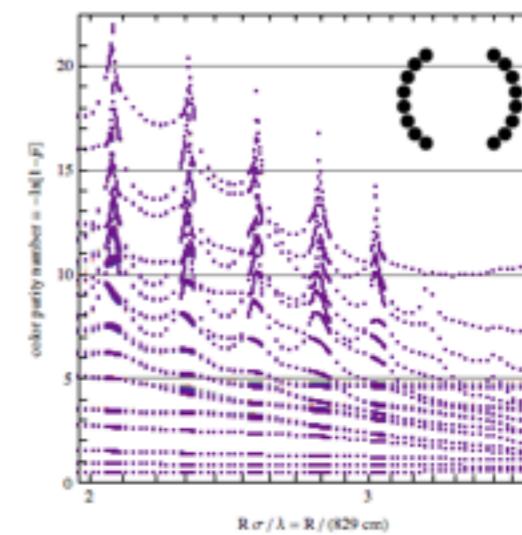
$\Pi_{\text{disk}} = 16$ $\Pi_{\text{split}} = 0$ $\nu \in [700, 800]$ MHz spaced 630 cm



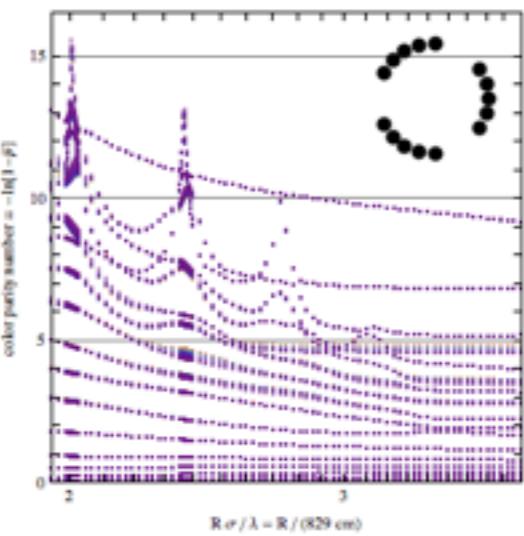
$\Pi_{\text{disk}} = 16$ $\Pi_{\text{split}} = 1$ $\nu \in [700, 800]$ MHz spaced 630 cm



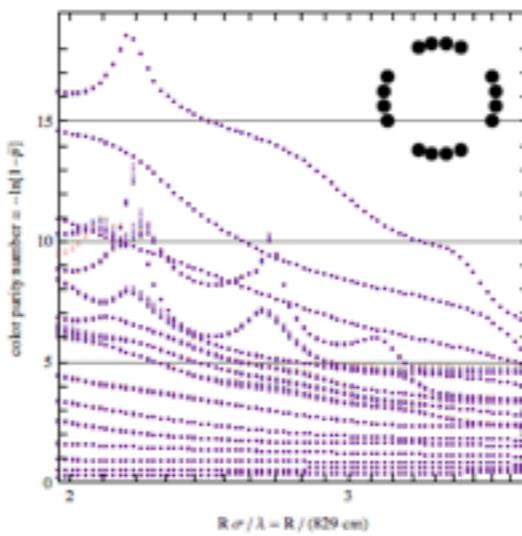
$\Pi_{\text{disk}} = 16$ $\Pi_{\text{split}} = 2$ $\nu \in [700, 800]$ MHz spaced 630 cm



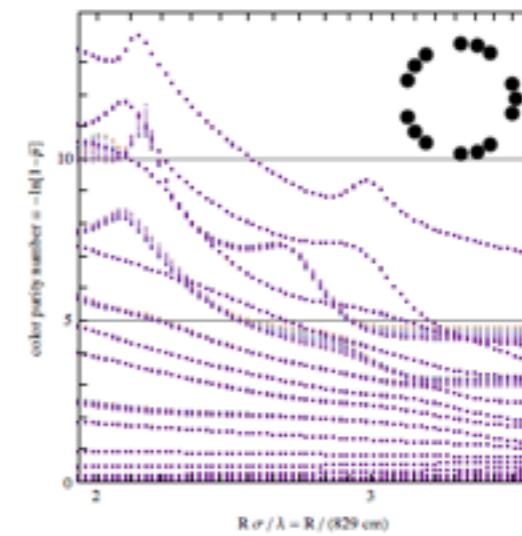
$\Pi_{\text{disk}} = 15$ $\Pi_{\text{split}} = 3$ $\nu \in [700, 800]$ MHz spaced 630 cm



