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* “Seeing” the dark energy via…  

Ø The expansion rate of the universe: 

Ø The growth rate of structures f(z) : 

crucial for testing extra ρ 

components vs modified gravity. 

ü  Standard candles:  

     – measure dL (integral of H-1) 

ü  Standard rulers:  

     – measure dA (integral of H-1) and H(z) 

Dark Energy and its Probes 

Proportion of dark 
energy, dark matter, 
and ordinary matter 
in the universe. 
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where the subscript “ref” denotes quantities calculated in the reference cosmology, for which we

use the Planck 2013 parameters (Planck Collaboration et al. 2013a). Here bHI
1 (z) is the linear bias

factor of the HI gas at redshift z, f(z) is the linear growth rate, k⊥ and k∥ are the k components

perpendicular and parallel to the line of sight, respectively, G(z) is the growth factor, Pm0(k) is the

present matter power spectrum, and Pshot is the shot noise contribution.

In a model with dark energy equation of state w(z), the hubble parameter and the angular

diameter distance are given by

H(z)

H0
=

[

Ωm(1 + z)3 + Ωk(1 + z)2 + ΩXe3
∫ z
0

1+w(z′)
1+z′

dz′
]1/2

(3)

and

DA(z) =
c

1 + z

∫ z

0

dz′

H(z′)
. (4)

Thus the present density and the equation of state parameters of dark energy can be constrained

by measuring the acoustic peaks on the power spectrum.

The redshift space distortion of the power spectrum also provides information on the growth

history of the Universe. The linear growth rate f(z) affects the observed power spectrum (Eq. (2))

through the redshift space distortion (RSD) factor β, by

β = f(z)/bHI
1 (z), (5)

and through the linear growth factor G(z), which is related to f(z) by

f =
d lnG(a)

d ln a
= −

(1 + z)

G(z)

dG(z)

dz
. (6)

As the growth factor G(z) is degenerate with the HI bias factor, here we focus on the growth rate

obtained from the redshift space distortion, and will discuss the measurement error on f(z).

The redshift space power spectrum measured from the 21 cm intensity mapping could also

be used as a test for gravity (Hall et al. 2013; Masui et al. 2010), or provide extra information on

the dark energy if general relativity is assumed. For dark energy models, the growth rate can be

parameterized as f(z) = Ωγ
m(z), with γΛCDM ≈ 0.55 for the ΛCDM+GR model. The value of γ in

other dark energy models with w different from −1 does not deviate from γΛCDM significantly.

The intensity mapping observation directly measures the 21 cm brightness temperature, and

the measured 21 cm power spectrum, P∆T (k⃗) = T̄ 2
sigPobs(k⃗), is the power spectrum of brightness

temperature δTb due to the 21 cm emission, in which the average signal temperature T̄sig has been

estimated (Barkana & Loeb 2007; Chang et al. 2008; Seo et al. 2010) to be

T̄sig = 190
xHI(z)ΩH,0 h (1 + z)2

H(z) /H0
mK, (7)

where xHI(z) is the neutral fraction of hydrogen at redshift z, and ΩH,0 is the ratio of the hydrogen

mass density to the critical density at z = 0.

Credit: NASA / WMAP Science Team 



* BAOs are the frozen sound waves that were present in 

the photon-baryon plasma prior to recombination. 

* The standard ruler of the sound horizon at the last 

scattering surface  

*  rs(zd) = 153.3 ± 2.0 Mpc (Komatsu et al. 2009) 

Baryon Acoustic Oscillations – the cosmological standard ruler  

Temperature anisotropies of the CMB based on the 
nine year WMAP data (2012).(Credit: NASA / WMAP 
Science Team) 
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Fig. 32.— The nine-year WMAP TT angular power spectrum. The WMAP data are in

black, with error bars, the best fit model is the red curve, and the smoothed binned cosmic
variance curve is the shaded region. The first three acoustic peaks are well-determined.

(A color version of this figure is available in the online journal.)

The nine-year WMAP TT angular power 
spectrum. (arXiv:1212.5225v3) 

Freezed 
pattern 

Statistical 
standard 
ruler 



Baryon Acoustic Oscillations on large-scale structures  

(E.M. Huff, the SDSS-III team, and the South Pole Telescope team. 
Graphic by Zosia Rostomian.) 

An artist's illustration depicting exaggerated BAOs in the 
distant universe. (Zosia Rostomian (LBNL), SDSS-III, BOSS) 

4 Bassett and Hlozek, 2009

evidence for the acoustic signature in the correlation function and power spectrum.
Extracting the BAO scale from the matter power spectrum remains a thriving area
of research in contemporary cosmology, as we discuss later in Section 1.5 on current
and future BAO surveys.

Fig. 1.1. The Baryon Acoustic Peak (BAP) in the correlation function – the BAP is visible
in the clustering of the SDSS LRG galaxy sample, and is sensitive to the matter density
(shown are models with Ωmh2 = 0.12 (top), 0.13 (second) and 0.14 (third), all with
Ωbh2 = 0.024). The bottom line without a BAP is the correlation function in the pure
CDM model, with Ωb = 0. From Eisenstein et al., 2005 (52).

1.1.2 Cosmological Observables

We now discuss the relevant cosmological observables that are derived from standard
rulers in general, and the BAO in particular. The Baryon Acoustic Oscillations in
the radial and tangential directions provide measurements of the Hubble parameter
and angular diameter distance respectively. The Hubble parameter, H ≡ ȧ/a –
where a is the scale factor of the universe – can be written in dimensionless form
using the Friedmann equation as

E(z) ≡
H(z)

H0
=
√

Ωm(1 + z)3 + ΩDEf(z) + Ωk(1 + z)2 + Ωrad(1 + z)4 , (1.1)

where f(z) is the dimensionless dark energy density and Ωk = − k
H2

0
a2

= 1 − (Ωm +

ΩDE + Ωrad) is the density parameter of curvature with Ωk = 0 corresponding to
a flat cosmos. Ωm,Ωrad are the matter and radiation densities with corresponding
equations of state wi ≡ pi/ρi = 0, 1

3 for i = m, rad respectively.

44 L. Anderson et al.

Tridiagonal matrices have inverses with exponentially decreasing
off-diagonal terms (Rybicki & Press 1995). Apparently, treating
the off-diagonal covariances as exponentially decreasing with only
weak dependences on separation provides a good approximation.

For P(k), the measurements in k-bins are already fairly indepen-
dent, as one would expect for a near-Gaussian random field. Corre-
lations between bins can occur because of the finite survey volume
and because of non-Gaussianity in the density field. For CMASS,
we find the mean first off-diagonal term of the reduced covariance
matrix is 0.28 (with a standard deviation of 0.06). When the P(k)
measurements are divided by the best-fitting smooth model, Psm(k),
they are, generally, even less correlated. We determine P(k)/Psm(k)
for each mock sample and construct a revised ‘BAO’ covariance ma-
trix from this. We do not use this covariance matrix to perform any
fits – our fits are to the full P(k) and use the original covariance ma-
trix. For the revised covariance matrix, the mean first off-diagonal
term of the correlation matrix is reduced to 0.03 (with a standard
deviation of 0.15). The diagonal elements within this covariance ma-
trix are also reduced in amplitude, reflecting the smaller variance
available once a smooth fit has been removed. The errors derived
from this matrix thus better represent the errors on the measured
BAO; the data when presented as P(k)/Psm(k) are more independent
and provide a more accurate visualization of the measurements.

Fig. 16 displays the measured post-reconstruction values of
P(k)/Psm(k), for the BOSS CMASS sample in DR9, DR10, and
DR11 (from top to bottom), showing the evolution in the signal-to-
noise ratio of the BAO as BOSS has increased its observed footprint.
In the DR11 sample, the third peak is clearly visible. In Fig. 17,
we display the DR11 post-reconstruction P(k)/Psm(k) for the two
BOSS samples; the CMASS sample at zeff = 0.57 is presented in
the top panel and the LOWZ sample at zeff = 0.32 is shown in the
bottom panel. The LOWZ sample possesses a clear BAO feature,
but the signal-to-noise ratio is considerably lower than that of the
CMASS sample.

Figure 16. The CMASS BAO feature in the measured reconstructed power
spectrum of each of the BOSS data releases, DR9, DR10, and DR11. The
data are displayed with points and error bars and the best-fitting model is
displayed with the curves. Both are divided by the best-fitting smooth model.
We note that a finer binning was used in the DR9 analysis.

Figure 17. The BAO feature in the measured power spectrum of the DR11
reconstructed CMASS (top) and LOWZ (bottom) data. The data are dis-
played with black circles and the best-fitting model is displayed with the
curve. Both are divided by the best-fitting smooth model.

7 BAO M E A S U R E M E N T S F RO M
ANISOTROPIC CLUSTERING ESTIMATE S

7.1 Anisotropic clustering estimates

In Section 5, we detailed our analysis techniques (multipoles and
wedges statistics), and demonstrated they recover unbiased esti-
mates of the BAO scales both along and perpendicular to line of
sight with similar uncertainties. We now apply these two techniques
to BOSS CMASS sample (at z = 0.57). Fig. 18 displays the multi-
poles, ξ 0, 2, of the DR11 CMASS sample correlation function pre-
and post-reconstruction, using our fiducial binning choice, for the
range of scales fitted (45 < s < 200 h−1 Mpc). For the quadrupole
(ξ 2), we see a dramatic change from the pre- to post-reconstruction
results, as the reconstruction algorithm has removed almost all of
the RSD contribution. Further, an apparent dip is now seen in the
data on scales slightly larger than the peak in the monopole. The
strength of this feature is related to the deviation in ϵ from 0 (or the
deviation in α⊥ from 1).

Fig. 19 displays the correlation function divided into two wedges
(ξ ||, ⊥), once again with the pre-reconstruction measurements dis-
played in the top panel and the post-reconstruction measurements in
the bottom panel. Reconstruction has made the BAO peak sharper
for both ξ || and ξ⊥. Further, reconstruction has decreased the dif-
ference in their amplitudes as the RSD signal has been reduced.

7.2 DR11 acoustic-scale measurement from anisotropic
clustering

As for our isotropic analysis, the results of our anisotropic BAO fits
to the DR10 and DR11 mocks show significant improvement on
average with reconstruction (see Table 5), and therefore, we adopt
post-reconstruction results as our default. Our consensus value for
the CMASS anisotropic BAO measurement, α|| = 0.968 ± 0.032,
α⊥ = 1.044 ± 0.013, is determined from a combination of the
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SDSS: Anderson et al. 2014 
BAP in the clustering of the SDSS LRG galaxy 
sample (Eisenstein et al. 2005) 



* The BAOs imprint features on the CMB as well as large-scale 

structures (LSS) in the later universe.  

è a standard ruler at various z to measure the angular diameter 

distance DA(z) and the Hubble parameter H(z)  

è expansion rate  

è properties of dark energy  

 

Baryon Acoustic Oscillations as a Probe of Dark Energy 



*  Inflation à Initial density perturbations à Structure Formation à LSS today 

The LSS as a Probe of the Primordial Non-Gaussianity  

(Courtesy: NASA) 

* Probing LSS can yield 

information about 

inflationary physics. 



* Standard slow-roll inflation – nearly Gaussian density fields 

* Other inflation mechanisms – potentially detectable non-Gaussianity 

* Lowest order non-Gaussianity: bispectrum 

* The PNG as a powerful probe to the dynamics of inflation. 

The LSS as a Probe of the Primordial Non-Gaussianity  
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FIG. 1 Triangle types contributing to the bispectrum corresponding to ‘squeezed’ or local configurations with k3  k1, k2 (left),
equilateral configurations with k3 � k1 � k2 (centre) and flattened configurations with k3 � k1 + k2 (right).

II. INITIAL CONDITIONS AND THE PRIMORDIAL BISPECTRUM

A. The primordial bispectrum and shape function

The starting point for this discussion is the primordial gravitational potential perturbation ⇥(x, t) which was seeded
by quantum fluctuations during inflation or by some other mechanism in the very early universe (t  tdec). When
characterizing the fluctuations ⇥ we usually work in Fourier space with the (flat space) transform defined through

⇥(x, t) =
Z

d3k
(2⌦)3 e�ik·x⇥(k, t) . (II.3)

The primordial power spectrum P⇥(k) of these potential fluctuations is found using an ensemble average,

◆⇥(k)⇥⇤(k✏) = (2⌦)3⌅D(k � k✏)P⇥(k) , (II.4)

where we have assumed that physical processes creating the fluctuations are statistically isotropic so that only the
dependence on the wavenumber remains, k = |k|. Recall that for nearly scale-invariant perturbations, the fluctuation
variance on the horizon scale k � H is almost constant �2

k⌥H � k3P⇥(k)/2⌦2 � const., implying P⇥(k) ⌥ k�3.
The primordial bispectrum B⇥(k, k2, k3) is found from the Fourier transform of the three-point correlator as

◆⇥(k1)⇥(k2)⇥(k3) = (2⌦)3 ⌅D(k123) B⇥(k1, k2, k3) . (II.5)

Here, the delta function enforces the triangle condition, that is, the constraint that the wavevectors in Fourier space
must close to form a triangle, k1 + k2 + k3 = 0. Examples of such triangles are shown in fig. 1, illustrating the basic
squeezed, equilateral and flattened triangles to which we will refer later. Note that a specific triangle can be completely
described by the three lengths of its sides and so, in the isotropic case, we are able to describe the bispectrum using
only the wavenumbers k1, k2, k3. The triangle condition restricts the allowed wavenumber configurations (k1, k2, k3) to
the interior of the tetrahedron illustrated in fig. 2.

The most studied primordial bispectrum is the local model in which contributions from ‘squeezed’ triangles are
dominant, that is, with e.g. k3  k1, k2 (as illustrated in the left of fig. 1). This is well-motivated physically as it
encompasses ‘superhorizon’ e⌅ects during inflation when a large scale mode k3 (say) which has exited the Hubble
radius exerts a nonlinear influence on the subsequent evolution of smaller scale modes k1, k2. Although this e⌅ect
is small in single field slow-roll inflation, it can be much larger for multifield models. In a weakly coupled regime,
the potential can be split into two components, the linear term ⇥L, representing a Gaussian field, giving the usual
perturbation results plus a small local non-Gaussian term ⇥NL (Salopek & Bond, 1990),

⇥(x) = ⇥L(x) + ⇥NL(x)
= ⇥L(x) + fNL

⇥
⇥2

L(x) � ◆⇥2
L(x)⇤ , (II.6)
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I. INTRODUCTION

The standard inflationary paradigm predicts a flat Universe perturbed by nearly Gaussian and scale invariant pri-
mordial perturbations. These predictions have been verified to a high degree of accuracy by Cosmic Microwave Back-
ground (CMB) and Large-Scale Structure (LSS) measurements, such as those provided by the Wilkinson Microwave
Anisotropy Probe (WMAP; Komatsu et al., 2009), the 2dF Galaxy Redshift Survey (2dFGRS; Percival et al., 2002)
and the Sloan Digital Sky Survey (SDSS; Tegmark et al., 2004). Despite this success, it has proved to be di⇧cult to
discriminate between the vast array of inflationary scenarios that have been proposed by high-energy theoretical inves-
tigations, or even to rule-out alternatives to inflation.. Since most of the present constraints on the Lagrangian of the
inflaton field have been obtained from measurements of the two-point function, or power spectrum, of the primordial
fluctuations, a natural step is to extend the available information is to look at non-Gaussian signatures in higher order
correlators.

The lowest order additional correlator to take into account is the three-point function or its counterpart in Fourier
space, the bispectrum. Every model of inflation is characterized by specific predictions for the bispectrum of the
primordial perturbations in the gravitational potential ⇥(k). The bispectrum B⇥(k1, k2, k3) of these perturbations is
defined as

◆⇥(k1)⇥(k2)⇥(k3) ⌅ (2⌦)3⌅D(k123) B⇥(k1, k2, k3) , (I.1)

where we have introduced the notation ki j ⌅ k1+k2 so that the Dirac delta function here is ⌅D(k123) ⌅ ⌅D(k1+k2+k3).
Together with the assumption of statistical homogeneity and isotropy for the primordial perturbations, this implies that
the bispectrum is a function of the triplet defined by the magnitude of the wavenumbers k1, k2 and k3 forming a closed
triangular configuration. The current constraints that we are able to derive on the bispectrum B⇥(k1, k2, k3) provide
additional information about the early Universe; the possible detection of a non-vanishing primordial bispectrum
in future observations would represent a major discovery, especially as it is predicted to be negligible by standard
inflation.

The cosmological observable most directly related to the initial curvature bispectrum is given by the bispectrum
of the CMB temperature fluctuations, which provide a map of the density perturbations at the time of decoupling,
the earliest information we have about the Universe. Current measurements of individual triangular configurations of
the CMB bispectrum are, however, consistent with zero. Studies of the primordial bispectrum, therefore, are usually
characterized by constraints on a single amplitude parameter, denoted by fNL, once a specific model for B⇥ is assumed.
Since most models predict a curvature bispectrum obeying the hierarchical scaling B⇥(k, k, k) ⌥ P2

⇥(k), with P⇥(k)
being the curvature power spectrum, the non-Gaussian parameter roughly quantifies the ratio fNL ⌥ B⇥(k, k, k)/P2

⇥(k),
defining the “strength” of the primordial non-Gaussian signal. In addition, we can write

B⇥(k1, k2, k3) ⌅ fNLF(k1, k2, k3) , (I.2)

where F(k1, k2, k3) encodes the functional dependence of the primordial bispectrum on the specific triangle config-
urations. For brevity, the characteristic shape-dependence of a given bispectrum is often referred to simply as the
bispectrum shape (a precise definition of the bispectrum shape function will be given in section II.A). Inflationary pre-
dictions for both the amplitude fNL and the shape of B⇥ that are strongly model-dependent. Notice that the subscript
“NL” stands for “nonlinear”, since a common phenomenological model for the non-Gaussianity of the initial condi-
tions can be written as a simple nonlinear transformation of a Gaussian field. Generically, of course, non-Gaussianity
is associated with nonlinearities, such as nontrivial dynamics during inflation, resonant behaviour at the end of infla-
tion (‘preheating’), or nonlinear post-inflationary evolution. At the very least, future CMB and LSS observations are
expected to be able to eventually detect the small last contribution.

Perturbations in the CMB provide a particularly convenient test of the primordial density field because CMB temper-
ature and polarization anisotropies are small enough to be studied in the linear regime of cosmological perturbations.
Once the e⌅ects of foregrounds are properly taken into account, a non-vanishing CMB bispectrum at large scales
would be a direct consequence of a non-vanishing primordial bispectrum. As we will see, while other CMB probes
of primordial non-Gaussianity are available, such as tests of the topological properties of the temperature map based
on Minkowski Functionals or measurements of the CMB trispectrum, the estimator for the non-Gaussian parameter

amplitude shape 

(Model-dependent) 



* PNG imprint on the CMB: 

- Angular bispectrum measurement 

* PNG effects on LSS: 

- High-order correlations of galaxy distribution – bispectrum, trispectrum 

(e.g. Sefusatti & Komatsu 2007) 

- Abundance of rare objects – cluster number density 

(e.g. Afshordi & Tolley 2008; Dalal et al. 2008) 

- The large-scale clustering of halos – scale-dependent bias 

(e.g. Dalal et al. 2008; Desjacques et al. 2011) 

The LSS as a Probe of the Primordial Non-Gaussianity  

Figure 5. Planck modal reconstruction of the CMB temperature reduced bispectrum, plotted using
several density contours [132].
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* Currently: ALFALFA 

*  limited to z <~0.2 

* Upcoming: FAST, ASKAP, MeerKAT 

* Higher sensitivities, but still challenging at high redshift 

* Future: SKA 

* Comparable to the existing optical galaxy surveys (Rawlings et al. 2004; 

Abdalla et al. 2010 ) 

LSS measured in radio – HI galaxy survey 



* The 21 cm intensity mapping technique 

* During EoR – HI gas in the IGM è Post-EoR – HI gas in halos 

* 21 cm cosmology with intensity mapping 

* High efficiency 

* Map the large scale structure at 0 < z < 3 

* Tested with the Green Bank Telescope (GBT) and the Parkes telescope 

(Chang et al. 2010; Masui et al. 2013; Switzer et al. 2013) 

* The cylinder interferometer array design 

* Tianlai (天籁) 

* CHIME 

* Competitive with Stage III dark energy experiments  

(e.g. Chang et al. 2008; Seo et al. 2010; Ansari et al. 2012) 

HI Intensity Mapping 



The Tianlai cylinder array 



The Astrophysical Journal, 798:40 (10pp), 2015 January 1 Xu, Wang, & Chen

Table 1
The Experiment Parameters for Tianlai

Cylinders Width Length Dual Pol. Units/Cylinder Frequency

Pathfinder 3 15 m 40 m 32 700–800 MHz

Pathfinder+ 3 15 m 40 m 72 700–800 MHz

Full scale 8 15 m 120 m 256 400–1420 MHz

The Tianlai project4 is an experimental effort in this direction
(Chen 2011, 2012). Tentatively, in this paper, we will assume
that the full-scale Tianlai experiment will consist of eight
adjacent cylinders, each 15 m wide and 120 m long, with a total
of about 2000 dual polarization units covering the frequency
range of 400–1420 MHz, corresponding to 0 < z < 2.5. We
will assume a system temperature of 50 K.

