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Foreground removal efficacy remains a significant issue

2

Even for dark radio sky ~1K foreground is ~104 larger than ~100μK signal 
Foregrounds are expected to be smooth in frequency  
… but are they?

de Oliveira-Costa et al. 2008
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Non-Smooth Spectrum Foregrounds
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• While it is true that optically thin free-free or synchrotron emission is 
smooth in the optically thin limit for any electron energy distribute - yet it 
need not be so when self-absorption is present. 

• There is evidence for synchrotron self-absorption in gigahertz peaked 
sources (GPS). 

• Faraday rotation linearly polarized light can cause the linearly polarization 
to have oscillatory behavior which can leak into the inferred intensity. 

• Peter Timbie presented evidence yesterday for this effect in the GBT 
data. 

• It is unlikely that these could have spectral features as sharp as those 
expected in 21cm spectrum it can contaminate the low k modes which 
are important for measuring quantities like fNL.
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• Many algorithms proposed to take advantage of this 
• See excellent overview yesterday by Yichao Li 
• Would like to get noise down to ~50μK level to see real non-linear structures

Ideally Smooth foreground subtraction should work well
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Tfit = ∑p ap ln[ν]p 
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Mode Mixing
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• An interferometer with a finite number of elements will only “see” a 
finite number of “beams” on the sky.  

• The Hilbert space of all linear combinations of beams we call the 
space of beams. 

• This space of beams generally depends frequency.  This frequency 
dependence of the Hilbert spaces is called mode mixing because 
it mixes frequency dependence and angle dependence. 

• If we could remove mode mixing one can directly measure the 
angular average spectrum with no assumption about angular 
structure. 

• For this filtering smooth spectrum foregrounds is better when the 
amount of mode mixing is minimized.
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Beam Projection and Purity
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• Given a metric, ·, on the space of beam define the beam projection operator: 

𝕭[ν] ≣ ∑i,j Bi[ν]·(Bi[ν]·Bj[ν])
-1·Bj[ν] 

where Bi[ν] are the frequency dependent beam in the Stokes parameter space. 

• 𝕭[ν] has nbeam (number of beams) unit eigenvalues and the rest zero. 

• Define the purity operator by 

𝓟 ≣  ∫ ⅆν W[ν] 𝕭[ν] = ∑a 𝑝a  𝓹a ⊗ 𝓹a 

where W[ν] is a ν weight function (or purity band) such that: ∫ ⅆν W[ν] = 1 

the 𝓹a (eigenvectors) are purity eigenbeams: 𝓹i ·𝓹j  = δij 

the 𝑝a (eigenvalues)  are purities: 0≤ 𝑝a≤1 and ∑a 𝑝a = 1 

• The 𝓹a with the largest purity have the least mode mixing! 

• The 𝓹a with 𝑝a ≪1 have large amounts of mode mixing and high pass filtering is 
less effective at removing smooth but highly anisotropic foregrounds.
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Purity and Telescope Design
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• There are at most nbeam very pure (𝑝a≅1) modes 𝓹a. 

• N.B. 𝑝a→1 in the limit of zero bandwidth: W[ν]→δ[ν-ν0]  

• A high purity interferometer is an one which for a given bandwidth has close to 
nbeam very pure modes.  They are useful for understanding the underlying spectra 
of the emission.

• Define the purity number =-ln[1-𝑝a]  which is large for  very pure modes 

• Dense arrays with large overlap, Bi[ν]·Bj[ν], do better than sparse arrays (see Reza’s talk). 

• One never does worse by adding an additional element to an existing array (but ¥ $)
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Purity and Telescope Design and Tianlai
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Polarscope
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A polarscope is a transit interferometer consisting of a number antenna 
each pointing directly at a Celestial Pole, North or South. 

Since it always points at same spot it integrates to low noise very rapidly

DISCLAIMER: Celestial sources near poles move slowly so a polarscope has very little handle on 
day timescale transients, e.g. ground pickup.  N.B. Signals repeat every half day not every day.
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A Very Pure Polarscope
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Suggestion for Next Tianlai-16 Configuration

The Tianlai-16 dish array allows us the opportunity to!
• by pointing toward the NCP (a polarscope or close to one) to 

integrate down rapidly to low noise levels!
• experiment with array configuration to try to demonstrate a 

high purity interferometer!
• in so doing rapidly test the efficacy of smooth spectrum 

foreground subtraction!
• look for more concrete evidence of non-smooth foreground 

components!
These results will have important implications for Tianlai cylinder 
and 21cm intensity mapping more generally.
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Unfortunately Other Surveys Have Avoided NCP
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