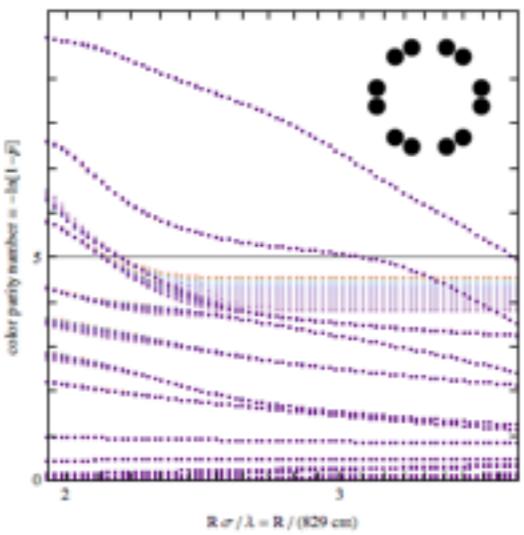
$\Pi_{\text{disk}} = 16$ $\Pi_{\text{split}} = 4$ $\nu \in [700, 800]$ MHz spaced 630 cm



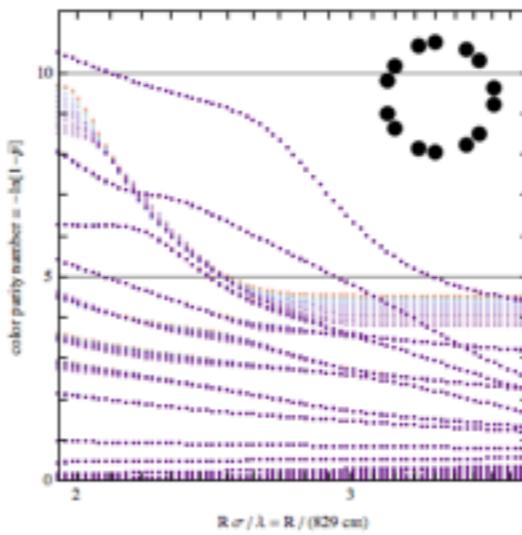
$\Pi_{\text{disk}} = 15$ $\Pi_{\text{split}} = 5$ $\nu \in [700, 800]$ MHz spaced 630 cm



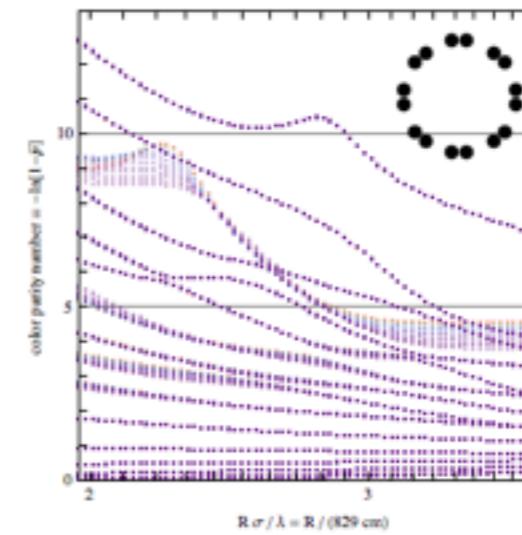
$\Pi_{\text{disk}} = 12$ $\Pi_{\text{split}} = 6$ $\nu \in [700, 800]$ MHz spaced 630 cm