At present, a pathfinder experiment is being built in a radio
quiet site at Hongliuxia, Balikun County, Xinjiang Autonomous
Region, China. This pathfinder consists of both a cylinder array
and a dish array. The dish array will include 16 steerable 6 m
dishes, and will be discussed in a separate paper; here, we
will focus on the cylinder array. The cylinder pathfinder array
includes three adjacent cylindrical reflectors, each 15 m wide
and 40 m long. It will focus on observing at the frequency range
of 700–800 MHz. Currently, the pathfinder cylinders have a
total of 96 receivers, with an average of 32 on each. With a
margin of 5 m on each of the two ends of the cylinder, the
distance between the feeds is around 97 cm, which is greater
than one wavelength at z = 1 (λobs = 21(1 + z) cm). After a
period of experiment, we plan to expand the total number of
dual polarization receivers to 216, so that on each cylinder
there will be on average 72 dual polarization receivers. We will
call this the pathfinder+ experiment. Using the pathfinder and
pathfinder+ experiment, we hope to demonstrate the feasibility
of intensity mapping using the cylinder array before building
the full-scale experiment. These configuration parameters for
the cylinder pathfinder, pathfinder+, and full-scale experiment
are listed in Table 1.

Another potentially interesting application of a 21 cm inten-
sity mapping experiment is to look for and constrain the pri-
mordial non-Gaussianity. The primordial density perturbations,
which originated during the inflation era and gave rise to the
various structures today, link the observable universe to the
very early phase of the universe. While the simplest slow-roll
inflation model predicts very weak primordial non-Gaussianity
in the density perturbations with an amplitude below the de-
tectable level, many other inflation mechanisms could result
in observable non-Gaussianities (see Bartolo et al. 2004; Chen
2010 for reviews). Any observational constraint on the level of
the primordial non-Gaussianity can be a powerful probe of the
dynamics of inflation.

Various observational approaches, such as the angular
bispectrum of the CMB, high-order correlations of the three-
dimensional galaxy distribution, the abundance of rare objects,
and the large-scale clustering of halos, have been developed
to constrain the level of primordial non-Gaussianity, specifi-
cally the nonlinearity parameter fNL (see Liguori et al. 2010;
Verde 2010 for reviews). By combining large-scale clustering
measurements from galaxy surveys with their cross-correlations
with the CMB from the Wilkinson Microwave Anisotropy Probe

4 http://tianlai.bao.ac.cn. The word Tianlai means “heavenly sound” in
Chinese. This phrase first appeared in the work of the ancient Chinese
philosopher Chuang Tzu (369BC–286BC).

nine year data, Giannantonio et al. (2014) obtained −37 <
fNL < 25 at 95% confidence for the local-type configuration.
The latest and tightest constraints on fNL come from measure-
ments of the CMB angular bispectrum by Planck, which are
f local

NL = 2.7 ± 5.8, f
equil
NL = −42 ± 75, and f ortho

NL = −25 ± 39
(68% CL) for the primordial local, equilateral, and orthogonal
bispectrum amplitudes, respectively (Planck Collaboration et al.
2014b). Using the large-scale clustering of tracers of dark matter
in the later universe, the two most commonly used probes for
primordial non-Gaussianity are the scale-dependent bias in the
observed power spectrum and the bispectrum.

In this paper, we make simple forecasts concerning the con-
straining power of the Tianlai experiment under the assumption
of perfect foreground removal and no systematics. We will make
our forecasts primarily for the full-scale experiment, which is
designed to measure the LSS and cosmological parameters. We
will also make some forecasts concerning the pathfinder and
pathfinder+ experiments, which are only used to test the key
technology for the full-scale experiment and are not expected to
achieve any good precision.

The paper is organized as follows. In Section 2, we present
the signal power spectrum, as well as the detailed formalism for
estimating the noise power spectrum for an interferometer array,
and we forecast the measurement error of the power spectrum by
the Tianlai arrays. Based on the power spectrum measurement,
we forecast constraints on the dark energy parameters obtainable
from Tianlai BAO and RSD observations in Section 3. In
Section 4, we briefly review the imprint of primordial non-
Gaussianity on the LSS. In Section 4.1, we study the constraint
that can be obtained by considering the scale-dependent bias in
the power spectrum, and in Section 4.2 we apply the bispectrum
method. We conclude in Section 5.

2. THE POWER SPECTRUM MEASUREMENT WITH
TIANLAI INTENSITY MAPPING

2.1. The Signal Power Spectrum

In an H i intensity mapping observation, the distances along
and perpendicular to the line of sight are measured from redshift
and angular separation, respectively, and the H i power spectrum
is observed in redshift space. Therefore, the observed H i power
spectrum is given by (Seo & Eisenstein 2003)

Pobs(kref⊥, kref∥) = DA(z)2
refH (z)

DA(z)2Href(z)

(

bH i
1 (z) + f (z)

k2
∥

k2
⊥ + k2

∥

)2

× G(z)2Pm0(k) + Pshot, (2)

where the subscript “ref” denotes quantities calculated in
the reference cosmology, for which we use the Planck 2013
parameters (Planck Collaboration et al. 2014a). Here, bH i

1 (z) is
the linear bias factor of the H i gas at redshift z, f (z) is the linear
growth rate, k⊥ and k∥ are the k components perpendicular and
parallel to the line of sight, respectively, G(z) is the growth
factor, Pm0(k) is the present matter power spectrum, and Pshot is
the shot noise contribution.

In a model with dark energy equation of state w(z), the Hubble
parameter and the angular diameter distance are given by

H (z)
H0

=
[
Ωm(1 + z)3 + Ωk(1 + z)2 + ΩXe3

∫ z

0
1+w(z′ )

1+z′ dz′]1/2 (3)

and

DA(z) = c

1 + z

∫ z

0

dz′

H (z′)
. (4)
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in the density perturbations with an amplitude below the de-
tectable level, many other inflation mechanisms could result
in observable non-Gaussianities (see Bartolo et al. 2004; Chen
2010 for reviews). Any observational constraint on the level of
the primordial non-Gaussianity can be a powerful probe of the
dynamics of inflation.

Various observational approaches, such as the angular
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and the large-scale clustering of halos, have been developed
to constrain the level of primordial non-Gaussianity, specifi-
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our forecasts primarily for the full-scale experiment, which is
designed to measure the LSS and cosmological parameters. We
will also make some forecasts concerning the pathfinder and
pathfinder+ experiments, which are only used to test the key
technology for the full-scale experiment and are not expected to
achieve any good precision.

The paper is organized as follows. In Section 2, we present
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In an H i intensity mapping observation, the distances along
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* The Signal Power Spectrum  

The Power Spectrum Measurement with Tianlai 
Intensity Mapping 

•  The linear growth rate f(z) affects the observed power spectrum  

through the RSD factor β, by  

and through the linear growth factor G(z) by  
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Thus the present density and equation of state parameters of
dark energy can be constrained by measuring the acoustic peaks
on the power spectrum.

The RSD of the power spectrum also provides information on
the growth history of the universe. The linear growth rate f (z)
affects the observed power spectrum (Equation (2)) through the
RSD factor β, by

β = f (z)/bH i
1 (z), (5)

and through the linear growth factor G(z), which is related to
f (z) by

f = d ln G(a)
d ln a

= − (1 + z)
G(z)

dG(z)
dz

. (6)

Since the growth factor G(z) is degenerate with the H i bias
factor, here we focus on the growth rate obtained from the RSD,
and will discuss the measurement error on f (z).

The redshift space power spectrum measured from 21 cm
intensity mapping could also be used as a test for gravity (Hall
et al. 2013; Masui et al. 2010), or provide extra information on
dark energy if general relativity is assumed. For dark energy
models, the growth rate can be parameterized as f (z) = Ωγ

m(z)
with γΛCDM ≈ 0.55 for the ΛCDM+GR model. The value of
γ in other dark energy models with w other than −1 does not
deviate from γΛCDM significantly.

The intensity mapping observation directly measures the
21 cm brightness temperature, and the measured 21 cm power
spectrum, P∆T (k) = T̄ 2

sigPobs(k), is the power spectrum of
brightness temperature δTb due to 21 cm emission, in which
the average signal temperature T̄sig has been estimated (Barkana
& Loeb 2007; Chang et al. 2008; Seo et al. 2010) to be

T̄sig = 190
xH i(z) ΩH,0 h (1 + z)2

H (z) /H0
mK, (7)

where xH i(z) is the neutral fraction of hydrogen at redshift z
and ΩH,0 is the ratio of the hydrogen mass density to the critical
density at z = 0.

After the completion of cosmic reionization, the H i gas in
the universe was mostly distributed in galaxies hosted by halos.
Therefore, we model the H i bias factors as halo bias factors
weighted by the neutral hydrogen mass hosted by these halos
(Gong et al. 2011):

bH i
i (z) =

∫ Mmax

Mmin
dM n(M, z) MH i(M) bi(M, z)

ρH i
, (8)

for i = 1 and 2, where ρH i is the mass density of H i gas, n(M,z)
is the halo mass function for which we use Sheth & Tormen’s
formalism (Sheth & Tormen 1999), MH i(M) is the H i mass
in a halo of mass M, and b1(M, z) and b2(M, z) are halo bias
parameters. The mass density of H i clouds is given by

ρH i =
∫ Mmax

Mmin

dM n(M, z) MH i(M). (9)

Following Gong et al. (2011), we take Mmin = 108 h−1M⊙ for
halos to retain their neutral gas (Loeb & Barkana 2001), and
take Mmax = 1013 h−1M⊙ for the gas to have sufficient time to
cool and form galaxies.

As for the relation between the H i gas mass MH i and the
host halo mass M, we use the fitting result from Gong et al.

(2011), which is based on numerical simulation and consistent
with observations:

MH i(M) = A ×
(

1 +
M

c1

)b (
1 +

M

c2

)d

, (10)

for M > 1010 M⊙, and MH i(M) = X
gal
H i (Ωb/Ωm) M with

X
gal
H i = 0.15 for M ! 1010 M⊙. The best-fit parameters are

A = 2.1 × 108, c1 = 1.0 × 1011, c2 = 4.55 × 1011, b = 2.65,
and d = −2.64 for redshift z = 1. As the MH i − M relation does
not change much from z = 1 to z = 3 (Gong et al. 2011), we
use fixed values of these parameters throughout our calculation.

The halo bias factors can be obtained from the halo model
(see Cooray & Sheth 2002 for a review). The linear and the first
nonlinear bias factors of halos are (Scoccimarro et al. 2001; Mo
et al. 1997)

b1(M, z) = 1 + ϵ1 + E1, (11)

b2(M, z) = 2 (1 + a2) (ϵ1 + E1) + ϵ2 + E2, (12)
where

ϵ1 = qν − 1
δsc(z)

, ϵ2 = qν

δsc(z)

(
qν − 3
δsc(z)

)
, (13)

and

E1 = 2p/δsc(z)
1 + (qν)p

,
E2

E1
= 1 + 2p

δsc(z)
+ 2ϵ1. (14)

Here, a2 = −17/21, ν ≡ δ2
sc(z)/σ 2(M), and δsc(z) =

1.686/G(z) is the critical overdensity required for spherical
collapse at z, extrapolated to the present time using linear the-
ory. For Sheth & Tormen’s halo mass function (Sheth & Tormen
1999), p ≈ 0.3 and q = 0.707.

2.2. Generalized Noise Power Spectrum

The fundamental observable of a radio interferometer is
the visibility, which is the correlation between the outputs of
two receivers for a given baseline. For a given sky brightness
distribution I (n̂, ν), where n̂ and ν are the sky position and the
observing frequency, respectively, the corresponding visibility,
in units of flux density, can be written as the Fourier transform
of the sky brightness weighted by the beam pattern A(n̂) of the
two receivers:

Vαβ,[Jy](uαβ , ν) =
∫

d2n̂e−i2π n̂·uαβ Aα(n̂, ν)A∗
β (n̂, ν)I (n̂, ν)

≈
∫

d2n̂e−i2π n̂·u⊥Aα(n̂, ν)A∗
β (n̂, ν)I (n̂, ν),

(15)

where uαβ denotes the baseline vector in units of wavelength.
Here, in the second equality, we have used the flat-sky approxi-
mation, and u⊥ is the component of uαβ perpendicular to the line
of sight. In a large-scale survey like Tianlai, the flat-sky assump-
tion will certainly break down, and so a full-sky representation
based on the spherical harmonic expansion has been developed
(Shaw et al. 2014). Here, we use the flat-sky approximation and
Fourier expansion, as it is still sufficient for forecasting.

For radio interferometers, it is convenient to define the
equivalent visibility in units of brightness temperature, using
the Rayleigh–Jeans approximation, so that

Vαβ,[K](u⊥, ν) =
∫

d2n̂e−i2π n̂·u⊥Aα(n̂, ν)A∗
β (n̂, ν)δTb(n̂, ν).

(16)
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tion will certainly break down, and so a full-sky representation
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* The intensity mapping measures the power spectrum of brightness 

temperature δTb due to 21cm emission: 
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Thus the present density and equation of state parameters of
dark energy can be constrained by measuring the acoustic peaks
on the power spectrum.

The RSD of the power spectrum also provides information on
the growth history of the universe. The linear growth rate f (z)
affects the observed power spectrum (Equation (2)) through the
RSD factor β, by

β = f (z)/bH i
1 (z), (5)

and through the linear growth factor G(z), which is related to
f (z) by

f = d ln G(a)
d ln a

= − (1 + z)
G(z)

dG(z)
dz

. (6)

Since the growth factor G(z) is degenerate with the H i bias
factor, here we focus on the growth rate obtained from the RSD,
and will discuss the measurement error on f (z).

The redshift space power spectrum measured from 21 cm
intensity mapping could also be used as a test for gravity (Hall
et al. 2013; Masui et al. 2010), or provide extra information on
dark energy if general relativity is assumed. For dark energy
models, the growth rate can be parameterized as f (z) = Ωγ

m(z)
with γΛCDM ≈ 0.55 for the ΛCDM+GR model. The value of
γ in other dark energy models with w other than −1 does not
deviate from γΛCDM significantly.

The intensity mapping observation directly measures the
21 cm brightness temperature, and the measured 21 cm power
spectrum, P∆T (k) = T̄ 2

sigPobs(k), is the power spectrum of
brightness temperature δTb due to 21 cm emission, in which
the average signal temperature T̄sig has been estimated (Barkana
& Loeb 2007; Chang et al. 2008; Seo et al. 2010) to be

T̄sig = 190
xH i(z) ΩH,0 h (1 + z)2

H (z) /H0
mK, (7)

where xH i(z) is the neutral fraction of hydrogen at redshift z
and ΩH,0 is the ratio of the hydrogen mass density to the critical
density at z = 0.

After the completion of cosmic reionization, the H i gas in
the universe was mostly distributed in galaxies hosted by halos.
Therefore, we model the H i bias factors as halo bias factors
weighted by the neutral hydrogen mass hosted by these halos
(Gong et al. 2011):

bH i
i (z) =

∫ Mmax

Mmin
dM n(M, z) MH i(M) bi(M, z)

ρH i
, (8)

for i = 1 and 2, where ρH i is the mass density of H i gas, n(M,z)
is the halo mass function for which we use Sheth & Tormen’s
formalism (Sheth & Tormen 1999), MH i(M) is the H i mass
in a halo of mass M, and b1(M, z) and b2(M, z) are halo bias
parameters. The mass density of H i clouds is given by

ρH i =
∫ Mmax

Mmin

dM n(M, z) MH i(M). (9)

Following Gong et al. (2011), we take Mmin = 108 h−1M⊙ for
halos to retain their neutral gas (Loeb & Barkana 2001), and
take Mmax = 1013 h−1M⊙ for the gas to have sufficient time to
cool and form galaxies.

As for the relation between the H i gas mass MH i and the
host halo mass M, we use the fitting result from Gong et al.

(2011), which is based on numerical simulation and consistent
with observations:

MH i(M) = A ×
(

1 +
M

c1

)b (
1 +

M

c2

)d

, (10)

for M > 1010 M⊙, and MH i(M) = X
gal
H i (Ωb/Ωm) M with

X
gal
H i = 0.15 for M ! 1010 M⊙. The best-fit parameters are

A = 2.1 × 108, c1 = 1.0 × 1011, c2 = 4.55 × 1011, b = 2.65,
and d = −2.64 for redshift z = 1. As the MH i − M relation does
not change much from z = 1 to z = 3 (Gong et al. 2011), we
use fixed values of these parameters throughout our calculation.

The halo bias factors can be obtained from the halo model
(see Cooray & Sheth 2002 for a review). The linear and the first
nonlinear bias factors of halos are (Scoccimarro et al. 2001; Mo
et al. 1997)

b1(M, z) = 1 + ϵ1 + E1, (11)

b2(M, z) = 2 (1 + a2) (ϵ1 + E1) + ϵ2 + E2, (12)
where

ϵ1 = qν − 1
δsc(z)

, ϵ2 = qν

δsc(z)

(
qν − 3
δsc(z)

)
, (13)

and

E1 = 2p/δsc(z)
1 + (qν)p

,
E2

E1
= 1 + 2p

δsc(z)
+ 2ϵ1. (14)

Here, a2 = −17/21, ν ≡ δ2
sc(z)/σ 2(M), and δsc(z) =

1.686/G(z) is the critical overdensity required for spherical
collapse at z, extrapolated to the present time using linear the-
ory. For Sheth & Tormen’s halo mass function (Sheth & Tormen
1999), p ≈ 0.3 and q = 0.707.

2.2. Generalized Noise Power Spectrum

The fundamental observable of a radio interferometer is
the visibility, which is the correlation between the outputs of
two receivers for a given baseline. For a given sky brightness
distribution I (n̂, ν), where n̂ and ν are the sky position and the
observing frequency, respectively, the corresponding visibility,
in units of flux density, can be written as the Fourier transform
of the sky brightness weighted by the beam pattern A(n̂) of the
two receivers:

Vαβ,[Jy](uαβ , ν) =
∫

d2n̂e−i2π n̂·uαβ Aα(n̂, ν)A∗
β (n̂, ν)I (n̂, ν)

≈
∫

d2n̂e−i2π n̂·u⊥Aα(n̂, ν)A∗
β (n̂, ν)I (n̂, ν),

(15)

where uαβ denotes the baseline vector in units of wavelength.
Here, in the second equality, we have used the flat-sky approxi-
mation, and u⊥ is the component of uαβ perpendicular to the line
of sight. In a large-scale survey like Tianlai, the flat-sky assump-
tion will certainly break down, and so a full-sky representation
based on the spherical harmonic expansion has been developed
(Shaw et al. 2014). Here, we use the flat-sky approximation and
Fourier expansion, as it is still sufficient for forecasting.

For radio interferometers, it is convenient to define the
equivalent visibility in units of brightness temperature, using
the Rayleigh–Jeans approximation, so that

Vαβ,[K](u⊥, ν) =
∫

d2n̂e−i2π n̂·u⊥Aα(n̂, ν)A∗
β (n̂, ν)δTb(n̂, ν).

(16)
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Thus the present density and equation of state parameters of
dark energy can be constrained by measuring the acoustic peaks
on the power spectrum.

The RSD of the power spectrum also provides information on
the growth history of the universe. The linear growth rate f (z)
affects the observed power spectrum (Equation (2)) through the
RSD factor β, by

β = f (z)/bH i
1 (z), (5)

and through the linear growth factor G(z), which is related to
f (z) by

f = d ln G(a)
d ln a

= − (1 + z)
G(z)

dG(z)
dz

. (6)

Since the growth factor G(z) is degenerate with the H i bias
factor, here we focus on the growth rate obtained from the RSD,
and will discuss the measurement error on f (z).