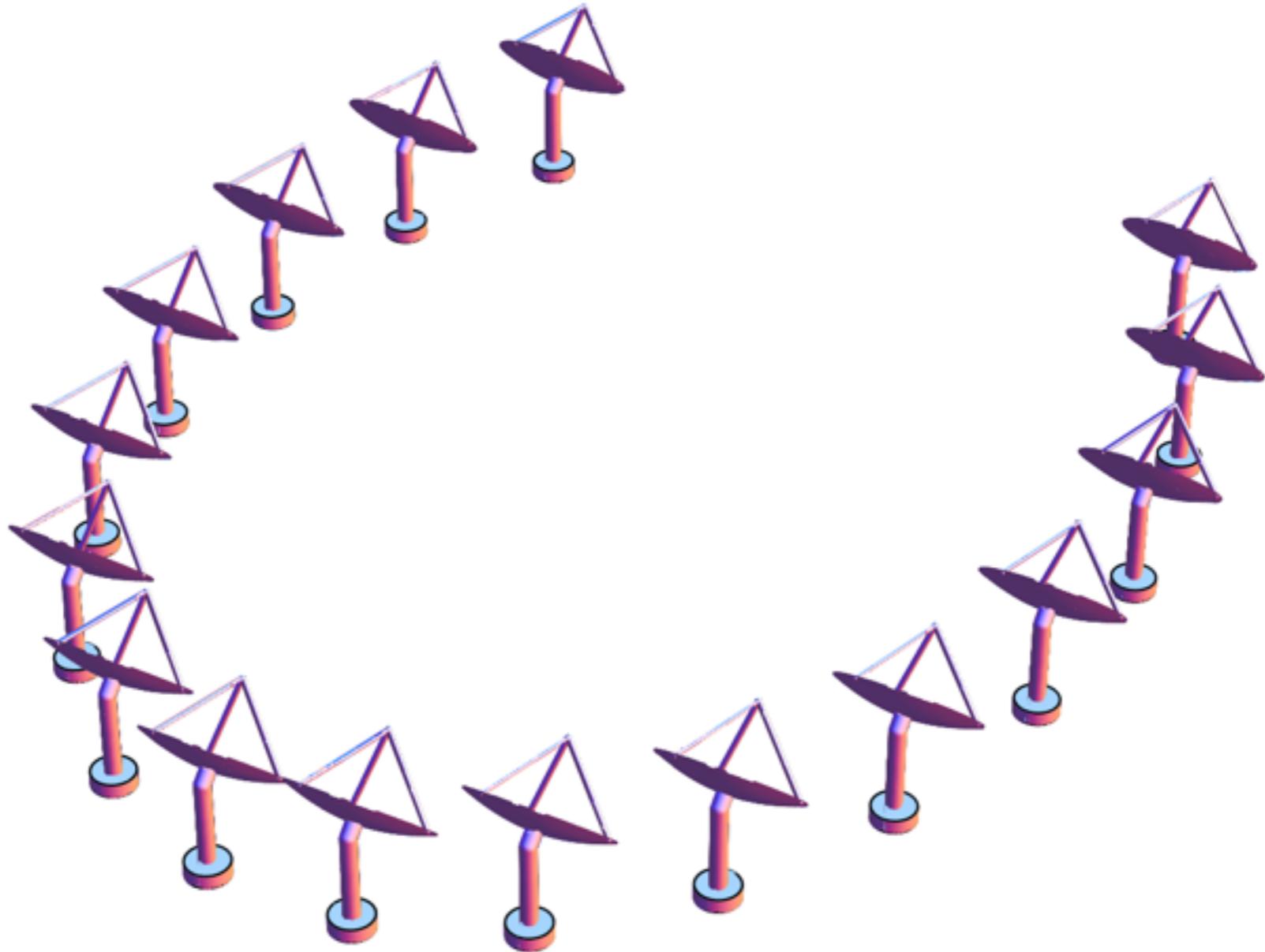
$\Pi_{\text{disk}} = 14$ $\Pi_{\text{split}} = 7$ $\nu \in [700, 800]$ MHz spaced 630 cm