The redshift space power spectrum measured from 21 cm
intensity mapping could also be used as a test for gravity (Hall
et al. 2013; Masui et al. 2010), or provide extra information on
dark energy if general relativity is assumed. For dark energy
models, the growth rate can be parameterized as f (z) = Ωγ

m(z)
with γΛCDM ≈ 0.55 for the ΛCDM+GR model. The value of
γ in other dark energy models with w other than −1 does not
deviate from γΛCDM significantly.

The intensity mapping observation directly measures the
21 cm brightness temperature, and the measured 21 cm power
spectrum, P∆T (k) = T̄ 2

sigPobs(k), is the power spectrum of
brightness temperature δTb due to 21 cm emission, in which
the average signal temperature T̄sig has been estimated (Barkana
& Loeb 2007; Chang et al. 2008; Seo et al. 2010) to be

T̄sig = 190
xH i(z) ΩH,0 h (1 + z)2

H (z) /H0
mK, (7)

where xH i(z) is the neutral fraction of hydrogen at redshift z
and ΩH,0 is the ratio of the hydrogen mass density to the critical
density at z = 0.

After the completion of cosmic reionization, the H i gas in
the universe was mostly distributed in galaxies hosted by halos.
Therefore, we model the H i bias factors as halo bias factors
weighted by the neutral hydrogen mass hosted by these halos
(Gong et al. 2011):

bH i
i (z) =

∫ Mmax

Mmin
dM n(M, z) MH i(M) bi(M, z)

ρH i
, (8)

for i = 1 and 2, where ρH i is the mass density of H i gas, n(M,z)
is the halo mass function for which we use Sheth & Tormen’s
formalism (Sheth & Tormen 1999), MH i(M) is the H i mass
in a halo of mass M, and b1(M, z) and b2(M, z) are halo bias
parameters. The mass density of H i clouds is given by

ρH i =
∫ Mmax

Mmin

dM n(M, z) MH i(M). (9)

Following Gong et al. (2011), we take Mmin = 108 h−1M⊙ for
halos to retain their neutral gas (Loeb & Barkana 2001), and
take Mmax = 1013 h−1M⊙ for the gas to have sufficient time to
cool and form galaxies.

As for the relation between the H i gas mass MH i and the
host halo mass M, we use the fitting result from Gong et al.

(2011), which is based on numerical simulation and consistent
with observations:

MH i(M) = A ×
(

1 +
M

c1

)b (
1 +

M

c2

)d

, (10)

for M > 1010 M⊙, and MH i(M) = X
gal
H i (Ωb/Ωm) M with

X
gal
H i = 0.15 for M ! 1010 M⊙. The best-fit parameters are

A = 2.1 × 108, c1 = 1.0 × 1011, c2 = 4.55 × 1011, b = 2.65,
and d = −2.64 for redshift z = 1. As the MH i − M relation does
not change much from z = 1 to z = 3 (Gong et al. 2011), we
use fixed values of these parameters throughout our calculation.

The halo bias factors can be obtained from the halo model
(see Cooray & Sheth 2002 for a review). The linear and the first
nonlinear bias factors of halos are (Scoccimarro et al. 2001; Mo
et al. 1997)

b1(M, z) = 1 + ϵ1 + E1, (11)

b2(M, z) = 2 (1 + a2) (ϵ1 + E1) + ϵ2 + E2, (12)
where

ϵ1 = qν − 1
δsc(z)

, ϵ2 = qν

δsc(z)

(
qν − 3
δsc(z)

)
, (13)

and

E1 = 2p/δsc(z)
1 + (qν)p

,
E2

E1
= 1 + 2p

δsc(z)
+ 2ϵ1. (14)

Here, a2 = −17/21, ν ≡ δ2
sc(z)/σ 2(M), and δsc(z) =

1.686/G(z) is the critical overdensity required for spherical
collapse at z, extrapolated to the present time using linear the-
ory. For Sheth & Tormen’s halo mass function (Sheth & Tormen
1999), p ≈ 0.3 and q = 0.707.

2.2. Generalized Noise Power Spectrum

The fundamental observable of a radio interferometer is
the visibility, which is the correlation between the outputs of
two receivers for a given baseline. For a given sky brightness
distribution I (n̂, ν), where n̂ and ν are the sky position and the
observing frequency, respectively, the corresponding visibility,
in units of flux density, can be written as the Fourier transform
of the sky brightness weighted by the beam pattern A(n̂) of the
two receivers:

Vαβ,[Jy](uαβ , ν) =
∫

d2n̂e−i2π n̂·uαβ Aα(n̂, ν)A∗
β (n̂, ν)I (n̂, ν)

≈
∫

d2n̂e−i2π n̂·u⊥Aα(n̂, ν)A∗
β (n̂, ν)I (n̂, ν),

(15)

where uαβ denotes the baseline vector in units of wavelength.
Here, in the second equality, we have used the flat-sky approxi-
mation, and u⊥ is the component of uαβ perpendicular to the line
of sight. In a large-scale survey like Tianlai, the flat-sky assump-
tion will certainly break down, and so a full-sky representation
based on the spherical harmonic expansion has been developed
(Shaw et al. 2014). Here, we use the flat-sky approximation and
Fourier expansion, as it is still sufficient for forecasting.

For radio interferometers, it is convenient to define the
equivalent visibility in units of brightness temperature, using
the Rayleigh–Jeans approximation, so that

Vαβ,[K](u⊥, ν) =
∫

d2n̂e−i2π n̂·u⊥Aα(n̂, ν)A∗
β (n̂, ν)δTb(n̂, ν).

(16)
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Thus the present density and equation of state parameters of
dark energy can be constrained by measuring the acoustic peaks
on the power spectrum.

The RSD of the power spectrum also provides information on
the growth history of the universe. The linear growth rate f (z)
affects the observed power spectrum (Equation (2)) through the
RSD factor β, by

β = f (z)/bH i
1 (z), (5)

and through the linear growth factor G(z), which is related to
f (z) by

f = d ln G(a)
d ln a

= − (1 + z)
G(z)

dG(z)
dz

. (6)

Since the growth factor G(z) is degenerate with the H i bias
factor, here we focus on the growth rate obtained from the RSD,
and will discuss the measurement error on f (z).

The redshift space power spectrum measured from 21 cm
intensity mapping could also be used as a test for gravity (Hall
et al. 2013; Masui et al. 2010), or provide extra information on
dark energy if general relativity is assumed. For dark energy
models, the growth rate can be parameterized as f (z) = Ωγ

m(z)
with γΛCDM ≈ 0.55 for the ΛCDM+GR model. The value of
γ in other dark energy models with w other than −1 does not
deviate from γΛCDM significantly.

The intensity mapping observation directly measures the
21 cm brightness temperature, and the measured 21 cm power
spectrum, P∆T (k) = T̄ 2

sigPobs(k), is the power spectrum of
brightness temperature δTb due to 21 cm emission, in which
the average signal temperature T̄sig has been estimated (Barkana
& Loeb 2007; Chang et al. 2008; Seo et al. 2010) to be

T̄sig = 190
xH i(z) ΩH,0 h (1 + z)2

H (z) /H0
mK, (7)

where xH i(z) is the neutral fraction of hydrogen at redshift z
and ΩH,0 is the ratio of the hydrogen mass density to the critical
density at z = 0.

After the completion of cosmic reionization, the H i gas in
the universe was mostly distributed in galaxies hosted by halos.
Therefore, we model the H i bias factors as halo bias factors
weighted by the neutral hydrogen mass hosted by these halos
(Gong et al. 2011):

bH i
i (z) =

∫ Mmax

Mmin
dM n(M, z) MH i(M) bi(M, z)

ρH i
, (8)

for i = 1 and 2, where ρH i is the mass density of H i gas, n(M,z)
is the halo mass function for which we use Sheth & Tormen’s
formalism (Sheth & Tormen 1999), MH i(M) is the H i mass
in a halo of mass M, and b1(M, z) and b2(M, z) are halo bias
parameters. The mass density of H i clouds is given by

ρH i =
∫ Mmax

Mmin

dM n(M, z) MH i(M). (9)

Following Gong et al. (2011), we take Mmin = 108 h−1M⊙ for
halos to retain their neutral gas (Loeb & Barkana 2001), and
take Mmax = 1013 h−1M⊙ for the gas to have sufficient time to
cool and form galaxies.

As for the relation between the H i gas mass MH i and the
host halo mass M, we use the fitting result from Gong et al.

(2011), which is based on numerical simulation and consistent
with observations:

MH i(M) = A ×
(

1 +
M

c1

)b (
1 +

M

c2

)d

, (10)

for M > 1010 M⊙, and MH i(M) = X
gal
H i (Ωb/Ωm) M with

X
gal
H i = 0.15 for M ! 1010 M⊙. The best-fit parameters are

A = 2.1 × 108, c1 = 1.0 × 1011, c2 = 4.55 × 1011, b = 2.65,
and d = −2.64 for redshift z = 1. As the MH i − M relation does
not change much from z = 1 to z = 3 (Gong et al. 2011), we
use fixed values of these parameters throughout our calculation.

The halo bias factors can be obtained from the halo model
(see Cooray & Sheth 2002 for a review). The linear and the first
nonlinear bias factors of halos are (Scoccimarro et al. 2001; Mo
et al. 1997)

b1(M, z) = 1 + ϵ1 + E1, (11)

b2(M, z) = 2 (1 + a2) (ϵ1 + E1) + ϵ2 + E2, (12)
where

ϵ1 = qν − 1
δsc(z)

, ϵ2 = qν

δsc(z)

(
qν − 3
δsc(z)

)
, (13)

and

E1 = 2p/δsc(z)
1 + (qν)p

,
E2

E1
= 1 + 2p

δsc(z)
+ 2ϵ1. (14)

Here, a2 = −17/21, ν ≡ δ2
sc(z)/σ 2(M), and δsc(z) =

1.686/G(z) is the critical overdensity required for spherical
collapse at z, extrapolated to the present time using linear the-
ory. For Sheth & Tormen’s halo mass function (Sheth & Tormen
1999), p ≈ 0.3 and q = 0.707.

2.2. Generalized Noise Power Spectrum

The fundamental observable of a radio interferometer is
the visibility, which is the correlation between the outputs of
two receivers for a given baseline. For a given sky brightness
distribution I (n̂, ν), where n̂ and ν are the sky position and the
observing frequency, respectively, the corresponding visibility,
in units of flux density, can be written as the Fourier transform
of the sky brightness weighted by the beam pattern A(n̂) of the
two receivers:

Vαβ,[Jy](uαβ , ν) =
∫

d2n̂e−i2π n̂·uαβ Aα(n̂, ν)A∗
β (n̂, ν)I (n̂, ν)

≈
∫

d2n̂e−i2π n̂·u⊥Aα(n̂, ν)A∗
β (n̂, ν)I (n̂, ν),

(15)

where uαβ denotes the baseline vector in units of wavelength.
Here, in the second equality, we have used the flat-sky approxi-
mation, and u⊥ is the component of uαβ perpendicular to the line
of sight. In a large-scale survey like Tianlai, the flat-sky assump-
tion will certainly break down, and so a full-sky representation
based on the spherical harmonic expansion has been developed
(Shaw et al. 2014). Here, we use the flat-sky approximation and
Fourier expansion, as it is still sufficient for forecasting.

For radio interferometers, it is convenient to define the
equivalent visibility in units of brightness temperature, using
the Rayleigh–Jeans approximation, so that

Vαβ,[K](u⊥, ν) =
∫

d2n̂e−i2π n̂·u⊥Aα(n̂, ν)A∗
β (n̂, ν)δTb(n̂, ν).

(16)
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The thermal noise of the measurement can be written as

δVαβ,[K](u⊥, ν) =
λ2 Tsys

Ae

√
∆νtu

, (17)

where ∆ν is the observed full bandwidth, tu is the integration
time of this baseline, Tsys is the system temperature per polar-
ization (we assume Tsys = 50 K in this paper), and Ae is the
effective collecting area of each element. We can make a further
Fourier transform of the visibility with respect to ν, to obtain
the so-called visibility delay spectrum (Parsons et al. 2012),

Vαβ,[K·MHz](u⊥, u∥) =
∫

dνe−i2πνu∥Vαβ,[K](u⊥, ν). (18)

Now the three-dimensional vector u ≡ {u⊥, u∥} is the Fourier
conjugate of the sky position vector θ = {n̂, ν}. The thermal
noise in this representation is then (Morales 2005)

∆TN (u) =
Tsys√
∆νtu

(
λ2∆ν

Ae

)
. (19)

Here, the factor λ2∆ν/Ae represents the Fourier space resolution
of the observation, in the sense that any two vectors within it
will be highly correlated.

For the extraction of cosmological information, we are
interested in the correlation function of the visibilities measured
at the discrete baselines ui and uj . If we neglect the correlation
of thermal noise errors between measurements, then the noise
covariance matrix for visibilities is approximately diagonal, and
can be written as (McQuinn et al. 2006; Bharadwaj & Pandey
2003)

CN (ui , u j ) = ⟨"T N (ui )"T ∗
N(u j )⟩ =

(
λ2 T sys"ν

Ae

)2
δij

"ν tu
.

(20)

The integration time for the baseline u can be written as

tu = Ae

λ2
n(u⊥)tint, (21)

where n(u⊥) is the baseline number density of the interferometer
in the u−v plane, and Ae/λ

2 ≈ δu δv is the u-space resolution.
For an observation with a survey area of Ωmap larger than the
field of view ΩFOV and uniform survey coverage, the integration
time of each pointing tint = ttot(ΩFOV/Ωmap).

The sample variance contribution to the covariance matrix is
(McQuinn et al. 2006)

CSV(ui , u j ) = ⟨δTb(ui)δT ∗
b (uj )⟩

≈ δij

∫
d3u|R(ui − u)|2P∆T (u)

≈ δij

λ2∆ν2

r2
a (z)∆r(z)Ae

P∆T (ki⊥, ki∥), (22)

where P∆T is the 21 cm signal power spectrum. Here, R(ui − u)
is the response function for a given baseline ui , which is defined
as the Fourier transform of the primary beam Aα(n̂, ν)A∗

β (n̂, ν)
in Equation (15). The Kronecker δij arises due to the choice
of a pixel size that is approximately the same as the support
of function R(u). The integration of |R|2 then introduces a
factor that approximately equals the inverse of the Fourier space

resolution, λ2∆ν/Ae, due to the normalization of R(u). Here,
∆r = y(z)∆ν is the spatial resolution corresponding to the
bandwidth ∆ν. The comoving angular diameter distance ra(z)
and the factor y(z) = λ21(1 + z)2/H (z) are used to convert the
power spectrum from u space to the comoving k space:

u⊥ = ra(z)k⊥

2π
, u∥ = y(z)k∥

2π
. (23)

Given the total covariance matrix C = CN + CSV, one could
then estimate the measurement uncertainty of the bandpower
from the Fisher matrix

Fab = Tr
[

C−1 ∂C
∂ pa

C−1 ∂C
∂ pb

]
, (24)

where the parameter pa is the bandpower pa = P∆T (ka). For
diagonal C, the measurement error δP∆T is

δP∆T (ki) = 1√
Nc(ki)

Aer
2
a ∆r

λ2∆ν2

[
CN (ki , ki) + CSV(ki , ki)

]

= 1√
Nc(ki)

[
P N (ki) + P SV(ki)

]
, (25)

where the number of modes Nc(k) = k⊥dk⊥dk∥ V/(2π )2, with
V being the survey volume. Here we have denoted the signal
power spectrum in the sample variance term as the sample
variance power spectrum, i.e., P SV(ki) = P∆T (ki), and the noise
power spectrum P N (k) is

P N (k, z) =
4πfskyλ

2 T 2
sys y(z) ra(z)2

Ae ΩFOV ttot

(
λ2

Ae n(k⊥)

)
, (26)

where fsky is the fraction of the sky coverage, i.e., fsky =
Ωmap/4π , and ΩFOV is the field of view of a single pointing.

2.3. Tianlai Noise Power Spectra

We first calculate the baseline distribution function n(u⊥)
of the interferometer. In a real interferometer, for a pair of
antennae with separation u, the output is actually the average
of the visibility on a region of the u–v plane centered at u.
Instead of the discrete histogram, therefore, we incorporate the
response function of an antenna pair R(u) (Ansari et al. 2012)
and derive a continuous function n(u⊥) with the caveat that only
n(u⊥)(Ae/λ

2) is physically meaningful in this formalism. For
the Tianlai cylinder array with receivers fixed along the focal
lines of the cylinders, the pair response pattern of a cylinder can
be approximated as a two-dimensional triangular function with
rectangular support (Thompson et al. 2001; Ansari et al. 2008,
2012), which is set by the cylinder width W in the east–west
direction, ∆uW = W/λ, and the feed length L in the north–south
direction, ∆uL = L/λ:

R(u⊥) =
(

λ2

Ae

)
Λ

(
uL

∆uL

)
Λ

(
uW

∆uW

)
. (27)

Here, the triangular function Λ(x) is defined as 1 − |x| for
|x| < 1, and 0 otherwise. The baseline number density n(u⊥)
could be obtained simply by summing up R(u) for all of the
baselines, i.e.,

n(u⊥) =
nb∑

i

R(u⊥ − ui
⊥). (28)
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The thermal noise of the measurement can be written as

δVαβ,[K](u⊥, ν) =
λ2 Tsys

Ae

√
∆νtu

, (17)

where ∆ν is the observed full bandwidth, tu is the integration
time of this baseline, Tsys is the system temperature per polar-
ization (we assume Tsys = 50 K in this paper), and Ae is the
effective collecting area of each element. We can make a further
Fourier transform of the visibility with respect to ν, to obtain
the so-called visibility delay spectrum (Parsons et al. 2012),

Vαβ,[K·MHz](u⊥, u∥) =
∫

dνe−i2πνu∥Vαβ,[K](u⊥, ν). (18)

Now the three-dimensional vector u ≡ {u⊥, u∥} is the Fourier
conjugate of the sky position vector θ = {n̂, ν}. The thermal
noise in this representation is then (Morales 2005)

∆TN (u) =
Tsys√
∆νtu

(
λ2∆ν

Ae

)
. (19)

Here, the factor λ2∆ν/Ae represents the Fourier space resolution
of the observation, in the sense that any two vectors within it
will be highly correlated.

For the extraction of cosmological information, we are
interested in the correlation function of the visibilities measured
at the discrete baselines ui and uj . If we neglect the correlation
of thermal noise errors between measurements, then the noise
covariance matrix for visibilities is approximately diagonal, and
can be written as (McQuinn et al. 2006; Bharadwaj & Pandey
2003)

CN (ui , u j ) = ⟨"T N (ui )"T ∗
N(u j )⟩ =

(
λ2 T sys"ν

Ae

)2
δij

"ν tu
.

(20)

The integration time for the baseline u can be written as

tu = Ae

λ2
n(u⊥)tint, (21)

where n(u⊥) is the baseline number density of the interferometer
in the u−v plane, and Ae/λ

2 ≈ δu δv is the u-space resolution.
For an observation with a survey area of Ωmap larger than the
field of view ΩFOV and uniform survey coverage, the integration
time of each pointing tint = ttot(ΩFOV/Ωmap).

The sample variance contribution to the covariance matrix is
(McQuinn et al. 2006)

CSV(ui , u j ) = ⟨δTb(ui)δT ∗
b (uj )⟩

≈ δij

∫
d3u|R(ui − u)|2P∆T (u)

≈ δij

λ2∆ν2

r2
a (z)∆r(z)Ae

P∆T (ki⊥, ki∥), (22)

where P∆T is the 21 cm signal power spectrum. Here, R(ui − u)
is the response function for a given baseline ui , which is defined
as the Fourier transform of the primary beam Aα(n̂, ν)A∗

β (n̂, ν)
in Equation (15). The Kronecker δij arises due to the choice
of a pixel size that is approximately the same as the support
of function R(u). The integration of |R|2 then introduces a
factor that approximately equals the inverse of the Fourier space

resolution, λ2∆ν/Ae, due to the normalization of R(u). Here,
∆r = y(z)∆ν is the spatial resolution corresponding to the
bandwidth ∆ν. The comoving angular diameter distance ra(z)
and the factor y(z) = λ21(1 + z)2/H (z) are used to convert the
power spectrum from u space to the comoving k space:

u⊥ = ra(z)k⊥

2π
, u∥ = y(z)k∥

2π
. (23)

Given the total covariance matrix C = CN + CSV, one could
then estimate the measurement uncertainty of the bandpower
from the Fisher matrix

Fab = Tr
[

C−1 ∂C
∂ pa

C−1 ∂C
∂ pb

]
, (24)

where the parameter pa is the bandpower pa = P∆T (ka). For
diagonal C, the measurement error δP∆T is

δP∆T (ki) = 1√
Nc(ki)

Aer
2
a ∆r

λ2∆ν2

[
CN (ki , ki) + CSV(ki , ki)

]

= 1√
Nc(ki)

[
P N (ki) + P SV(ki)

]
, (25)

where the number of modes Nc(k) = k⊥dk⊥dk∥ V/(2π )2, with
V being the survey volume. Here we have denoted the signal
power spectrum in the sample variance term as the sample
variance power spectrum, i.e., P SV(ki) = P∆T (ki), and the noise
power spectrum P N (k) is

P N (k, z) =
4πfskyλ

2 T 2
sys y(z) ra(z)2

Ae ΩFOV ttot

(
λ2

Ae n(k⊥)

)
, (26)

where fsky is the fraction of the sky coverage, i.e., fsky =
Ωmap/4π , and ΩFOV is the field of view of a single pointing.

2.3. Tianlai Noise Power Spectra

We first calculate the baseline distribution function n(u⊥)
of the interferometer. In a real interferometer, for a pair of
antennae with separation u, the output is actually the average
of the visibility on a region of the u–v plane centered at u.
Instead of the discrete histogram, therefore, we incorporate the
response function of an antenna pair R(u) (Ansari et al. 2012)
and derive a continuous function n(u⊥) with the caveat that only
n(u⊥)(Ae/λ

2) is physically meaningful in this formalism. For
the Tianlai cylinder array with receivers fixed along the focal
lines of the cylinders, the pair response pattern of a cylinder can
be approximated as a two-dimensional triangular function with
rectangular support (Thompson et al. 2001; Ansari et al. 2008,
2012), which is set by the cylinder width W in the east–west
direction, ∆uW = W/λ, and the feed length L in the north–south
direction, ∆uL = L/λ:

R(u⊥) =
(

λ2

Ae

)
Λ

(
uL

∆uL

)
Λ

(
uW

∆uW

)
. (27)

Here, the triangular function Λ(x) is defined as 1 − |x| for
|x| < 1, and 0 otherwise. The baseline number density n(u⊥)
could be obtained simply by summing up R(u) for all of the
baselines, i.e.,

n(u⊥) =
nb∑

i

R(u⊥ − ui
⊥). (28)
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The thermal noise of the measurement can be written as

δVαβ,[K](u⊥, ν) =
λ2 Tsys

Ae

√
∆νtu

, (17)

where ∆ν is the observed full bandwidth, tu is the integration
time of this baseline, Tsys is the system temperature per polar-
ization (we assume Tsys = 50 K in this paper), and Ae is the
effective collecting area of each element. We can make a further
Fourier transform of the visibility with respect to ν, to obtain
the so-called visibility delay spectrum (Parsons et al. 2012),

Vαβ,[K·MHz](u⊥, u∥) =
∫

dνe−i2πνu∥Vαβ,[K](u⊥, ν). (18)

Now the three-dimensional vector u ≡ {u⊥, u∥} is the Fourier
conjugate of the sky position vector θ = {n̂, ν}. The thermal
noise in this representation is then (Morales 2005)

∆TN (u) =
Tsys√
∆νtu

(
λ2∆ν

Ae

)
. (19)

Here, the factor λ2∆ν/Ae represents the Fourier space resolution
of the observation, in the sense that any two vectors within it
will be highly correlated.

For the extraction of cosmological information, we are
interested in the correlation function of the visibilities measured
at the discrete baselines ui and uj . If we neglect the correlation
of thermal noise errors between measurements, then the noise
covariance matrix for visibilities is approximately diagonal, and
can be written as (McQuinn et al. 2006; Bharadwaj & Pandey
2003)

CN (ui , u j ) = ⟨"T N (ui )"T ∗
N(u j )⟩ =

(
λ2 T sys"ν

Ae

)2
δij

"ν tu
.

(20)

The integration time for the baseline u can be written as

tu = Ae

λ2
n(u⊥)tint, (21)

where n(u⊥) is the baseline number density of the interferometer
in the u−v plane, and Ae/λ

2 ≈ δu δv is the u-space resolution.
For an observation with a survey area of Ωmap larger than the
field of view ΩFOV and uniform survey coverage, the integration
time of each pointing tint = ttot(ΩFOV/Ωmap).

The sample variance contribution to the covariance matrix is
(McQuinn et al. 2006)

CSV(ui , u j ) = ⟨δTb(ui)δT ∗
b (uj )⟩

≈ δij

∫
d3u|R(ui − u)|2P∆T (u)

≈ δij

λ2∆ν2

r2
a (z)∆r(z)Ae

P∆T (ki⊥, ki∥), (22)

where P∆T is the 21 cm signal power spectrum. Here, R(ui − u)
is the response function for a given baseline ui , which is defined
as the Fourier transform of the primary beam Aα(n̂, ν)A∗

β (n̂, ν)
in Equation (15). The Kronecker δij arises due to the choice
of a pixel size that is approximately the same as the support
of function R(u). The integration of |R|2 then introduces a
factor that approximately equals the inverse of the Fourier space

resolution, λ2∆ν/Ae, due to the normalization of R(u). Here,
∆r = y(z)∆ν is the spatial resolution corresponding to the
bandwidth ∆ν. The comoving angular diameter distance ra(z)
and the factor y(z) = λ21(1 + z)2/H (z) are used to convert the
power spectrum from u space to the comoving k space:

u⊥ = ra(z)k⊥

2π
, u∥ = y(z)k∥

2π
. (23)

Given the total covariance matrix C = CN + CSV, one could
then estimate the measurement uncertainty of the bandpower
from the Fisher matrix

Fab = Tr
[

C−1 ∂C
∂ pa

C−1 ∂C
∂ pb

]
, (24)

where the parameter pa is the bandpower pa = P∆T (ka). For
diagonal C, the measurement error δP∆T is

δP∆T (ki) = 1√
Nc(ki)

Aer
2
a ∆r

λ2∆ν2

[
CN (ki , ki) + CSV(ki , ki)

]

= 1√
Nc(ki)

[
P N (ki) + P SV(ki)

]
, (25)

where the number of modes Nc(k) = k⊥dk⊥dk∥ V/(2π )2, with
V being the survey volume. Here we have denoted the signal
power spectrum in the sample variance term as the sample
variance power spectrum, i.e., P SV(ki) = P∆T (ki), and the noise
power spectrum P N (k) is

P N (k, z) =
4πfskyλ

2 T 2
sys y(z) ra(z)2

Ae ΩFOV ttot

(
λ2

Ae n(k⊥)

)
, (26)

where fsky is the fraction of the sky coverage, i.e., fsky =
Ωmap/4π , and ΩFOV is the field of view of a single pointing.

2.3. Tianlai Noise Power Spectra

We first calculate the baseline distribution function n(u⊥)
of the interferometer. In a real interferometer, for a pair of
antennae with separation u, the output is actually the average
of the visibility on a region of the u–v plane centered at u.
Instead of the discrete histogram, therefore, we incorporate the
response function of an antenna pair R(u) (Ansari et al. 2012)
and derive a continuous function n(u⊥) with the caveat that only
n(u⊥)(Ae/λ

2) is physically meaningful in this formalism. For
the Tianlai cylinder array with receivers fixed along the focal
lines of the cylinders, the pair response pattern of a cylinder can
be approximated as a two-dimensional triangular function with
rectangular support (Thompson et al. 2001; Ansari et al. 2008,
2012), which is set by the cylinder width W in the east–west
direction, ∆uW = W/λ, and the feed length L in the north–south
direction, ∆uL = L/λ:

R(u⊥) =
(

λ2

Ae

)
Λ

(
uL

∆uL

)
Λ

(
uW

∆uW

)
. (27)

Here, the triangular function Λ(x) is defined as 1 − |x| for
|x| < 1, and 0 otherwise. The baseline number density n(u⊥)
could be obtained simply by summing up R(u) for all of the
baselines, i.e.,

n(u⊥) =
nb∑

i

R(u⊥ − ui
⊥). (28)
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The thermal noise of the measurement can be written as

δVαβ,[K](u⊥, ν) =
λ2 Tsys

Ae

√
∆νtu

, (17)

where ∆ν is the observed full bandwidth, tu is the integration
time of this baseline, Tsys is the system temperature per polar-
ization (we assume Tsys = 50 K in this paper), and Ae is the
effective collecting area of each element. We can make a further
Fourier transform of the visibility with respect to ν, to obtain
the so-called visibility delay spectrum (Parsons et al. 2012),

Vαβ,[K·MHz](u⊥, u∥) =
∫

dνe−i2πνu∥Vαβ,[K](u⊥, ν). (18)

Now the three-dimensional vector u ≡ {u⊥, u∥} is the Fourier
conjugate of the sky position vector θ = {n̂, ν}. The thermal
noise in this representation is then (Morales 2005)

∆TN (u) =
Tsys√
∆νtu

(
λ2∆ν

Ae

)
. (19)

Here, the factor λ2∆ν/Ae represents the Fourier space resolution
of the observation, in the sense that any two vectors within it
will be highly correlated.

For the extraction of cosmological information, we are
interested in the correlation function of the visibilities measured
at the discrete baselines ui and uj . If we neglect the correlation
of thermal noise errors between measurements, then the noise
covariance matrix for visibilities is approximately diagonal, and
can be written as (McQuinn et al. 2006; Bharadwaj & Pandey
2003)

CN (ui , u j ) = ⟨"T N (ui )"T ∗
N(u j )⟩ =

(
λ2 T sys"ν

Ae

)2
δij

"ν tu
.

(20)

The integration time for the baseline u can be written as

tu = Ae

λ2
n(u⊥)tint, (21)

where n(u⊥) is the baseline number density of the interferometer
in the u−v plane, and Ae/λ

2 ≈ δu δv is the u-space resolution.
For an observation with a survey area of Ωmap larger than the
field of view ΩFOV and uniform survey coverage, the integration
time of each pointing tint = ttot(ΩFOV/Ωmap).

The sample variance contribution to the covariance matrix is
(McQuinn et al. 2006)

CSV(ui , u j ) = ⟨δTb(ui)δT ∗
b (uj )⟩

≈ δij

∫
d3u|R(ui − u)|2P∆T (u)

≈ δij

λ2∆ν2

r2
a (z)∆r(z)Ae

P∆T (ki⊥, ki∥), (22)

where P∆T is the 21 cm signal power spectrum. Here, R(ui − u)
is the response function for a given baseline ui , which is defined
as the Fourier transform of the primary beam Aα(n̂, ν)A∗

β (n̂, ν)
in Equation (15). The Kronecker δij arises due to the choice
of a pixel size that is approximately the same as the support
of function R(u). The integration of |R|2 then introduces a
factor that approximately equals the inverse of the Fourier space

resolution, λ2∆ν/Ae, due to the normalization of R(u). Here,
∆r = y(z)∆ν is the spatial resolution corresponding to the
bandwidth ∆ν. The comoving angular diameter distance ra(z)
and the factor y(z) = λ21(1 + z)2/H (z) are used to convert the
power spectrum from u space to the comoving k space:

u⊥ = ra(z)k⊥

2π
, u∥ = y(z)k∥

2π
. (23)

Given the total covariance matrix C = CN + CSV, one could
then estimate the measurement uncertainty of the bandpower
from the Fisher matrix

Fab = Tr
[

C−1 ∂C
∂ pa

C−1 ∂C
∂ pb

]
, (24)

where the parameter pa is the bandpower pa = P∆T (ka). For
diagonal C, the measurement error δP∆T is

δP∆T (ki) = 1√
Nc(ki)

Aer
2
a ∆r

λ2∆ν2

[
CN (ki , ki) + CSV(ki , ki)

]

= 1√
Nc(ki)

[
P N (ki) + P SV(ki)

]
, (25)

where the number of modes Nc(k) = k⊥dk⊥dk∥ V/(2π )2, with
V being the survey volume. Here we have denoted the signal
power spectrum in the sample variance term as the sample
variance power spectrum, i.e., P SV(ki) = P∆T (ki), and the noise
power spectrum P N (k) is

P N (k, z) =
4πfskyλ

2 T 2
sys y(z) ra(z)2

Ae ΩFOV ttot

(
λ2

Ae n(k⊥)

)
, (26)

where fsky is the fraction of the sky coverage, i.e., fsky =
Ωmap/4π , and ΩFOV is the field of view of a single pointing.

2.3. Tianlai Noise Power Spectra

We first calculate the baseline distribution function n(u⊥)
of the interferometer. In a real interferometer, for a pair of
antennae with separation u, the output is actually the average
of the visibility on a region of the u–v plane centered at u.
Instead of the discrete histogram, therefore, we incorporate the
response function of an antenna pair R(u) (Ansari et al. 2012)
and derive a continuous function n(u⊥) with the caveat that only
n(u⊥)(Ae/λ

2) is physically meaningful in this formalism. For
the Tianlai cylinder array with receivers fixed along the focal
lines of the cylinders, the pair response pattern of a cylinder can
be approximated as a two-dimensional triangular function with
rectangular support (Thompson et al. 2001; Ansari et al. 2008,
2012), which is set by the cylinder width W in the east–west
direction, ∆uW = W/λ, and the feed length L in the north–south
direction, ∆uL = L/λ:

R(u⊥) =
(

λ2

Ae

)
Λ

(
uL

∆uL

)
Λ

(
uW

∆uW

)
. (27)

Here, the triangular function Λ(x) is defined as 1 − |x| for
|x| < 1, and 0 otherwise. The baseline number density n(u⊥)
could be obtained simply by summing up R(u) for all of the
baselines, i.e.,

n(u⊥) =
nb∑

i

R(u⊥ − ui
⊥). (28)
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The thermal noise of the measurement can be written as

δVαβ,[K](u⊥, ν) =
λ2 Tsys

Ae

√
∆νtu

, (17)

where ∆ν is the observed full bandwidth, tu is the integration
time of this baseline, Tsys is the system temperature per polar-
ization (we assume Tsys = 50 K in this paper), and Ae is the
effective collecting area of each element. We can make a further
Fourier transform of the visibility with respect to ν, to obtain
the so-called visibility delay spectrum (Parsons et al. 2012),

Vαβ,[K·MHz](u⊥, u∥) =
∫

dνe−i2πνu∥Vαβ,[K](u⊥, ν). (18)

Now the three-dimensional vector u ≡ {u⊥, u∥} is the Fourier
conjugate of the sky position vector θ = {n̂, ν}. The thermal
noise in this representation is then (Morales 2005)

∆TN (u) =
Tsys√
∆νtu

(
λ2∆ν

Ae

)
. (19)

Here, the factor λ2∆ν/Ae represents the Fourier space resolution
of the observation, in the sense that any two vectors within it
will be highly correlated.

For the extraction of cosmological information, we are
interested in the correlation function of the visibilities measured
at the discrete baselines ui and uj . If we neglect the correlation
of thermal noise errors between measurements, then the noise
covariance matrix for visibilities is approximately diagonal, and
can be written as (McQuinn et al. 2006; Bharadwaj & Pandey
2003)

CN (ui , u j ) = ⟨"T N (ui )"T ∗
N(u j )⟩ =

(
λ2 T sys"ν

Ae

)2
δij

"ν tu
.

(20)

The integration time for the baseline u can be written as

tu = Ae

λ2
n(u⊥)tint, (21)

where n(u⊥) is the baseline number density of the interferometer
in the u−v plane, and Ae/λ

2 ≈ δu δv is the u-space resolution.
For an observation with a survey area of Ωmap larger than the
field of view ΩFOV and uniform survey coverage, the integration
time of each pointing tint = ttot(ΩFOV/Ωmap).

The sample variance contribution to the covariance matrix is
(McQuinn et al. 2006)

CSV(ui , u j ) = ⟨δTb(ui)δT ∗
b (uj )⟩

≈ δij

∫
d3u|R(ui − u)|2P∆T (u)

≈ δij

λ2∆ν2

r2
a (z)∆r(z)Ae

P∆T (ki⊥, ki∥), (22)

where P∆T is the 21 cm signal power spectrum. Here, R(ui − u)
is the response function for a given baseline ui , which is defined
as the Fourier transform of the primary beam Aα(n̂, ν)A∗

β (n̂, ν)
in Equation (15). The Kronecker δij arises due to the choice
of a pixel size that is approximately the same as the support
of function R(u). The integration of |R|2 then introduces a
factor that approximately equals the inverse of the Fourier space

resolution, λ2∆ν/Ae, due to the normalization of R(u). Here,
∆r = y(z)∆ν is the spatial resolution corresponding to the
bandwidth ∆ν. The comoving angular diameter distance ra(z)
and the factor y(z) = λ21(1 + z)2/H (z) are used to convert the
power spectrum from u space to the comoving k space:

u⊥ = ra(z)k⊥

2π
, u∥ = y(z)k∥

2π
. (23)

Given the total covariance matrix C = CN + CSV, one could
then estimate the measurement uncertainty of the bandpower
from the Fisher matrix

Fab = Tr
[

C−1 ∂C
∂ pa

C−1 ∂C
∂ pb

]
, (24)

where the parameter pa is the bandpower pa = P∆T (ka). For
diagonal C, the measurement error δP∆T is

δP∆T (ki) = 1√
Nc(ki)

Aer
2
a ∆r

λ2∆ν2

[
CN (ki , ki) + CSV(ki , ki)

]

= 1√
Nc(ki)

[
P N (ki) + P SV(ki)

]
, (25)

where the number of modes Nc(k) = k⊥dk⊥dk∥ V/(2π )2, with
V being the survey volume. Here we have denoted the signal
power spectrum in the sample variance term as the sample
variance power spectrum, i.e., P SV(ki) = P∆T (ki), and the noise
power spectrum P N (k) is

P N (k, z) =
4πfskyλ

2 T 2
sys y(z) ra(z)2

Ae ΩFOV ttot

(
λ2

Ae n(k⊥)

)
, (26)

where fsky is the fraction of the sky coverage, i.e., fsky =
Ωmap/4π , and ΩFOV is the field of view of a single pointing.

2.3. Tianlai Noise Power Spectra

We first calculate the baseline distribution function n(u⊥)
of the interferometer. In a real interferometer, for a pair of
antennae with separation u, the output is actually the average
of the visibility on a region of the u–v plane centered at u.
Instead of the discrete histogram, therefore, we incorporate the
response function of an antenna pair R(u) (Ansari et al. 2012)
and derive a continuous function n(u⊥) with the caveat that only
n(u⊥)(Ae/λ

2) is physically meaningful in this formalism. For
the Tianlai cylinder array with receivers fixed along the focal
lines of the cylinders, the pair response pattern of a cylinder can
be approximated as a two-dimensional triangular function with
rectangular support (Thompson et al. 2001; Ansari et al. 2008,
2012), which is set by the cylinder width W in the east–west
direction, ∆uW = W/λ, and the feed length L in the north–south
direction, ∆uL = L/λ:

R(u⊥) =
(

λ2

Ae

)
Λ

(
uL

∆uL

)
Λ

(
uW

∆uW

)
. (27)

Here, the triangular function Λ(x) is defined as 1 − |x| for
|x| < 1, and 0 otherwise. The baseline number density n(u⊥)
could be obtained simply by summing up R(u) for all of the
baselines, i.e.,

n(u⊥) =
nb∑

i

R(u⊥ − ui
⊥). (28)
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The thermal noise of the measurement can be written as

δVαβ,[K](u⊥, ν) =
λ2 Tsys

Ae

√
∆νtu

, (17)

where ∆ν is the observed full bandwidth, tu is the integration
time of this baseline, Tsys is the system temperature per polar-
ization (we assume Tsys = 50 K in this paper), and Ae is the
effective collecting area of each element. We can make a further
Fourier transform of the visibility with respect to ν, to obtain
the so-called visibility delay spectrum (Parsons et al. 2012),

Vαβ,[K·MHz](u⊥, u∥) =
∫

dνe−i2πνu∥Vαβ,[K](u⊥, ν). (18)

Now the three-dimensional vector u ≡ {u⊥, u∥} is the Fourier
conjugate of the sky position vector θ = {n̂, ν}. The thermal
noise in this representation is then (Morales 2005)

∆TN (u) =
Tsys√
∆νtu

(
λ2∆ν

Ae

)
. (19)

Here, the factor λ2∆ν/Ae represents the Fourier space resolution
of the observation, in the sense that any two vectors within it
will be highly correlated.