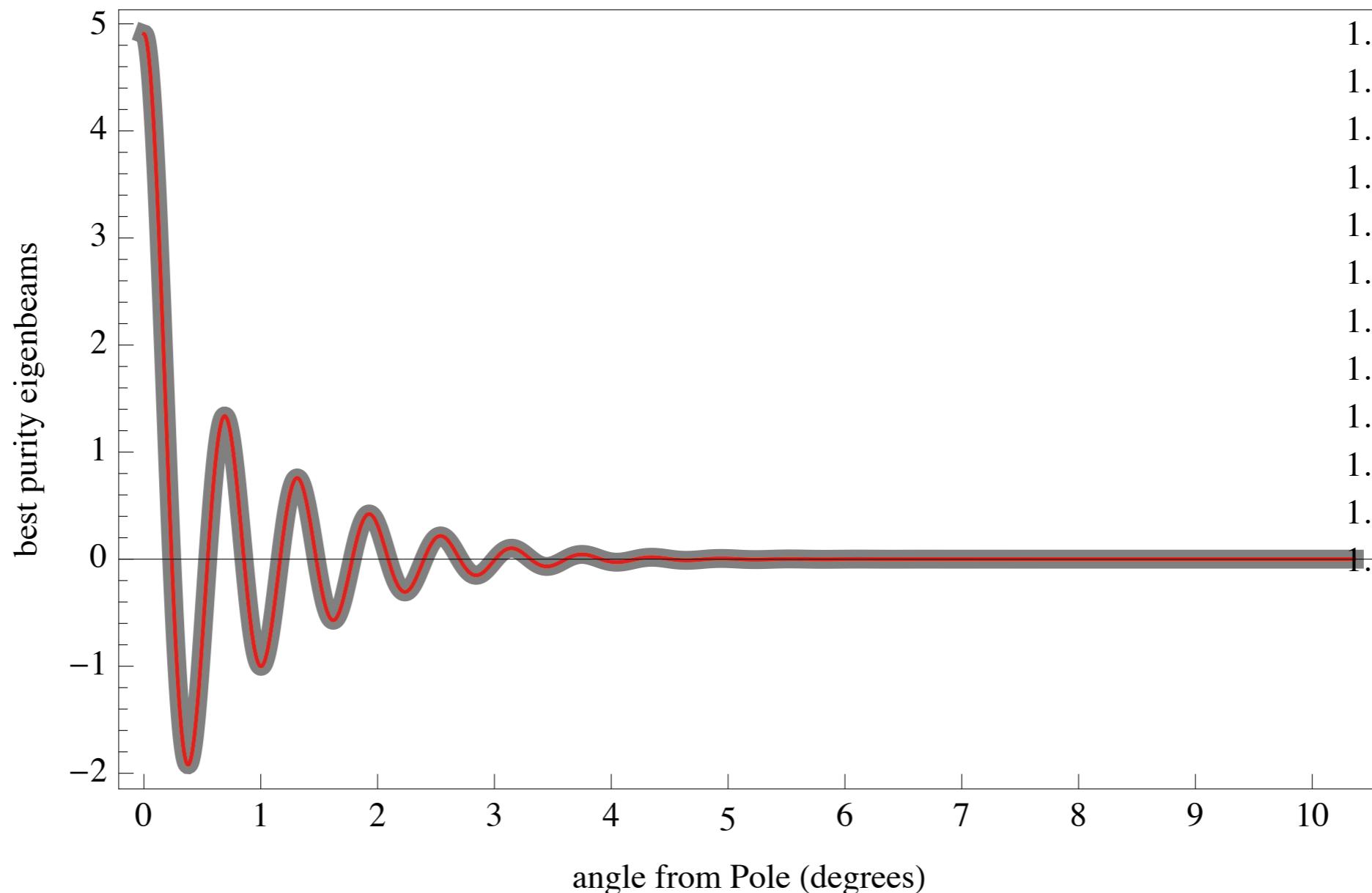
$\Pi_{\text{disk}} = 16$ $\Pi_{\text{split}} = 8$ $\nu \in [700, 800]$ MHz spaced 630 cm