For the extraction of cosmological information, we are
interested in the correlation function of the visibilities measured
at the discrete baselines ui and uj . If we neglect the correlation
of thermal noise errors between measurements, then the noise
covariance matrix for visibilities is approximately diagonal, and
can be written as (McQuinn et al. 2006; Bharadwaj & Pandey
2003)

CN (ui , u j ) = ⟨"T N (ui )"T ∗
N(u j )⟩ =

(
λ2 T sys"ν

Ae

)2
δij

"ν tu
.

(20)

The integration time for the baseline u can be written as

tu = Ae

λ2
n(u⊥)tint, (21)

where n(u⊥) is the baseline number density of the interferometer
in the u−v plane, and Ae/λ

2 ≈ δu δv is the u-space resolution.
For an observation with a survey area of Ωmap larger than the
field of view ΩFOV and uniform survey coverage, the integration
time of each pointing tint = ttot(ΩFOV/Ωmap).

The sample variance contribution to the covariance matrix is
(McQuinn et al. 2006)

CSV(ui , u j ) = ⟨δTb(ui)δT ∗
b (uj )⟩

≈ δij

∫
d3u|R(ui − u)|2P∆T (u)

≈ δij

λ2∆ν2

r2
a (z)∆r(z)Ae

P∆T (ki⊥, ki∥), (22)

where P∆T is the 21 cm signal power spectrum. Here, R(ui − u)
is the response function for a given baseline ui , which is defined
as the Fourier transform of the primary beam Aα(n̂, ν)A∗

β (n̂, ν)
in Equation (15). The Kronecker δij arises due to the choice
of a pixel size that is approximately the same as the support
of function R(u). The integration of |R|2 then introduces a
factor that approximately equals the inverse of the Fourier space

resolution, λ2∆ν/Ae, due to the normalization of R(u). Here,
∆r = y(z)∆ν is the spatial resolution corresponding to the
bandwidth ∆ν. The comoving angular diameter distance ra(z)
and the factor y(z) = λ21(1 + z)2/H (z) are used to convert the
power spectrum from u space to the comoving k space:

u⊥ = ra(z)k⊥

2π
, u∥ = y(z)k∥

2π
. (23)

Given the total covariance matrix C = CN + CSV, one could
then estimate the measurement uncertainty of the bandpower
from the Fisher matrix

Fab = Tr
[

C−1 ∂C
∂ pa

C−1 ∂C
∂ pb

]
, (24)

where the parameter pa is the bandpower pa = P∆T (ka). For
diagonal C, the measurement error δP∆T is

δP∆T (ki) = 1√
Nc(ki)

Aer
2
a ∆r

λ2∆ν2

[
CN (ki , ki) + CSV(ki , ki)

]

= 1√
Nc(ki)

[
P N (ki) + P SV(ki)

]
, (25)

where the number of modes Nc(k) = k⊥dk⊥dk∥ V/(2π )2, with
V being the survey volume. Here we have denoted the signal
power spectrum in the sample variance term as the sample
variance power spectrum, i.e., P SV(ki) = P∆T (ki), and the noise
power spectrum P N (k) is

P N (k, z) =
4πfskyλ

2 T 2
sys y(z) ra(z)2

Ae ΩFOV ttot

(
λ2

Ae n(k⊥)

)
, (26)

where fsky is the fraction of the sky coverage, i.e., fsky =
Ωmap/4π , and ΩFOV is the field of view of a single pointing.

2.3. Tianlai Noise Power Spectra

We first calculate the baseline distribution function n(u⊥)
of the interferometer. In a real interferometer, for a pair of
antennae with separation u, the output is actually the average
of the visibility on a region of the u–v plane centered at u.
Instead of the discrete histogram, therefore, we incorporate the
response function of an antenna pair R(u) (Ansari et al. 2012)
and derive a continuous function n(u⊥) with the caveat that only
n(u⊥)(Ae/λ

2) is physically meaningful in this formalism. For
the Tianlai cylinder array with receivers fixed along the focal
lines of the cylinders, the pair response pattern of a cylinder can
be approximated as a two-dimensional triangular function with
rectangular support (Thompson et al. 2001; Ansari et al. 2008,
2012), which is set by the cylinder width W in the east–west
direction, ∆uW = W/λ, and the feed length L in the north–south
direction, ∆uL = L/λ:

R(u⊥) =
(

λ2

Ae

)
Λ

(
uL

∆uL

)
Λ

(
uW

∆uW

)
. (27)

Here, the triangular function Λ(x) is defined as 1 − |x| for
|x| < 1, and 0 otherwise. The baseline number density n(u⊥)
could be obtained simply by summing up R(u) for all of the
baselines, i.e.,

n(u⊥) =
nb∑

i

R(u⊥ − ui
⊥). (28)
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Figure 1. Left: one-dimensional baseline distribution n(r) of various Tianlai configurations, calculated from Equation (28). Here the x axis r is the physical distance in
the interferometer frame; we also display the corresponding cosmological scale it probes at a frequency of ν = 750 MHz on the upper abscissa. Right: the measurement
error contributed from thermal noise, ∆P N (k) = P N (k)/

√
Nc(k) (solid lines), and that from sample variance, ∆P SV(k) = P SV(k)/

√
Nc(k) (dashed lines). The case

for Tianlai pathfinder+ is shown as the magenta lines, while the cases for full-scale Tianlai at various frequencies are shown as other colors. The 21 cm signal power
spectra, P∆T (k), at corresponding redshifts are shown by dotted lines with corresponding colors, assuming a constant H i fraction xH i = 0.008 at all redshifts. Here
we adopt a wavenumber bin width of ∆k = 0.005 h Mpc−1 and ∆z = 0.2.

The baseline number density n(u⊥) is normalized so that
the half-plane integral would give a total baseline number of
nb = nr (nr − 1)/2, where nr is the total number of receivers.

In the left panel of Figure 1, we plot the baseline distribution
n(r) of the different configurations of Tianlai. Besides the
baseline distance r in the interferometer frame, we also show on
the upper abscissa the cosmological scales that the array could
probe at a frequency of ν = 750 MHz. Given the same cylinder
dimension for pathfinder and its upgrade, the baseline densities
of these two configurations drop at similar scales, around 20 m.
However, the larger feed numbers of the pathfinder+ would
increase the number of baselines available at a given scale. For
the full-scale Tianlai, both the numbers of shorter and longer
baselines are increased, and therefore the sensitivity will be
significantly improved.

In the right panel of Figure 1, we plot the measurement
error on the power spectrum due to thermal noise ∆P N (k) =
P N (k)/

√
Nc(k) (solid lines) and sample variance ∆P SV(k) =

P SV(k)/
√

Nc(k) (dashed lines). While only the errors at the
medium frequency of f = 750 MHz are shown (the magenta
set of lines) for the pathfinder+, we display four different
frequencies from 500 MHz to 1100 MHz (from top to bottom
for the thermal noise, and from bottom to top for the sample
variance) for the full-scale survey. For the sample variance
power spectra, we adopt the conservative assumption that
xH i = 0.008 at all redshifts. For comparison, we also plot
the 21 cm signal power spectra, P∆T (k), at the corresponding
redshifts with the dotted lines.

From the figure, we can see that for Tianlai pathfinder+, the
thermal noise will dominate over the sample variance at all
scales. This is also true for the high-redshift observation of
the full-scale Tianlai, but the thermal noise gradually decreases
toward lower redshift. At z ∼ 1 (Full 700 MHz), the two
contributions are comparable at the BAO scale.

2.4. The Power Spectrum with Expected Tianlai Errors

As discussed in Section 2.2, the measurement error of the
power spectrum is a sum of the sampling error and thermal noise.
Since the measured 21 cm power spectrum is proportional to the
H i power spectrum by a factor of T̄ 2

sig, we use the measurement
error on the H i power spectrum for the Fisher forecasts in the
following sections:

∆Pobs(k) = 1√
Nc

[Pobs(k) + N (k)] , (29)

where N (k) is related to the thermal noise power by P N =
T̄ 2

sig N (k), and Nc is the number of independent modes in that
pixel in Fourier space, as discussed in Section 2.2.

The instantaneous field of view of a cylindrical radio telescope
is narrow in right ascension but very broad in declination,
limitted primarily by the illumination angle of the feeds. The
rotation of the Earth results in a broad coverage in right
ascension. The illumination angle of the feeds of Tianlai is
about 120◦. Assuming a latitude of θlat = 44◦, the Tianlai array
covers the declination angle from −16◦ to 90◦. Considering the
masking effects in order to avoid the disk area of the Milky Way
and bright radio sources, we conservatively assume a survey
area of 10,000 deg2 throughout.

The left panel of Figure 2 shows the power spectrum at z = 1
with measurement errors expected from the Tianlai pathfinder
(shaded area) and the pathfinder+ (error bars), while the right
panel shows the relative power spectrum with respect to the
smooth power spectrum with errors expected from the Tianlai
pathfinder+ (shaded area) and the full-scale Tianlai (error bars),
respectively. The integration time is assumed to be one year.
Note that the error bar for P (k) depends on the binning of k.
Here, we have chosen a bin width of ∆k = 0.005 h Mpc−1. If
a different bin width is chosen, then the error bar on power
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Figure 1. Left: one-dimensional baseline distribution n(r) of various Tianlai configurations, calculated from Equation (28). Here the x axis r is the physical distance in
the interferometer frame; we also display the corresponding cosmological scale it probes at a frequency of ν = 750 MHz on the upper abscissa. Right: the measurement
error contributed from thermal noise, ∆P N (k) = P N (k)/

√
Nc(k) (solid lines), and that from sample variance, ∆P SV(k) = P SV(k)/

√
Nc(k) (dashed lines). The case

for Tianlai pathfinder+ is shown as the magenta lines, while the cases for full-scale Tianlai at various frequencies are shown as other colors. The 21 cm signal power
spectra, P∆T (k), at corresponding redshifts are shown by dotted lines with corresponding colors, assuming a constant H i fraction xH i = 0.008 at all redshifts. Here
we adopt a wavenumber bin width of ∆k = 0.005 h Mpc−1 and ∆z = 0.2.

The baseline number density n(u⊥) is normalized so that
the half-plane integral would give a total baseline number of
nb = nr (nr − 1)/2, where nr is the total number of receivers.

In the left panel of Figure 1, we plot the baseline distribution
n(r) of the different configurations of Tianlai. Besides the
baseline distance r in the interferometer frame, we also show on
the upper abscissa the cosmological scales that the array could
probe at a frequency of ν = 750 MHz. Given the same cylinder
dimension for pathfinder and its upgrade, the baseline densities
of these two configurations drop at similar scales, around 20 m.
However, the larger feed numbers of the pathfinder+ would
increase the number of baselines available at a given scale. For
the full-scale Tianlai, both the numbers of shorter and longer
baselines are increased, and therefore the sensitivity will be
significantly improved.

In the right panel of Figure 1, we plot the measurement
error on the power spectrum due to thermal noise ∆P N (k) =
P N (k)/

√
Nc(k) (solid lines) and sample variance ∆P SV(k) =

P SV(k)/
√

Nc(k) (dashed lines). While only the errors at the
medium frequency of f = 750 MHz are shown (the magenta
set of lines) for the pathfinder+, we display four different
frequencies from 500 MHz to 1100 MHz (from top to bottom
for the thermal noise, and from bottom to top for the sample
variance) for the full-scale survey. For the sample variance
power spectra, we adopt the conservative assumption that
xH i = 0.008 at all redshifts. For comparison, we also plot
the 21 cm signal power spectra, P∆T (k), at the corresponding
redshifts with the dotted lines.

From the figure, we can see that for Tianlai pathfinder+, the
thermal noise will dominate over the sample variance at all
scales. This is also true for the high-redshift observation of
the full-scale Tianlai, but the thermal noise gradually decreases
toward lower redshift. At z ∼ 1 (Full 700 MHz), the two
contributions are comparable at the BAO scale.

2.4. The Power Spectrum with Expected Tianlai Errors

As discussed in Section 2.2, the measurement error of the
power spectrum is a sum of the sampling error and thermal noise.
Since the measured 21 cm power spectrum is proportional to the
H i power spectrum by a factor of T̄ 2

sig, we use the measurement
error on the H i power spectrum for the Fisher forecasts in the
following sections:

∆Pobs(k) = 1√
Nc

[Pobs(k) + N (k)] , (29)

where N (k) is related to the thermal noise power by P N =
T̄ 2

sig N (k), and Nc is the number of independent modes in that
pixel in Fourier space, as discussed in Section 2.2.

The instantaneous field of view of a cylindrical radio telescope
is narrow in right ascension but very broad in declination,
limitted primarily by the illumination angle of the feeds. The
rotation of the Earth results in a broad coverage in right
ascension. The illumination angle of the feeds of Tianlai is
about 120◦. Assuming a latitude of θlat = 44◦, the Tianlai array
covers the declination angle from −16◦ to 90◦. Considering the
masking effects in order to avoid the disk area of the Milky Way
and bright radio sources, we conservatively assume a survey
area of 10,000 deg2 throughout.

The left panel of Figure 2 shows the power spectrum at z = 1
with measurement errors expected from the Tianlai pathfinder
(shaded area) and the pathfinder+ (error bars), while the right
panel shows the relative power spectrum with respect to the
smooth power spectrum with errors expected from the Tianlai
pathfinder+ (shaded area) and the full-scale Tianlai (error bars),
respectively. The integration time is assumed to be one year.
Note that the error bar for P (k) depends on the binning of k.
Here, we have chosen a bin width of ∆k = 0.005 h Mpc−1. If
a different bin width is chosen, then the error bar on power
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Figure 2. Left panel: the measurement errors on the power spectrum at z = 1 for the Tianlai pathfinder (shaded area) and the pathfinder+ (error bars). Right panel:
the relative one with respect to the smooth power spectrum with errors expected from the Tianlai pathfinder+ (shaded area) and the full-scale Tianlai (error bars). The
assumed survey area is 10,000 deg2, and the integration time is one year. The wavenumber bin width for this plot is ∆k = 0.005 h Mpc−1.

spectrum can be obtained by scaling, but the constraints on our
interested parameters are insensitive to the choice of binning.

3. FISHER FORECAST ON THE CONSTRAINT
ON DARK ENERGY

From the power spectrum measurement at a given redshift,
the Fisher information matrix can be written as (Tegmark 1997;
Seo & Eisenstein 2003; Mao et al. 2008)

Fαβ =
∑

k

[
∂Pobs(k)

∂α

∂Pobs(k)
∂β

] /
[∆Pobs(k)]2 . (30)

Here, the free parameters α and β are taken from
{DA(zi),H (zi), bH i

1,i , f (zi), and Pshot,i} for each redshift bin zi .
The nuisance parameters in the model {bH i

1,i , Pshot,i} can be
marginalized by selecting the submatrix of F−1

αβ with only the
appropriate columns and rows. We can then derive the mea-
surement errors on the expansion and structure growth history
parameters.

For the Tianlai pathfinder and pathfinder+ experiment, the
observation frequency range is 700–800 MHz, and we divide
this frequency band into three bins with equal bandwidth and
obtain estimates of measurement errors for the corresponding
redshift bins. For the planned full-scale Tianlai experiment, the
frequency range of 400–1420 MHz is equally divided into eight
bins; the bin size in this latter case is larger than in the pathfinder
case, but the bin size ∆z does not really matter in the end.

We plot the measurement errors on the angular diameter
distance DA(zi), the Hubble expansion rate H (zi), and the
growth rate f (zi) in the left, central, and right panels of Figure 3,
respectively, for the pathfinder+ (blue error bars) and the full-
scale Tianlai experiments (red error bars). The integration time
is assumed to be one year in all cases. We see that the pathfinder+
experiment can obtain a useful measurement on DA(z) and H (z)
at z = 1. For the growth rate f, the errors are larger, but we
could still obtain a useful check against certain modified gravity

models. The full-scale experiment can offer good precision
throughout the interested parameter ranges.

From the cosmographic measurements DA(z),H (z), f (z),
one can constrain the cosmological model parameters. In this
paper, we consider a redshift-dependent equation of state for the
dark energy parameterized in the form of (Chevallier & Polarski
2001)

w(z) = w0 + wa[1 − a(z)] = w0 + wa

z

1 + z
. (31)

The Fisher matrix of the dark energy parameters w0 and wa

is obtained by converting from the parameter space {pα} =
{DA,i,Hi, fi} to the dark energy parameter space {qm} =
{w0, wa, ΩX}, using

FDE
mn =

∑

α,β

∂pα

∂qm

Fdis
αβ

∂pβ

∂qn

. (32)

To help break the parameter degeneracy between parameters,
we combine the BAO data from the Tianlai intensity mapping
observation with the data obtained from CMB observations. The
total Fisher matrix is given by (Wang et al. 2009)

F tot
αβ = F CMB

αβ +
∑

i

F IM
αβ (zi), (33)

where F IM
αβ (zi) is the Fisher matrix derived from the ith redshift

bin of the LSS intensity mapping and F CMB
αβ is the CMB Fisher

matrix.
The 1σ and 2σ measurement error contours for the variable

dark energy equation of state parameters w0 and wa are shown
in Figure 4 for the full-scale Tianlai experiment. Here, we have
assumed that the frequency range probed is 400–1420 MHz, the
usable survey area is 10,000 deg2, and the integration time is
one year. The measurement error is obtained based on a joint
constraint with the CMB data, but no other observational data.
We expect σw0 ≈ 0.0815 and σwa

≈ 0.210. This is comparable
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The whole point of the Fisher matrix formalism is to predict how well the experiment

will be able to constrain the model parameters, before doing the experiment and in fact

without even simulating the experiment in any detail. We can then forecast the results of

di�erent experiments3 and look at tradeo�s such as precision versus cost. In other words,

we can engage in experimental design.

This example is so simple that we can use our intuition to predict what the Fisher matrix

will predict. When we get the data, we will probably infer the pair-production rate from

the number of observed buns, and infer the hot-dog-only rate by subtracting the number of

observed buns from the number of observed hot dogs. If our experiment happens to count

too many4 buns, it would not only boost our estimate of the pair production rate, but would

also depress our estimate of the hot-dog-only rate. So there is a covariance between our

estimates of the two parameters. We can also see that the variance in our estimate of the

pair-production rate will be equal to (apart from some scaling factors like the total volume

surveyed) the variance in bun counts, but the variance in our estimate of the hot-dog-only

rate will be equal to (again neglecting the same scaling factors) the sum of the variances of

the bun and hot dog counts (because of simple propagation of errors).

The beauty of the Fisher matrix approach is that there is a simple prescription for setting

up the Fisher matrix knowing only your model and your measurement uncertainties; and that

under certain standard assumptions, the Fisher matrix is the inverse of the covariance matrix.

So all you have to do is set up the Fisher matrix and then invert it to obtain the covariance

matrix (that is, the uncertainties on your model parameters). You do not even have to decide

how you would analyze the data! Of course, you could in fact analyze the data in a stupid

way and end up with more uncertainty in your model parameters; the inverse of the Fisher

matrix is the best you can possibly do given the information content of your experiment.

Be aware that there are many factors (apart from stupidity) that could prevent you from

reaching this limit!

Here’s the prescription for the elements of the Fisher matrix F . For N model parameters

p
1

, p
2

, ...pN , F is an N ⇥ N symmetric matrix. Each element involves a sum over the

observables. Let there be B observables f
1

, f
2

...fB, each one related to the model parameters

by some equation fb = fb(p1, p2...pN). Then the elements of the Fisher matrix are

Fij =
X

b

1

⇤2

b

⌅fb
⌅pi

⌅fb
⌅pj

3In this simplified example, di�erent experiments could only mean larger or smaller surveys, which would
change the size of the measurement errors. But we will soon come to a more interesting example.

4Explain what this really means.
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其中 L ≡ − L。
有三个重要的定理使得 矩阵非常有用：

对任何一个无偏估计，∆pi ≥ 1/( ii)1/2。（这个不等式叫做 不等式。）

如果存在一个最佳无偏估计，那么它一定是最大似然估计或者它的函数。

在大数据量的极限下，最大似然估计是渐进的最佳无偏估计。

第二、三条定理保证了最大似然估计是 不等式取等号时的最佳估计。如果有其他
参数同时由同一组数据作出估计，那么最小的标准方差变大为

∆pi ≥
(

−1
)1/2
ii

.

很多情况下我们可以假设几率分布是高斯分布，即

2L = + ( − µ) −1( − µ)t ,

其中 µ 是 的平均值， 是协方差矩阵

=
〈
( − µ)t( − µ)

〉
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information matrix: (Tegmark 1997; Seo & Eisenstein 2003; Mao et al. 2008)  
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Figure 2. Left panel: the measurement errors on the power spectrum at z = 1 for the Tianlai pathfinder (shaded area) and the pathfinder+ (error bars). Right panel:
the relative one with respect to the smooth power spectrum with errors expected from the Tianlai pathfinder+ (shaded area) and the full-scale Tianlai (error bars). The
assumed survey area is 10,000 deg2, and the integration time is one year. The wavenumber bin width for this plot is ∆k = 0.005 h Mpc−1.

spectrum can be obtained by scaling, but the constraints on our
interested parameters are insensitive to the choice of binning.

3. FISHER FORECAST ON THE CONSTRAINT
ON DARK ENERGY

From the power spectrum measurement at a given redshift,
the Fisher information matrix can be written as (Tegmark 1997;
Seo & Eisenstein 2003; Mao et al. 2008)

Fαβ =
∑

k

[
∂Pobs(k)

∂α

∂Pobs(k)
∂β

] /
[∆Pobs(k)]2 . (30)

Here, the free parameters α and β are taken from
{DA(zi),H (zi), bH i

1,i , f (zi), and Pshot,i} for each redshift bin zi .
The nuisance parameters in the model {bH i

1,i , Pshot,i} can be
marginalized by selecting the submatrix of F−1

αβ with only the
appropriate columns and rows. We can then derive the mea-
surement errors on the expansion and structure growth history
parameters.

For the Tianlai pathfinder and pathfinder+ experiment, the
observation frequency range is 700–800 MHz, and we divide
this frequency band into three bins with equal bandwidth and
obtain estimates of measurement errors for the corresponding
redshift bins. For the planned full-scale Tianlai experiment, the
frequency range of 400–1420 MHz is equally divided into eight
bins; the bin size in this latter case is larger than in the pathfinder
case, but the bin size ∆z does not really matter in the end.

We plot the measurement errors on the angular diameter
distance DA(zi), the Hubble expansion rate H (zi), and the
growth rate f (zi) in the left, central, and right panels of Figure 3,
respectively, for the pathfinder+ (blue error bars) and the full-
scale Tianlai experiments (red error bars). The integration time
is assumed to be one year in all cases. We see that the pathfinder+
experiment can obtain a useful measurement on DA(z) and H (z)
at z = 1. For the growth rate f, the errors are larger, but we
could still obtain a useful check against certain modified gravity

models. The full-scale experiment can offer good precision
throughout the interested parameter ranges.

From the cosmographic measurements DA(z),H (z), f (z),
one can constrain the cosmological model parameters. In this
paper, we consider a redshift-dependent equation of state for the
dark energy parameterized in the form of (Chevallier & Polarski
2001)

w(z) = w0 + wa[1 − a(z)] = w0 + wa

z

1 + z
. (31)

The Fisher matrix of the dark energy parameters w0 and wa

is obtained by converting from the parameter space {pα} =
{DA,i,Hi, fi} to the dark energy parameter space {qm} =
{w0, wa, ΩX}, using

FDE
mn =

∑

α,β

∂pα

∂qm

Fdis
αβ

∂pβ

∂qn

. (32)

To help break the parameter degeneracy between parameters,
we combine the BAO data from the Tianlai intensity mapping
observation with the data obtained from CMB observations. The
total Fisher matrix is given by (Wang et al. 2009)

F tot
αβ = F CMB

αβ +
∑

i

F IM
αβ (zi), (33)

where F IM
αβ (zi) is the Fisher matrix derived from the ith redshift

bin of the LSS intensity mapping and F CMB
αβ is the CMB Fisher

matrix.
The 1σ and 2σ measurement error contours for the variable

dark energy equation of state parameters w0 and wa are shown
in Figure 4 for the full-scale Tianlai experiment. Here, we have
assumed that the frequency range probed is 400–1420 MHz, the
usable survey area is 10,000 deg2, and the integration time is
one year. The measurement error is obtained based on a joint
constraint with the CMB data, but no other observational data.
We expect σw0 ≈ 0.0815 and σwa

≈ 0.210. This is comparable
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Figure 2. Left panel: the measurement errors on the power spectrum at z = 1 for the Tianlai pathfinder (shaded area) and the pathfinder+ (error bars). Right panel:
the relative one with respect to the smooth power spectrum with errors expected from the Tianlai pathfinder+ (shaded area) and the full-scale Tianlai (error bars). The
assumed survey area is 10,000 deg2, and the integration time is one year. The wavenumber bin width for this plot is ∆k = 0.005 h Mpc−1.

spectrum can be obtained by scaling, but the constraints on our
interested parameters are insensitive to the choice of binning.

3. FISHER FORECAST ON THE CONSTRAINT
ON DARK ENERGY

From the power spectrum measurement at a given redshift,
the Fisher information matrix can be written as (Tegmark 1997;
Seo & Eisenstein 2003; Mao et al. 2008)

Fαβ =
∑

k

[
∂Pobs(k)

∂α

∂Pobs(k)
∂β

] /
[∆Pobs(k)]2 . (30)

Here, the free parameters α and β are taken from
{DA(zi),H (zi), bH i

1,i , f (zi), and Pshot,i} for each redshift bin zi .
The nuisance parameters in the model {bH i

1,i , Pshot,i} can be
marginalized by selecting the submatrix of F−1

αβ with only the
appropriate columns and rows. We can then derive the mea-
surement errors on the expansion and structure growth history
parameters.

For the Tianlai pathfinder and pathfinder+ experiment, the
observation frequency range is 700–800 MHz, and we divide
this frequency band into three bins with equal bandwidth and
obtain estimates of measurement errors for the corresponding
redshift bins. For the planned full-scale Tianlai experiment, the
frequency range of 400–1420 MHz is equally divided into eight
bins; the bin size in this latter case is larger than in the pathfinder
case, but the bin size ∆z does not really matter in the end.

We plot the measurement errors on the angular diameter
distance DA(zi), the Hubble expansion rate H (zi), and the
growth rate f (zi) in the left, central, and right panels of Figure 3,
respectively, for the pathfinder+ (blue error bars) and the full-
scale Tianlai experiments (red error bars). The integration time
is assumed to be one year in all cases. We see that the pathfinder+
experiment can obtain a useful measurement on DA(z) and H (z)
at z = 1. For the growth rate f, the errors are larger, but we
could still obtain a useful check against certain modified gravity

models. The full-scale experiment can offer good precision
throughout the interested parameter ranges.

From the cosmographic measurements DA(z),H (z), f (z),
one can constrain the cosmological model parameters. In this
paper, we consider a redshift-dependent equation of state for the
dark energy parameterized in the form of (Chevallier & Polarski
2001)

w(z) = w0 + wa[1 − a(z)] = w0 + wa

z

1 + z
. (31)

The Fisher matrix of the dark energy parameters w0 and wa

is obtained by converting from the parameter space {pα} =
{DA,i,Hi, fi} to the dark energy parameter space {qm} =
{w0, wa, ΩX}, using

FDE
mn =

∑

α,β

∂pα

∂qm

Fdis
αβ

∂pβ

∂qn

. (32)

To help break the parameter degeneracy between parameters,
we combine the BAO data from the Tianlai intensity mapping
observation with the data obtained from CMB observations. The
total Fisher matrix is given by (Wang et al. 2009)

F tot
αβ = F CMB

αβ +
∑

i

F IM
αβ (zi), (33)

where F IM
αβ (zi) is the Fisher matrix derived from the ith redshift

bin of the LSS intensity mapping and F CMB
αβ is the CMB Fisher

matrix.
The 1σ and 2σ measurement error contours for the variable

dark energy equation of state parameters w0 and wa are shown
in Figure 4 for the full-scale Tianlai experiment. Here, we have
assumed that the frequency range probed is 400–1420 MHz, the
usable survey area is 10,000 deg2, and the integration time is
one year. The measurement error is obtained based on a joint
constraint with the CMB data, but no other observational data.
We expect σw0 ≈ 0.0815 and σwa

≈ 0.210. This is comparable
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Figure 2. Left panel: the measurement errors on the power spectrum at z = 1 for the Tianlai pathfinder (shaded area) and the pathfinder+ (error bars). Right panel:
the relative one with respect to the smooth power spectrum with errors expected from the Tianlai pathfinder+ (shaded area) and the full-scale Tianlai (error bars). The
assumed survey area is 10,000 deg2, and the integration time is one year. The wavenumber bin width for this plot is ∆k = 0.005 h Mpc−1.

spectrum can be obtained by scaling, but the constraints on our
interested parameters are insensitive to the choice of binning.

3. FISHER FORECAST ON THE CONSTRAINT
ON DARK ENERGY

From the power spectrum measurement at a given redshift,
the Fisher information matrix can be written as (Tegmark 1997;
Seo & Eisenstein 2003; Mao et al. 2008)

Fαβ =
∑

k

[
∂Pobs(k)

∂α

∂Pobs(k)
∂β

] /
[∆Pobs(k)]2 . (30)

Here, the free parameters α and β are taken from
{DA(zi),H (zi), bH i

1,i , f (zi), and Pshot,i} for each redshift bin zi .
The nuisance parameters in the model {bH i

1,i , Pshot,i} can be
marginalized by selecting the submatrix of F−1

αβ with only the
appropriate columns and rows. We can then derive the mea-
surement errors on the expansion and structure growth history
parameters.

For the Tianlai pathfinder and pathfinder+ experiment, the
observation frequency range is 700–800 MHz, and we divide
this frequency band into three bins with equal bandwidth and
obtain estimates of measurement errors for the corresponding
redshift bins. For the planned full-scale Tianlai experiment, the
frequency range of 400–1420 MHz is equally divided into eight
bins; the bin size in this latter case is larger than in the pathfinder
case, but the bin size ∆z does not really matter in the end.

We plot the measurement errors on the angular diameter
distance DA(zi), the Hubble expansion rate H (zi), and the
growth rate f (zi) in the left, central, and right panels of Figure 3,
respectively, for the pathfinder+ (blue error bars) and the full-
scale Tianlai experiments (red error bars). The integration time
is assumed to be one year in all cases. We see that the pathfinder+
experiment can obtain a useful measurement on DA(z) and H (z)
at z = 1. For the growth rate f, the errors are larger, but we
could still obtain a useful check against certain modified gravity

models. The full-scale experiment can offer good precision
throughout the interested parameter ranges.

From the cosmographic measurements DA(z),H (z), f (z),
one can constrain the cosmological model parameters. In this
paper, we consider a redshift-dependent equation of state for the
dark energy parameterized in the form of (Chevallier & Polarski
2001)

w(z) = w0 + wa[1 − a(z)] = w0 + wa

z

1 + z
. (31)

The Fisher matrix of the dark energy parameters w0 and wa

is obtained by converting from the parameter space {pα} =
{DA,i,Hi, fi} to the dark energy parameter space {qm} =
{w0, wa, ΩX}, using

FDE
mn =

∑

α,β

∂pα

∂qm

Fdis
αβ

∂pβ

∂qn

. (32)

To help break the parameter degeneracy between parameters,
we combine the BAO data from the Tianlai intensity mapping
observation with the data obtained from CMB observations. The
total Fisher matrix is given by (Wang et al. 2009)

F tot
αβ = F CMB

αβ +
∑

i

F IM
αβ (zi), (33)

where F IM
αβ (zi) is the Fisher matrix derived from the ith redshift

bin of the LSS intensity mapping and F CMB
αβ is the CMB Fisher

matrix.
The 1σ and 2σ measurement error contours for the variable

dark energy equation of state parameters w0 and wa are shown
in Figure 4 for the full-scale Tianlai experiment. Here, we have
assumed that the frequency range probed is 400–1420 MHz, the
usable survey area is 10,000 deg2, and the integration time is
one year. The measurement error is obtained based on a joint
constraint with the CMB data, but no other observational data.
We expect σw0 ≈ 0.0815 and σwa

≈ 0.210. This is comparable
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Figure 3. Measurement errors on the angular diameter distance DA (left panel), the Hubble expansion rate H (central panel), and the growth rate f (z) = d ln G/d ln a
(right panel). The integration time is assumed to be one year. Note here that the number of redshift bins is larger than the one we used for forecasting the constraint on
the dark energy equation of state just to make the error bars visible.

Figure 4. Constraints on the dark energy equation of state parameters w0 and
wa from full-scale Tianlai experiments. The two contours are for 1σ and 2σ
constraints, respectively. The integration time is one year and the survey area is
assumed to be 10,000 deg2.

with the precision of stage IV dark energy experiments as
defined in the Dark Energy Task Force (DETF) report (Albrecht
et al. 2006).

4. FISHER FORECASTS FOR THE
PRIMORDIAL NON-GAUSSIANITY

Typical single-field slow roll inflation models predict that the
primordial density fluctuations follow the Gaussian distribution,
though the density distribution deviates from Gaussianity as
the structures grow and nonlinearities appear. Detection of
or constraint on the primordial non-Gaussianity will provide
invaluable information concerning the origin of the universe.

Compared with the observable galaxies that correspond to
high-density peaks of the matter density distribution, the neutral
hydrogen gas that exists in galaxies of almost all mass scales is a
less biased tracer of the underlying matter density, allowing the
primordial non-Gaussianity to be investigated from a different
perspective.

The non-Gaussianity of the primordial density fluctuations
can induce a scale-dependent and redshift-dependent H i bias,
similar to other biased tracers (Dalal et al. 2008; Matarrese &

Verde 2008). This effect can be used to constrain the primordial
non-Gaussianity. Camera et al. (2013) has demonstrated that a
small but compact array working at ∼400 MHz could possibly
place tight constraints on fNL with an error close to σfNL ∼ 1.
We will make a forecast for determining such constraints with
the Tianlai experiment.

Once the LSS of the 21 cm brightness temperature fluctua-
tions are mapped out, this same set of data can also be used to
measure the bispectrum of H i gas distribution. The H i bispec-
trum consists of contributions from primordial non-Gaussianity,
the nonlinear gravity evolution, and the nonlinear H i bias. The
relative importance of primordial non-Gaussianity increases to-
ward higher redshifts (Sefusatti & Komatsu 2007; Jeong &
Komatsu 2009). The 21 cm experiment can in principle observe
the LSS at relatively high redshifts from the ground without
being affected significantly by the atmosphere, which is an ad-
vantage of this method, though at present 21 cm observations
are still limited to lower redshifts than for optical observations.
Using the 21 cm bispectrum from the dark ages, Pillepich et al.
(2007) found that very low frequency radio observations with
high angular resolution could potentially detect primordial non-
Gaussianity with fNL ∼ 1. Here, we focus on the H i bispectrum
after reionization and assess the constraining power of the 21 cm
bispectrum measured by the Tianlai experiment.

4.1. Constraints on fNL from the H i Power Spectrum

The non-Gaussianity in the primordial density fluctuations
can result in a scale-dependence in the halo bias, which orig-
inates from coupling between large- and small-scale modes
(Dalal et al. 2008; Matarrese & Verde 2008). For the stan-
dard local-type primordial non-Gaussianity, the scale-dependent
non-Gaussian correction to the linear halo bias, to leading or-
der, is (see, e.g., Desjacques et al. 2011; Adshead et al. 2012;
D’Aloisio et al. 2013)

∆bd (k, z) = 2 fNL (bG
1 − 1) δc

M(k, z)
, (34)

where bG
1 is the linear halo bias for the Gaussian density field,

δc = 1.686 is the critical overdensity for spherical collapse,
and M(k, z) relates the density fluctuations in Fourier space,
δk , to the primordial curvature perturbation, Φk , via the Poisson
equation:

δk(z) = M(k; z)Φk, (35)
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Figure 3. Measurement errors on the angular diameter distance DA (left panel), the Hubble expansion rate H (central panel), and the growth rate f (z) = d ln G/d ln a
(right panel). The integration time is assumed to be one year. Note here that the number of redshift bins is larger than the one we used for forecasting the constraint on
the dark energy equation of state just to make the error bars visible.

Figure 4. Constraints on the dark energy equation of state parameters w0 and
wa from full-scale Tianlai experiments. The two contours are for 1σ and 2σ
constraints, respectively. The integration time is one year and the survey area is
assumed to be 10,000 deg2.

with the precision of stage IV dark energy experiments as
defined in the Dark Energy Task Force (DETF) report (Albrecht
et al. 2006).

4. FISHER FORECASTS FOR THE
PRIMORDIAL NON-GAUSSIANITY

Typical single-field slow roll inflation models predict that the
primordial density fluctuations follow the Gaussian distribution,
though the density distribution deviates from Gaussianity as
the structures grow and nonlinearities appear. Detection of
or constraint on the primordial non-Gaussianity will provide
invaluable information concerning the origin of the universe.

Compared with the observable galaxies that correspond to
high-density peaks of the matter density distribution, the neutral
hydrogen gas that exists in galaxies of almost all mass scales is a
less biased tracer of the underlying matter density, allowing the
primordial non-Gaussianity to be investigated from a different
perspective.

The non-Gaussianity of the primordial density fluctuations
can induce a scale-dependent and redshift-dependent H i bias,
similar to other biased tracers (Dalal et al. 2008; Matarrese &

Verde 2008). This effect can be used to constrain the primordial
non-Gaussianity. Camera et al. (2013) has demonstrated that a
small but compact array working at ∼400 MHz could possibly
place tight constraints on fNL with an error close to σfNL ∼ 1.
We will make a forecast for determining such constraints with
the Tianlai experiment.

Once the LSS of the 21 cm brightness temperature fluctua-
tions are mapped out, this same set of data can also be used to
measure the bispectrum of H i gas distribution. The H i bispec-
trum consists of contributions from primordial non-Gaussianity,
the nonlinear gravity evolution, and the nonlinear H i bias. The
relative importance of primordial non-Gaussianity increases to-
ward higher redshifts (Sefusatti & Komatsu 2007; Jeong &
Komatsu 2009). The 21 cm experiment can in principle observe
the LSS at relatively high redshifts from the ground without
being affected significantly by the atmosphere, which is an ad-
vantage of this method, though at present 21 cm observations
are still limited to lower redshifts than for optical observations.
Using the 21 cm bispectrum from the dark ages, Pillepich et al.
(2007) found that very low frequency radio observations with
high angular resolution could potentially detect primordial non-
Gaussianity with fNL ∼ 1. Here, we focus on the H i bispectrum
after reionization and assess the constraining power of the 21 cm
bispectrum measured by the Tianlai experiment.

4.1. Constraints on fNL from the H i Power Spectrum

The non-Gaussianity in the primordial density fluctuations
can result in a scale-dependence in the halo bias, which orig-
inates from coupling between large- and small-scale modes
(Dalal et al. 2008; Matarrese & Verde 2008). For the stan-
dard local-type primordial non-Gaussianity, the scale-dependent
non-Gaussian correction to the linear halo bias, to leading or-
der, is (see, e.g., Desjacques et al. 2011; Adshead et al. 2012;
D’Aloisio et al. 2013)

∆bd (k, z) = 2 fNL (bG
1 − 1) δc

M(k, z)
, (34)

where bG
1 is the linear halo bias for the Gaussian density field,

δc = 1.686 is the critical overdensity for spherical collapse,
and M(k, z) relates the density fluctuations in Fourier space,
δk , to the primordial curvature perturbation, Φk , via the Poisson
equation:

δk(z) = M(k; z)Φk, (35)
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Figure 2. Left panel: the measurement errors on the power spectrum at z = 1 for the Tianlai pathfinder (shaded area) and the pathfinder+ (error bars). Right panel:
the relative one with respect to the smooth power spectrum with errors expected from the Tianlai pathfinder+ (shaded area) and the full-scale Tianlai (error bars). The
assumed survey area is 10,000 deg2, and the integration time is one year. The wavenumber bin width for this plot is ∆k = 0.005 h Mpc−1.

spectrum can be obtained by scaling, but the constraints on our
interested parameters are insensitive to the choice of binning.

3. FISHER FORECAST ON THE CONSTRAINT
ON DARK ENERGY

From the power spectrum measurement at a given redshift,
the Fisher information matrix can be written as (Tegmark 1997;
Seo & Eisenstein 2003; Mao et al. 2008)

Fαβ =
∑

k

[
∂Pobs(k)

∂α

∂Pobs(k)
∂β

] /
[∆Pobs(k)]2 . (30)

Here, the free parameters α and β are taken from
{DA(zi),H (zi), bH i

1,i , f (zi), and Pshot,i} for each redshift bin zi .
The nuisance parameters in the model {bH i

1,i , Pshot,i} can be
marginalized by selecting the submatrix of F−1

αβ with only the
appropriate columns and rows. We can then derive the mea-
surement errors on the expansion and structure growth history
parameters.