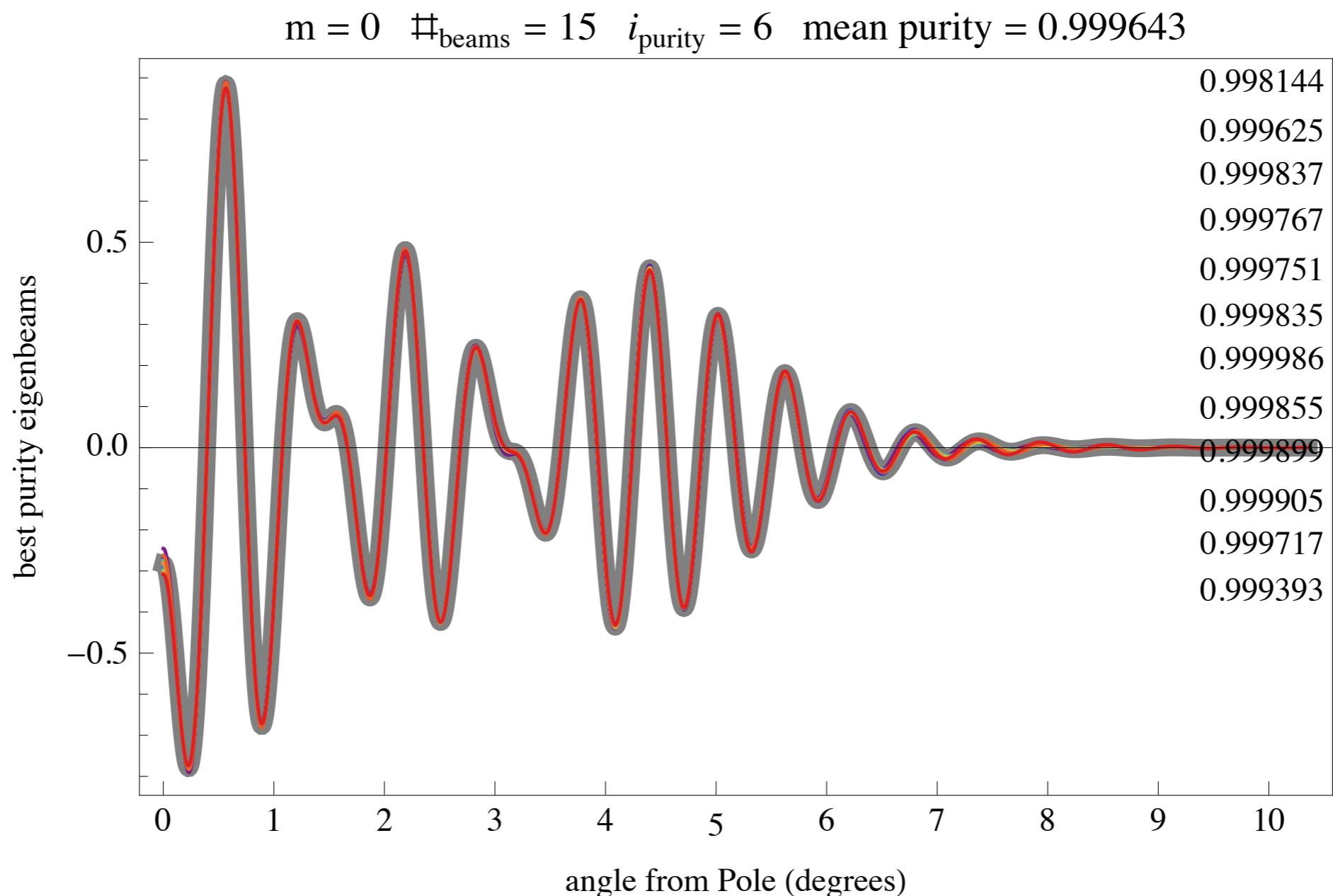
A Very Pure Polarscope



$m = 0$ $\#\text{beams} = 15$ $i_{\text{purity}} = 1$ mean purity = 1.