For the Tianlai pathfinder and pathfinder+ experiment, the
observation frequency range is 700–800 MHz, and we divide
this frequency band into three bins with equal bandwidth and
obtain estimates of measurement errors for the corresponding
redshift bins. For the planned full-scale Tianlai experiment, the
frequency range of 400–1420 MHz is equally divided into eight
bins; the bin size in this latter case is larger than in the pathfinder
case, but the bin size ∆z does not really matter in the end.

We plot the measurement errors on the angular diameter
distance DA(zi), the Hubble expansion rate H (zi), and the
growth rate f (zi) in the left, central, and right panels of Figure 3,
respectively, for the pathfinder+ (blue error bars) and the full-
scale Tianlai experiments (red error bars). The integration time
is assumed to be one year in all cases. We see that the pathfinder+
experiment can obtain a useful measurement on DA(z) and H (z)
at z = 1. For the growth rate f, the errors are larger, but we
could still obtain a useful check against certain modified gravity

models. The full-scale experiment can offer good precision
throughout the interested parameter ranges.

From the cosmographic measurements DA(z),H (z), f (z),
one can constrain the cosmological model parameters. In this
paper, we consider a redshift-dependent equation of state for the
dark energy parameterized in the form of (Chevallier & Polarski
2001)

w(z) = w0 + wa[1 − a(z)] = w0 + wa

z

1 + z
. (31)

The Fisher matrix of the dark energy parameters w0 and wa

is obtained by converting from the parameter space {pα} =
{DA,i,Hi, fi} to the dark energy parameter space {qm} =
{w0, wa, ΩX}, using

FDE
mn =

∑

α,β

∂pα

∂qm

Fdis
αβ

∂pβ

∂qn

. (32)

To help break the parameter degeneracy between parameters,
we combine the BAO data from the Tianlai intensity mapping
observation with the data obtained from CMB observations. The
total Fisher matrix is given by (Wang et al. 2009)

F tot
αβ = F CMB

αβ +
∑

i

F IM
αβ (zi), (33)

where F IM
αβ (zi) is the Fisher matrix derived from the ith redshift

bin of the LSS intensity mapping and F CMB
αβ is the CMB Fisher

matrix.
The 1σ and 2σ measurement error contours for the variable

dark energy equation of state parameters w0 and wa are shown
in Figure 4 for the full-scale Tianlai experiment. Here, we have
assumed that the frequency range probed is 400–1420 MHz, the
usable survey area is 10,000 deg2, and the integration time is
one year. The measurement error is obtained based on a joint
constraint with the CMB data, but no other observational data.
We expect σw0 ≈ 0.0815 and σwa

≈ 0.210. This is comparable
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Figure 2. Left panel: the measurement errors on the power spectrum at z = 1 for the Tianlai pathfinder (shaded area) and the pathfinder+ (error bars). Right panel:
the relative one with respect to the smooth power spectrum with errors expected from the Tianlai pathfinder+ (shaded area) and the full-scale Tianlai (error bars). The
assumed survey area is 10,000 deg2, and the integration time is one year. The wavenumber bin width for this plot is ∆k = 0.005 h Mpc−1.

spectrum can be obtained by scaling, but the constraints on our
interested parameters are insensitive to the choice of binning.

3. FISHER FORECAST ON THE CONSTRAINT
ON DARK ENERGY

From the power spectrum measurement at a given redshift,
the Fisher information matrix can be written as (Tegmark 1997;
Seo & Eisenstein 2003; Mao et al. 2008)

Fαβ =
∑

k

[
∂Pobs(k)

∂α

∂Pobs(k)
∂β

] /
[∆Pobs(k)]2 . (30)

Here, the free parameters α and β are taken from
{DA(zi),H (zi), bH i

1,i , f (zi), and Pshot,i} for each redshift bin zi .
The nuisance parameters in the model {bH i

1,i , Pshot,i} can be
marginalized by selecting the submatrix of F−1

αβ with only the
appropriate columns and rows. We can then derive the mea-
surement errors on the expansion and structure growth history
parameters.

For the Tianlai pathfinder and pathfinder+ experiment, the
observation frequency range is 700–800 MHz, and we divide
this frequency band into three bins with equal bandwidth and
obtain estimates of measurement errors for the corresponding
redshift bins. For the planned full-scale Tianlai experiment, the
frequency range of 400–1420 MHz is equally divided into eight
bins; the bin size in this latter case is larger than in the pathfinder
case, but the bin size ∆z does not really matter in the end.

We plot the measurement errors on the angular diameter
distance DA(zi), the Hubble expansion rate H (zi), and the
growth rate f (zi) in the left, central, and right panels of Figure 3,
respectively, for the pathfinder+ (blue error bars) and the full-
scale Tianlai experiments (red error bars). The integration time
is assumed to be one year in all cases. We see that the pathfinder+
experiment can obtain a useful measurement on DA(z) and H (z)
at z = 1. For the growth rate f, the errors are larger, but we
could still obtain a useful check against certain modified gravity

models. The full-scale experiment can offer good precision
throughout the interested parameter ranges.

From the cosmographic measurements DA(z),H (z), f (z),
one can constrain the cosmological model parameters. In this
paper, we consider a redshift-dependent equation of state for the
dark energy parameterized in the form of (Chevallier & Polarski
2001)

w(z) = w0 + wa[1 − a(z)] = w0 + wa

z

1 + z
. (31)

The Fisher matrix of the dark energy parameters w0 and wa

is obtained by converting from the parameter space {pα} =
{DA,i,Hi, fi} to the dark energy parameter space {qm} =
{w0, wa, ΩX}, using

FDE
mn =

∑

α,β

∂pα

∂qm

Fdis
αβ

∂pβ

∂qn

. (32)

To help break the parameter degeneracy between parameters,
we combine the BAO data from the Tianlai intensity mapping
observation with the data obtained from CMB observations. The
total Fisher matrix is given by (Wang et al. 2009)

F tot
αβ = F CMB

αβ +
∑

i

F IM
αβ (zi), (33)

where F IM
αβ (zi) is the Fisher matrix derived from the ith redshift

bin of the LSS intensity mapping and F CMB
αβ is the CMB Fisher

matrix.
The 1σ and 2σ measurement error contours for the variable

dark energy equation of state parameters w0 and wa are shown
in Figure 4 for the full-scale Tianlai experiment. Here, we have
assumed that the frequency range probed is 400–1420 MHz, the
usable survey area is 10,000 deg2, and the integration time is
one year. The measurement error is obtained based on a joint
constraint with the CMB data, but no other observational data.
We expect σw0 ≈ 0.0815 and σwa

≈ 0.210. This is comparable
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Figure 2. Left panel: the measurement errors on the power spectrum at z = 1 for the Tianlai pathfinder (shaded area) and the pathfinder+ (error bars). Right panel:
the relative one with respect to the smooth power spectrum with errors expected from the Tianlai pathfinder+ (shaded area) and the full-scale Tianlai (error bars). The
assumed survey area is 10,000 deg2, and the integration time is one year. The wavenumber bin width for this plot is ∆k = 0.005 h Mpc−1.

spectrum can be obtained by scaling, but the constraints on our
interested parameters are insensitive to the choice of binning.

3. FISHER FORECAST ON THE CONSTRAINT
ON DARK ENERGY

From the power spectrum measurement at a given redshift,
the Fisher information matrix can be written as (Tegmark 1997;
Seo & Eisenstein 2003; Mao et al. 2008)

Fαβ =
∑

k

[
∂Pobs(k)

∂α

∂Pobs(k)
∂β

] /
[∆Pobs(k)]2 . (30)

Here, the free parameters α and β are taken from
{DA(zi),H (zi), bH i

1,i , f (zi), and Pshot,i} for each redshift bin zi .
The nuisance parameters in the model {bH i

1,i , Pshot,i} can be
marginalized by selecting the submatrix of F−1

αβ with only the
appropriate columns and rows. We can then derive the mea-
surement errors on the expansion and structure growth history
parameters.

For the Tianlai pathfinder and pathfinder+ experiment, the
observation frequency range is 700–800 MHz, and we divide
this frequency band into three bins with equal bandwidth and
obtain estimates of measurement errors for the corresponding
redshift bins. For the planned full-scale Tianlai experiment, the
frequency range of 400–1420 MHz is equally divided into eight
bins; the bin size in this latter case is larger than in the pathfinder
case, but the bin size ∆z does not really matter in the end.

We plot the measurement errors on the angular diameter
distance DA(zi), the Hubble expansion rate H (zi), and the
growth rate f (zi) in the left, central, and right panels of Figure 3,
respectively, for the pathfinder+ (blue error bars) and the full-
scale Tianlai experiments (red error bars). The integration time
is assumed to be one year in all cases. We see that the pathfinder+
experiment can obtain a useful measurement on DA(z) and H (z)
at z = 1. For the growth rate f, the errors are larger, but we
could still obtain a useful check against certain modified gravity

models. The full-scale experiment can offer good precision
throughout the interested parameter ranges.

From the cosmographic measurements DA(z),H (z), f (z),
one can constrain the cosmological model parameters. In this
paper, we consider a redshift-dependent equation of state for the
dark energy parameterized in the form of (Chevallier & Polarski
2001)

w(z) = w0 + wa[1 − a(z)] = w0 + wa

z

1 + z
. (31)

The Fisher matrix of the dark energy parameters w0 and wa

is obtained by converting from the parameter space {pα} =
{DA,i,Hi, fi} to the dark energy parameter space {qm} =
{w0, wa, ΩX}, using

FDE
mn =

∑

α,β

∂pα

∂qm

Fdis
αβ

∂pβ

∂qn

. (32)

To help break the parameter degeneracy between parameters,
we combine the BAO data from the Tianlai intensity mapping
observation with the data obtained from CMB observations. The
total Fisher matrix is given by (Wang et al. 2009)

F tot
αβ = F CMB

αβ +
∑

i

F IM
αβ (zi), (33)

where F IM
αβ (zi) is the Fisher matrix derived from the ith redshift

bin of the LSS intensity mapping and F CMB
αβ is the CMB Fisher

matrix.
The 1σ and 2σ measurement error contours for the variable

dark energy equation of state parameters w0 and wa are shown
in Figure 4 for the full-scale Tianlai experiment. Here, we have
assumed that the frequency range probed is 400–1420 MHz, the
usable survey area is 10,000 deg2, and the integration time is
one year. The measurement error is obtained based on a joint
constraint with the CMB data, but no other observational data.
We expect σw0 ≈ 0.0815 and σwa

≈ 0.210. This is comparable
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Figure 3. Measurement errors on the angular diameter distance DA (left panel), the Hubble expansion rate H (central panel), and the growth rate f (z) = d ln G/d ln a
(right panel). The integration time is assumed to be one year. Note here that the number of redshift bins is larger than the one we used for forecasting the constraint on
the dark energy equation of state just to make the error bars visible.

Figure 4. Constraints on the dark energy equation of state parameters w0 and
wa from full-scale Tianlai experiments. The two contours are for 1σ and 2σ
constraints, respectively. The integration time is one year and the survey area is
assumed to be 10,000 deg2.

with the precision of stage IV dark energy experiments as
defined in the Dark Energy Task Force (DETF) report (Albrecht
et al. 2006).

4. FISHER FORECASTS FOR THE
PRIMORDIAL NON-GAUSSIANITY

Typical single-field slow roll inflation models predict that the
primordial density fluctuations follow the Gaussian distribution,
though the density distribution deviates from Gaussianity as
the structures grow and nonlinearities appear. Detection of
or constraint on the primordial non-Gaussianity will provide
invaluable information concerning the origin of the universe.

Compared with the observable galaxies that correspond to
high-density peaks of the matter density distribution, the neutral
hydrogen gas that exists in galaxies of almost all mass scales is a
less biased tracer of the underlying matter density, allowing the
primordial non-Gaussianity to be investigated from a different
perspective.

The non-Gaussianity of the primordial density fluctuations
can induce a scale-dependent and redshift-dependent H i bias,
similar to other biased tracers (Dalal et al. 2008; Matarrese &

Verde 2008). This effect can be used to constrain the primordial
non-Gaussianity. Camera et al. (2013) has demonstrated that a
small but compact array working at ∼400 MHz could possibly
place tight constraints on fNL with an error close to σfNL ∼ 1.
We will make a forecast for determining such constraints with
the Tianlai experiment.

Once the LSS of the 21 cm brightness temperature fluctua-
tions are mapped out, this same set of data can also be used to
measure the bispectrum of H i gas distribution. The H i bispec-
trum consists of contributions from primordial non-Gaussianity,
the nonlinear gravity evolution, and the nonlinear H i bias. The
relative importance of primordial non-Gaussianity increases to-
ward higher redshifts (Sefusatti & Komatsu 2007; Jeong &
Komatsu 2009). The 21 cm experiment can in principle observe
the LSS at relatively high redshifts from the ground without
being affected significantly by the atmosphere, which is an ad-
vantage of this method, though at present 21 cm observations
are still limited to lower redshifts than for optical observations.
Using the 21 cm bispectrum from the dark ages, Pillepich et al.
(2007) found that very low frequency radio observations with
high angular resolution could potentially detect primordial non-
Gaussianity with fNL ∼ 1. Here, we focus on the H i bispectrum
after reionization and assess the constraining power of the 21 cm
bispectrum measured by the Tianlai experiment.

4.1. Constraints on fNL from the H i Power Spectrum

The non-Gaussianity in the primordial density fluctuations
can result in a scale-dependence in the halo bias, which orig-
inates from coupling between large- and small-scale modes
(Dalal et al. 2008; Matarrese & Verde 2008). For the stan-
dard local-type primordial non-Gaussianity, the scale-dependent
non-Gaussian correction to the linear halo bias, to leading or-
der, is (see, e.g., Desjacques et al. 2011; Adshead et al. 2012;
D’Aloisio et al. 2013)

∆bd (k, z) = 2 fNL (bG
1 − 1) δc

M(k, z)
, (34)

where bG
1 is the linear halo bias for the Gaussian density field,

δc = 1.686 is the critical overdensity for spherical collapse,
and M(k, z) relates the density fluctuations in Fourier space,
δk , to the primordial curvature perturbation, Φk , via the Poisson
equation:

δk(z) = M(k; z)Φk, (35)

7
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After the completion of cosmic reionization, the HI gas in the Universe is mostly distributed

in galaxies hosted by halos. Therefore, we model the HI bias factors as halo bias factors weighted

by the neutral hydrogen mass hosted by these halos (Gong et al. 2011):

bHI
i (z) =

∫Mmax

Mmin
dM n(M,z)MHI(M) bi(M,z)

ρHI
, (8)

for i = 1 and 2, where ρHI is the mass density of HI gas, n(M,z) is the halo mass function for which

we use Sheth & Tormen’s formalism (Sheth & Tormen 1999), MHI(M) is the HI mass in a halo of

mass M , and b1(M,z) and b2(M,z) are halo bias parameters. The mass density of HI clouds is

given by

ρHI =

∫ Mmax

Mmin

dM n(M,z)MHI(M). (9)

Following Gong et al. (2011), we take Mmin = 108 h−1M⊙ for halos to retain their neutral gas

(Loeb & Barkana 2001), and take Mmax = 1013 h−1M⊙ for the gas to have sufficient time to cool

and form galaxies.

As for the relation between the HI gas mass MHI and the host halo mass M , we use the

fitting result by Gong et al. (2011), which is based on numerical simulation and consistent with

observations:

MHI(M) = A×
(

1 +
M

c1

)b (

1 +
M

c2

)d

, (10)

for M > 1010M⊙, and MHI(M) = Xgal
HI (Ωb/Ωm)M with Xgal

HI = 0.15 for M ≤ 1010M⊙. The best-fit

parameters are A = 2.1×108, c1 = 1.0×1011, c2 = 4.55×1011, b = 2.65, and d = −2.64 for redshift

z = 1. As the MHI - M relation does not change much from z = 1 to z = 3 (Gong et al. 2011), we

use the fixed values of these parameters throughout our calculation.

The halo bias factors can be obtained from the halo model (see Cooray & Sheth 2002 for

a review). The linear and the first non-linear bias factors of halos are (Scoccimarro et al. 2001;

Mo et al. 1997)

b1(M,z) = 1 + ϵ1 + E1, (11)

b2(M,z) = 2 (1 + a2) (ϵ1 + E1) + ϵ2 + E2, (12)

where

ϵ1 =
qν − 1

δsc(z)
, ϵ2 =

qν

δsc(z)

(

qν − 3

δsc(z)

)

, (13)

and

E1 =
2p/δsc(z)

1 + (qν)p
,

E2

E1
=

1 + 2p

δsc(z)
+ 2ϵ1. (14)

Here a2 = −17/21, ν ≡ δ2sc(z)/σ
2(M), and δsc(z) = 1.686/G(z) is the critical overdensity required

for spherical collapse at z, extrapolated to the present time using linear theory. For Sheth &

Tormen’s halo mass function (Sheth & Tormen 1999), p ≈ 0.3, and q = 0.707.
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Table 2
The Predicted 1σ Errors of fNL Using the H i Ppower

Spectrum Measured by Tianlai

Pathfinder Pathfinder+ Full Scale

Nfeed per cylinder 32 72 256

σ local
fNL

1504 161 14.1

where

M(k; z) = 2
3

k2 T (k) G+(z) c2

Ωm H 2
0

. (36)

Here, T (k) is the matter transfer function normalized to unity
on large scales, c is the speed of light, and G+(z) = g(0)G(z) is
the growth factor of the growing mode of density perturbations,
in which g(0) = (1 + zi)−1G−1(zi) with zi being the initial
redshift, and G(z) is the linear growth factor normalized to
unity at z = 0. The corrected linear halo bias is b1(k,M, z) =
bG

1 (M, z) + ∆bd (k,M, z).
The power spectrum of the density fluctuations of H i gas

is PH i(k, z) =
[
bH i

1 (k, z)
]2

PL(k, z), where PL(k, z) is the
linear matter power spectrum and the scale-dependent H i bias
bH i

1 (k, z) is related to the corrected linear halo bias via the
model described in Section 2.1. The observed power spectrum in
redshift space after averaging over angles in k space is (Peacock
1997)

Ps(k, z) = aP
0 (β) PH i(k, z), (37)

where aP
0 (β) = 1 + (2/3)β + (1/5)β2 with β = Ω0.55

m (z)/bH i
1 .

We apply the same Fisher matrix as Equation (30), but here
we take fNL as the single parameter and fix all of the other
cosmological parameters.

When adding information from all of the available wavenum-
bers in the Fisher matrix, kmax is limited by the Nyquist fre-
quency, kNyq = π/resolution, which arises from the non-zero
beam size of the cylinder array (Seo et al. 2010), as well as
by the nonlinear wavenumber cutoff, knonl, above which the
linear power spectra are not accurate. Here, we adopt conserva-
tive values for knonl by requiring σ (R = π/2knonl; z) = 0.5 at
each redshift bin (Seo & Eisenstein 2003). Therefore, kmax =
MIN{kNyq, knonl}. Effectively, kmax is limited by the Nyquist
wavenumber for pathfinder and pathfinder+, while for the full-
scale Tianlai, kmax is mostly set by the nonlinear cutoff, except
for the highest redshift bin. On the other hand, kmin is set by the
scale defined by the size of each redshift bin.

Using the same survey parameters and redshift bins as in
Section 3, we find that the constraint on the nonlinear parameter
fNL for the local model is quite weak for the pathfinder and
pathfinder+ experiments. With the full-scale Tianlai experiment,
we can achieve σ local

fNL
∼ 14. The exact numbers of the predicted

1σ errors for Tianlai pathfinders and for the full-scale Tianlai
are listed in Table 2.

4.2. Constraints on fNL from the H i Bispectrum

On large scales, the matter bispectrum is well described by the
tree-level expression and the loop corrections remain very small
(Tasinato et al. 2013; Gong & Takahashi 2014). Higher-order
terms such as the trispectrum could contribute significantly to
the bispectrum of high-density peaks (Sefusatti 2009; Jeong
& Komatsu 2009), but as the H i gas is much less biased
than observable galaxies—for the Tianlai experiment, the H i
bias is not far from one—we expect such contribution to be
less significant, though the exact amount cannot be obtained

without going through lengthy calculations. Here, we neglect
the higher-order terms and account only for the tree-level matter
bispectrum, and we reserve the investigation of the contribution
from matter trispectrum to the H i bispectrum to future works. If
such a contribution is significant, then it would increase the H i
bispectrum and we would obtain a stronger constraint on fNL;
therefore, our current estimate may be regarded as a relatively
conservative one.