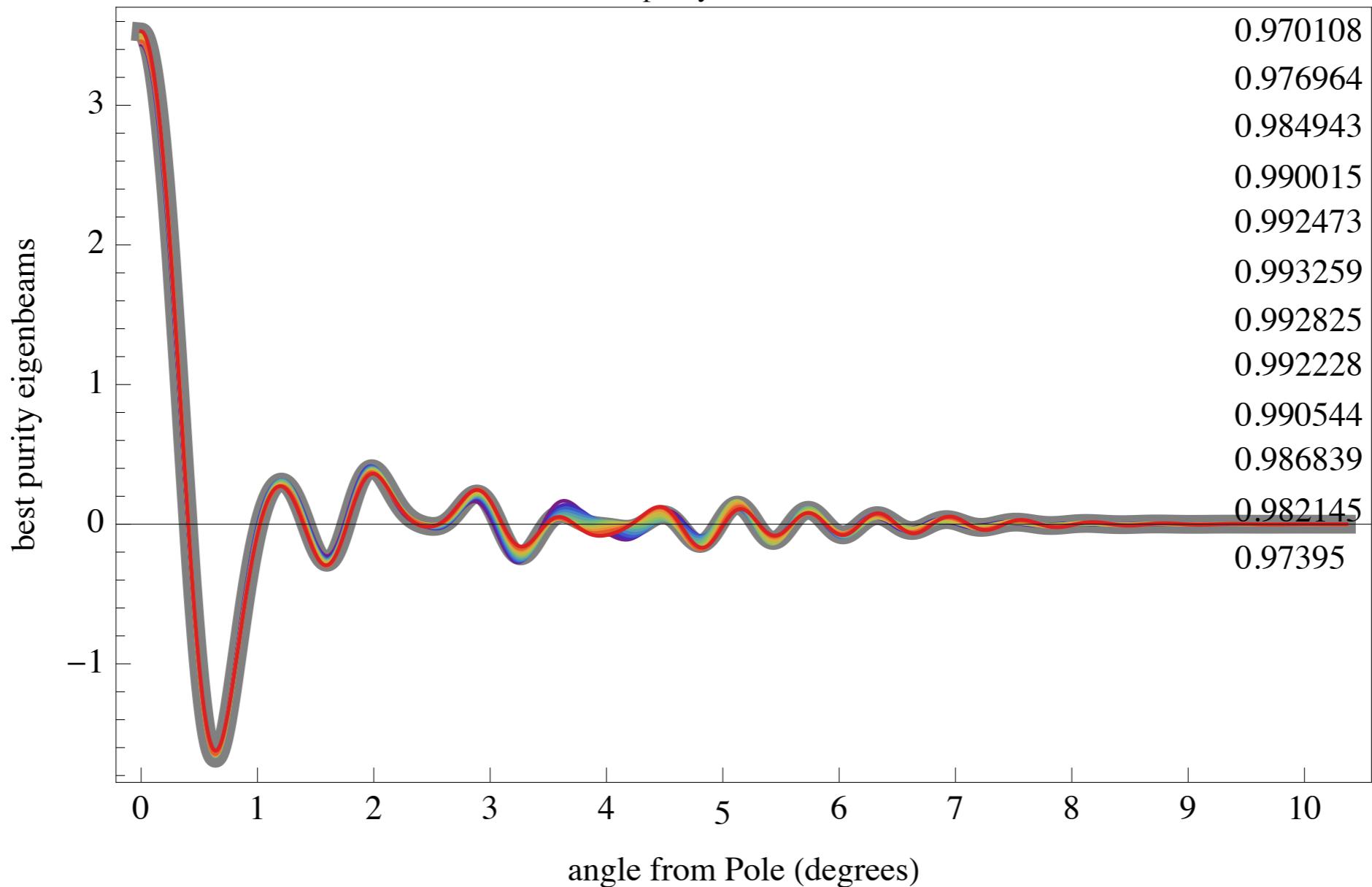


Skip to 6th purity eigenmode

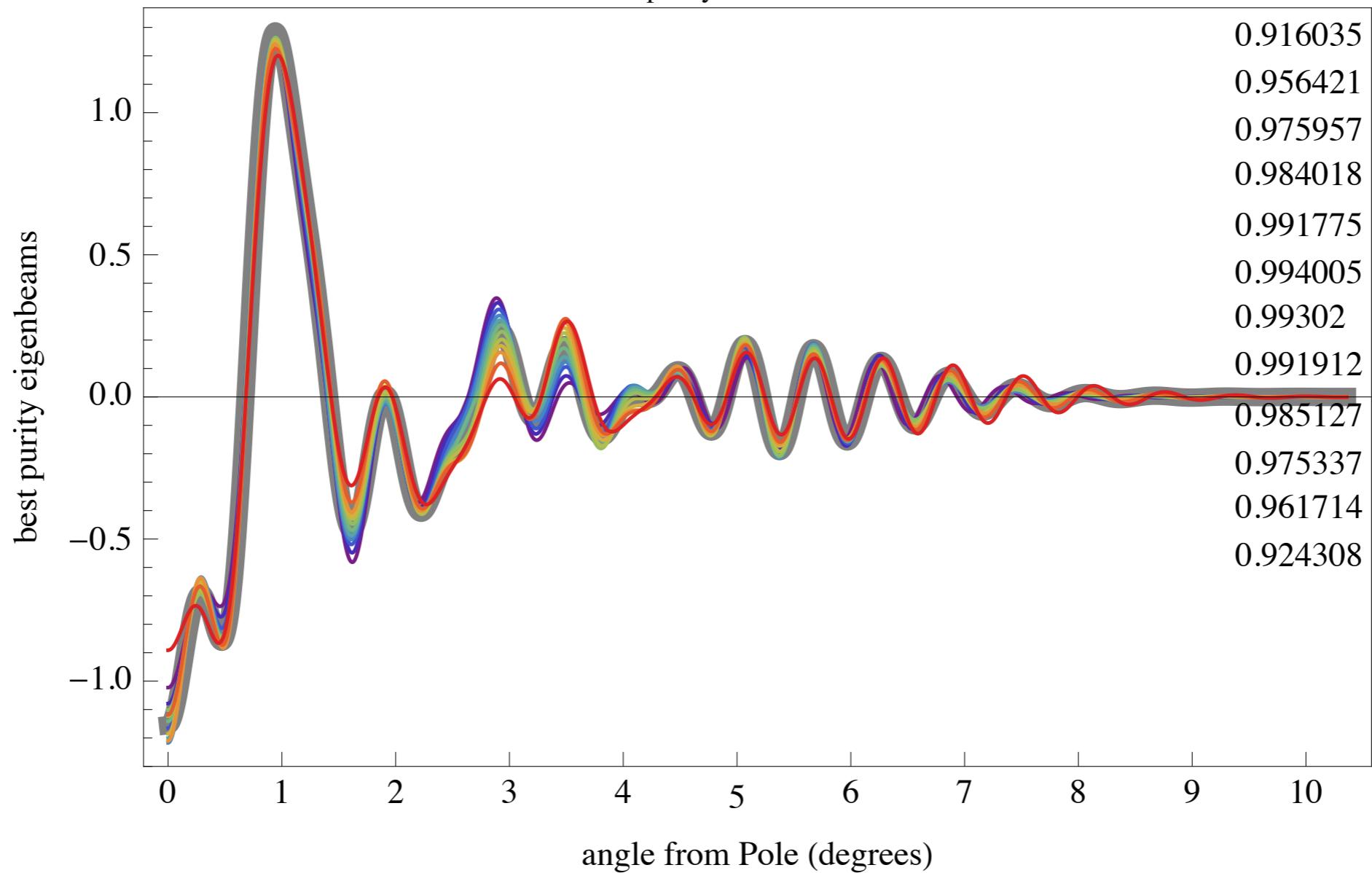


Skip to 9th purity eigenmode

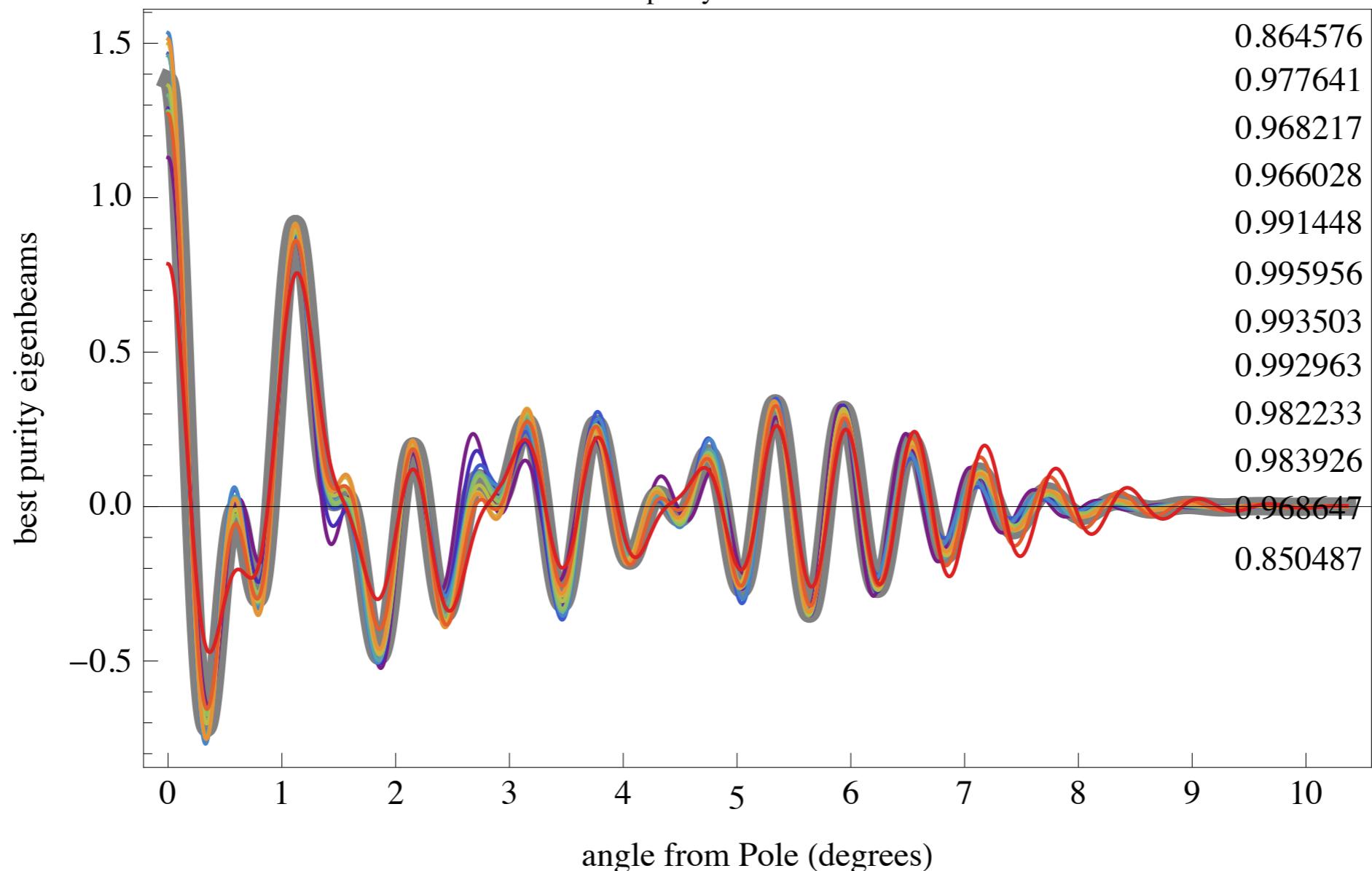
$m = 0$ $\#\text{beams} = 15$ $i_{\text{purity}} = 9$ mean purity = 0.985524



$m = 0$ $\#\text{beams} = 15$ $i_{\text{purity}} = 10$ mean purity = 0.970802



$m = 0$ $\#_{\text{beams}} = 15$ $i_{\text{purity}} = 11$ mean purity = 0.961302



Suggestion for Next Tianlai-16 Configuration

The Tianlai-16 dish array allows us the opportunity to

- by pointing toward the NCP (a polarscope or close to one) to integrate down rapidly to low noise levels
- experiment with array configuration to try to demonstrate a high purity interferometer
- in so doing rapidly test the efficacy of smooth spectrum foreground subtraction
- look for more concrete evidence of non-smooth foreground components

These results will have important implications for Tianlai cylinder and 21cm intensity mapping more generally.

Unfortunately Other Surveys Have Avoided NCP