Since we are interested in predicting the constraining power of
H i bispectrum observations on the primordial non-Gaussianity,
i.e., the parameter fNL, in the following, we will focus on the
reduced H i bispectrum, QH i, which is much less sensitive to
other cosmological parameters (Sefusatti & Komatsu 2007). In
the real experiments, we always measure the 21 cm brightness
temperature in redshift space. Similar to the tree-level expresion
for the observed galaxy bispectrum (Sefusatti & Komatsu 2007),
the reduced H i bispectrum in redshift space after averaging over
angles in k space is

Qs(k1, k2, k3) =
aB

0 (β)
[
aP

0 (β)
]2

[
1

bH i
1

Qtree(k1, k2, k3) +
bH i

2

(bH i
1 )2

]
,

(38)
where aB

0 (β) = 1 + (2/3)β + (1/9)β2 converts the bispectrum
from real space to redshift space, and Qtree is the reduced tree-
level bispectrum of underlying matter. The first term includes the
contributions from primordial non-Gaussianity and nonlinear
gravitational evolution, and the second term represents the
contribution from the nonlinear bias of H i gas.

The reduced matter bispectrum can be written as the sum of
two contributions:

Qtree(k1, k2, k3) = QI(k1, k2, k3) + QG(k1, k2, k3)

= BI(k1, k2, k3)
PL(k1) PL(k2) + (2 perm.)

+
BG(k1, k2, k3)

PL(k1) PL(k2) + (2 perm.)
, (39)

where + (nperm.) stands for the sum of n additional terms
permuting k1, k2, and k3. The matter bispectrum due to gravity
alone, BG, is given by the second-order perturbation theory
(Fry 1984; Bernardeau et al. 2002), and the matter bispectrum
contributed from primordial non-Gaussianity, BI, is related to
the bispectrum of curvature perturbations, BΦ, by

BI(k1, k2, k3) = M(k1; z)M(k2; z)M(k3; z) BΦ(k1, k2, k3).
(40)

We consider two models of primordial non-Gaussianity here,
i.e., the local model and the equilateral model, but the same
forecast can also be applied to other models of interest. The local
model is physically motivated, in this case the contributions from
the squeezed triangular configurations dominate. The leading
contribution to the f local

NL expansion of the bispectrum of the
curvature perturbation is

B local
Φ (k1, k2, k3) ≃ 2 f local

NL [PΦ(k1)PΦ(k2) + PΦ(k2)PΦ(k3)
+ PΦ(k3)PΦ(k1)]

= 2 f local
NL ∆2

Φ

[
1

k
4−ns

1 k
4−ns

2

+ (2 perm.)

]

,

(41)

where ∆Φ ≡ PΦ/kns−4, and PΦ(k) is the curvature power
spectrum. The equilateral model is a good approximation to
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increases toward higher redshifts (Sefusatti & Komatsu 2007; Jeong & Komatsu 2009). The 21

cm experiment can in principle observe the large scale structure at relatively high redshifts from

the ground without being affected significantly by the atomosphere, and this is an advantage

of this method, though at present the 21 cm observation is still limited to lower redshifts than

the optical observations. The 21 cm intensity mapping is much more efficient with large survey

volume without resolving individual galaxies. Using the 21 cm bispectrum from the dark ages,

Pillepich et al. (2007) found that very low frequency radio observations with high angular resolution

could potentially detect primordial non-Gaussianity with fNL ∼ 1. Here we focus on the HI

bispectrum after reionization, and assess the constraining power of the 21 cm bispectrum measured

by Tianlai experiment.

4.1. Constraints on fNL from the HI Power Spectrum

The non-Gaussianity in the primordial density fluctuations can result in a scale-dependence

in the halo bias, which originates from coupling between large and small scales modes (Dalal et al.

2008; Matarrese & Verde 2008). For the standard local type primordial non-Gaussianity, the

scale-dependent non-Gaussian correction to the linear halo bias, to the leading order, is (see e.g.

Desjacques et al. 2011; Adshead et al. 2012; D’Aloisio et al. 2013)

∆bd(k, z) =
2 fNL (bG1 − 1) δc

M(k, z)
, (34)

where bG1 is the linear halo bias for the Gaussian density field, δc = 1.686 is the critical overdensity

for spherical collapse, and M(k, z) relates the density fluctuations in Fourier space, δk, to the

primordial curvature perturbation, Φk, via the Poisson equation:

δk(z) = M(k; z)Φk, (35)

where

M(k; z) =
2

3

k2 T (k)G+(z) c2

ΩmH2
0

. (36)

Here T (k) is the matter transfer function normalized to unity on large scales, c is the speed of

light, and G+(z) = g(0)G(z) is the growth factor of the growing mode of density perturbations, in

which g(0) = (1+zi)−1G−1(zi) with zi being the initial redshift, and G(z) is the linear growth factor

normalized to unity at z = 0. The corrected linear halo bias is b1(k,M, z) = bG1 (M,z)+∆bd(k,M, z).

The power spectrum of the density fluctuations of HI gas is PHI(k, z) =
[

bHI
1 (k, z)

]2
PL(k, z),

in which PL(k, z) is the linear matter power spectrum, and the scale-dependent HI bias bHI
1 (k, z)

is related to the corrected linear halo bias via the model described in section 2.1. The observed

power spectrum in redshift space after averaging over angles in k space is (Peacock 1997)

Ps(k, z) = aP0 (β)PHI(k, z), (37)



The Astrophysical Journal, 798:40 (10pp), 2015 January 1 Xu, Wang, & Chen

Table 2
The Predicted 1σ Errors of fNL Using the H i Ppower

Spectrum Measured by Tianlai

Pathfinder Pathfinder+ Full Scale

Nfeed per cylinder 32 72 256

σ local
fNL

1504 161 14.1

where

M(k; z) = 2
3

k2 T (k) G+(z) c2

Ωm H 2
0

. (36)

Here, T (k) is the matter transfer function normalized to unity
on large scales, c is the speed of light, and G+(z) = g(0)G(z) is
the growth factor of the growing mode of density perturbations,
in which g(0) = (1 + zi)−1G−1(zi) with zi being the initial
redshift, and G(z) is the linear growth factor normalized to
unity at z = 0. The corrected linear halo bias is b1(k,M, z) =
bG

1 (M, z) + ∆bd (k,M, z).
The power spectrum of the density fluctuations of H i gas

is PH i(k, z) =
[
bH i

1 (k, z)
]2

PL(k, z), where PL(k, z) is the
linear matter power spectrum and the scale-dependent H i bias
bH i

1 (k, z) is related to the corrected linear halo bias via the
model described in Section 2.1. The observed power spectrum in
redshift space after averaging over angles in k space is (Peacock
1997)

Ps(k, z) = aP
0 (β) PH i(k, z), (37)

where aP
0 (β) = 1 + (2/3)β + (1/5)β2 with β = Ω0.55

m (z)/bH i
1 .

We apply the same Fisher matrix as Equation (30), but here
we take fNL as the single parameter and fix all of the other
cosmological parameters.

When adding information from all of the available wavenum-
bers in the Fisher matrix, kmax is limited by the Nyquist fre-
quency, kNyq = π/resolution, which arises from the non-zero
beam size of the cylinder array (Seo et al. 2010), as well as
by the nonlinear wavenumber cutoff, knonl, above which the
linear power spectra are not accurate. Here, we adopt conserva-
tive values for knonl by requiring σ (R = π/2knonl; z) = 0.5 at
each redshift bin (Seo & Eisenstein 2003). Therefore, kmax =
MIN{kNyq, knonl}. Effectively, kmax is limited by the Nyquist
wavenumber for pathfinder and pathfinder+, while for the full-
scale Tianlai, kmax is mostly set by the nonlinear cutoff, except
for the highest redshift bin. On the other hand, kmin is set by the
scale defined by the size of each redshift bin.

Using the same survey parameters and redshift bins as in
Section 3, we find that the constraint on the nonlinear parameter
fNL for the local model is quite weak for the pathfinder and
pathfinder+ experiments. With the full-scale Tianlai experiment,
we can achieve σ local

fNL
∼ 14. The exact numbers of the predicted

1σ errors for Tianlai pathfinders and for the full-scale Tianlai
are listed in Table 2.

4.2. Constraints on fNL from the H i Bispectrum

On large scales, the matter bispectrum is well described by the
tree-level expression and the loop corrections remain very small
(Tasinato et al. 2013; Gong & Takahashi 2014). Higher-order
terms such as the trispectrum could contribute significantly to
the bispectrum of high-density peaks (Sefusatti 2009; Jeong
& Komatsu 2009), but as the H i gas is much less biased
than observable galaxies—for the Tianlai experiment, the H i
bias is not far from one—we expect such contribution to be
less significant, though the exact amount cannot be obtained

without going through lengthy calculations. Here, we neglect
the higher-order terms and account only for the tree-level matter
bispectrum, and we reserve the investigation of the contribution
from matter trispectrum to the H i bispectrum to future works. If
such a contribution is significant, then it would increase the H i
bispectrum and we would obtain a stronger constraint on fNL;
therefore, our current estimate may be regarded as a relatively
conservative one.

Since we are interested in predicting the constraining power of
H i bispectrum observations on the primordial non-Gaussianity,
i.e., the parameter fNL, in the following, we will focus on the
reduced H i bispectrum, QH i, which is much less sensitive to
other cosmological parameters (Sefusatti & Komatsu 2007). In
the real experiments, we always measure the 21 cm brightness
temperature in redshift space. Similar to the tree-level expresion
for the observed galaxy bispectrum (Sefusatti & Komatsu 2007),
the reduced H i bispectrum in redshift space after averaging over
angles in k space is

Qs(k1, k2, k3) =
aB

0 (β)
[
aP

0 (β)
]2

[
1

bH i
1

Qtree(k1, k2, k3) +
bH i

2

(bH i
1 )2

]
,

(38)
where aB

0 (β) = 1 + (2/3)β + (1/9)β2 converts the bispectrum
from real space to redshift space, and Qtree is the reduced tree-
level bispectrum of underlying matter. The first term includes the
contributions from primordial non-Gaussianity and nonlinear
gravitational evolution, and the second term represents the
contribution from the nonlinear bias of H i gas.

The reduced matter bispectrum can be written as the sum of
two contributions:

Qtree(k1, k2, k3) = QI(k1, k2, k3) + QG(k1, k2, k3)

= BI(k1, k2, k3)
PL(k1) PL(k2) + (2 perm.)

+
BG(k1, k2, k3)

PL(k1) PL(k2) + (2 perm.)
, (39)

where + (nperm.) stands for the sum of n additional terms
permuting k1, k2, and k3. The matter bispectrum due to gravity
alone, BG, is given by the second-order perturbation theory
(Fry 1984; Bernardeau et al. 2002), and the matter bispectrum
contributed from primordial non-Gaussianity, BI, is related to
the bispectrum of curvature perturbations, BΦ, by

BI(k1, k2, k3) = M(k1; z)M(k2; z)M(k3; z) BΦ(k1, k2, k3).
(40)

We consider two models of primordial non-Gaussianity here,
i.e., the local model and the equilateral model, but the same
forecast can also be applied to other models of interest. The local
model is physically motivated, in this case the contributions from
the squeezed triangular configurations dominate. The leading
contribution to the f local

NL expansion of the bispectrum of the
curvature perturbation is

B local
Φ (k1, k2, k3) ≃ 2 f local

NL [PΦ(k1)PΦ(k2) + PΦ(k2)PΦ(k3)
+ PΦ(k3)PΦ(k1)]

= 2 f local
NL ∆2

Φ

[
1

k
4−ns

1 k
4−ns

2

+ (2 perm.)

]

,

(41)

where ∆Φ ≡ PΦ/kns−4, and PΦ(k) is the curvature power
spectrum. The equilateral model is a good approximation to
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Figure 2. Left panel: the measurement errors on the power spectrum at z = 1 for the Tianlai pathfinder (shaded area) and the pathfinder+ (error bars). Right panel:
the relative one with respect to the smooth power spectrum with errors expected from the Tianlai pathfinder+ (shaded area) and the full-scale Tianlai (error bars). The
assumed survey area is 10,000 deg2, and the integration time is one year. The wavenumber bin width for this plot is ∆k = 0.005 h Mpc−1.

spectrum can be obtained by scaling, but the constraints on our
interested parameters are insensitive to the choice of binning.

3. FISHER FORECAST ON THE CONSTRAINT
ON DARK ENERGY

From the power spectrum measurement at a given redshift,
the Fisher information matrix can be written as (Tegmark 1997;
Seo & Eisenstein 2003; Mao et al. 2008)

Fαβ =
∑

k

[
∂Pobs(k)

∂α

∂Pobs(k)
∂β

] /
[∆Pobs(k)]2 . (30)

Here, the free parameters α and β are taken from
{DA(zi),H (zi), bH i

1,i , f (zi), and Pshot,i} for each redshift bin zi .
The nuisance parameters in the model {bH i

1,i , Pshot,i} can be
marginalized by selecting the submatrix of F−1

αβ with only the
appropriate columns and rows. We can then derive the mea-
surement errors on the expansion and structure growth history
parameters.

For the Tianlai pathfinder and pathfinder+ experiment, the
observation frequency range is 700–800 MHz, and we divide
this frequency band into three bins with equal bandwidth and
obtain estimates of measurement errors for the corresponding
redshift bins. For the planned full-scale Tianlai experiment, the
frequency range of 400–1420 MHz is equally divided into eight
bins; the bin size in this latter case is larger than in the pathfinder
case, but the bin size ∆z does not really matter in the end.

We plot the measurement errors on the angular diameter
distance DA(zi), the Hubble expansion rate H (zi), and the
growth rate f (zi) in the left, central, and right panels of Figure 3,
respectively, for the pathfinder+ (blue error bars) and the full-
scale Tianlai experiments (red error bars). The integration time
is assumed to be one year in all cases. We see that the pathfinder+
experiment can obtain a useful measurement on DA(z) and H (z)
at z = 1. For the growth rate f, the errors are larger, but we
could still obtain a useful check against certain modified gravity

models. The full-scale experiment can offer good precision
throughout the interested parameter ranges.

From the cosmographic measurements DA(z),H (z), f (z),
one can constrain the cosmological model parameters. In this
paper, we consider a redshift-dependent equation of state for the
dark energy parameterized in the form of (Chevallier & Polarski
2001)

w(z) = w0 + wa[1 − a(z)] = w0 + wa

z

1 + z
. (31)

The Fisher matrix of the dark energy parameters w0 and wa

is obtained by converting from the parameter space {pα} =
{DA,i,Hi, fi} to the dark energy parameter space {qm} =
{w0, wa, ΩX}, using

FDE
mn =

∑

α,β

∂pα

∂qm

Fdis
αβ

∂pβ

∂qn

. (32)

To help break the parameter degeneracy between parameters,
we combine the BAO data from the Tianlai intensity mapping
observation with the data obtained from CMB observations. The
total Fisher matrix is given by (Wang et al. 2009)

F tot
αβ = F CMB

αβ +
∑

i

F IM
αβ (zi), (33)

where F IM
αβ (zi) is the Fisher matrix derived from the ith redshift

bin of the LSS intensity mapping and F CMB
αβ is the CMB Fisher

matrix.
The 1σ and 2σ measurement error contours for the variable

dark energy equation of state parameters w0 and wa are shown
in Figure 4 for the full-scale Tianlai experiment. Here, we have
assumed that the frequency range probed is 400–1420 MHz, the
usable survey area is 10,000 deg2, and the integration time is
one year. The measurement error is obtained based on a joint
constraint with the CMB data, but no other observational data.
We expect σw0 ≈ 0.0815 and σwa

≈ 0.210. This is comparable
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Figure 1. Left: one-dimensional baseline distribution n(r) of various Tianlai configurations, calculated from Equation (28). Here the x axis r is the physical distance in
the interferometer frame; we also display the corresponding cosmological scale it probes at a frequency of ν = 750 MHz on the upper abscissa. Right: the measurement
error contributed from thermal noise, ∆P N (k) = P N (k)/

√
Nc(k) (solid lines), and that from sample variance, ∆P SV(k) = P SV(k)/

√
Nc(k) (dashed lines). The case

for Tianlai pathfinder+ is shown as the magenta lines, while the cases for full-scale Tianlai at various frequencies are shown as other colors. The 21 cm signal power
spectra, P∆T (k), at corresponding redshifts are shown by dotted lines with corresponding colors, assuming a constant H i fraction xH i = 0.008 at all redshifts. Here
we adopt a wavenumber bin width of ∆k = 0.005 h Mpc−1 and ∆z = 0.2.

The baseline number density n(u⊥) is normalized so that
the half-plane integral would give a total baseline number of
nb = nr (nr − 1)/2, where nr is the total number of receivers.

In the left panel of Figure 1, we plot the baseline distribution
n(r) of the different configurations of Tianlai. Besides the
baseline distance r in the interferometer frame, we also show on
the upper abscissa the cosmological scales that the array could
probe at a frequency of ν = 750 MHz. Given the same cylinder
dimension for pathfinder and its upgrade, the baseline densities
of these two configurations drop at similar scales, around 20 m.
However, the larger feed numbers of the pathfinder+ would
increase the number of baselines available at a given scale. For
the full-scale Tianlai, both the numbers of shorter and longer
baselines are increased, and therefore the sensitivity will be
significantly improved.

In the right panel of Figure 1, we plot the measurement
error on the power spectrum due to thermal noise ∆P N (k) =
P N (k)/

√
Nc(k) (solid lines) and sample variance ∆P SV(k) =

P SV(k)/
√

Nc(k) (dashed lines). While only the errors at the
medium frequency of f = 750 MHz are shown (the magenta
set of lines) for the pathfinder+, we display four different
frequencies from 500 MHz to 1100 MHz (from top to bottom
for the thermal noise, and from bottom to top for the sample
variance) for the full-scale survey. For the sample variance
power spectra, we adopt the conservative assumption that
xH i = 0.008 at all redshifts. For comparison, we also plot
the 21 cm signal power spectra, P∆T (k), at the corresponding
redshifts with the dotted lines.

From the figure, we can see that for Tianlai pathfinder+, the
thermal noise will dominate over the sample variance at all
scales. This is also true for the high-redshift observation of
the full-scale Tianlai, but the thermal noise gradually decreases
toward lower redshift. At z ∼ 1 (Full 700 MHz), the two
contributions are comparable at the BAO scale.

2.4. The Power Spectrum with Expected Tianlai Errors

As discussed in Section 2.2, the measurement error of the
power spectrum is a sum of the sampling error and thermal noise.
Since the measured 21 cm power spectrum is proportional to the
H i power spectrum by a factor of T̄ 2

sig, we use the measurement
error on the H i power spectrum for the Fisher forecasts in the
following sections:

∆Pobs(k) = 1√
Nc

[Pobs(k) + N (k)] , (29)

where N (k) is related to the thermal noise power by P N =
T̄ 2

sig N (k), and Nc is the number of independent modes in that
pixel in Fourier space, as discussed in Section 2.2.

The instantaneous field of view of a cylindrical radio telescope
is narrow in right ascension but very broad in declination,
limitted primarily by the illumination angle of the feeds. The
rotation of the Earth results in a broad coverage in right
ascension. The illumination angle of the feeds of Tianlai is
about 120◦. Assuming a latitude of θlat = 44◦, the Tianlai array
covers the declination angle from −16◦ to 90◦. Considering the
masking effects in order to avoid the disk area of the Milky Way
and bright radio sources, we conservatively assume a survey
area of 10,000 deg2 throughout.

The left panel of Figure 2 shows the power spectrum at z = 1
with measurement errors expected from the Tianlai pathfinder
(shaded area) and the pathfinder+ (error bars), while the right
panel shows the relative power spectrum with respect to the
smooth power spectrum with errors expected from the Tianlai
pathfinder+ (shaded area) and the full-scale Tianlai (error bars),
respectively. The integration time is assumed to be one year.
Note that the error bar for P (k) depends on the binning of k.
Here, we have chosen a bin width of ∆k = 0.005 h Mpc−1. If
a different bin width is chosen, then the error bar on power
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on the primordial non-Gaussianity, i.e. the parameter fNL, in the following, we shall focus on
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(Sefusatti & Komatsu 2007). In the real experiments, we always measure the 21 cm brightness
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ter bispectrum due to gravity alone, BG, is given by the second order perturbation theory (Fry

1984; Bernardeau et al. 2002), and the the matter bispectrum contributed from primordial non-

Gaussianity, BI, is related to the bispectrum of curvature perturbations, BΦ, by

BI(k1, k2, k3) = M(k1; z)M(k2; z)M(k3; z)BΦ(k1, k2, k3). (40)

We consider two models of primordial non-Gaussianity here, i.e. the local model and the

equilateral model, but the same forecast can also be applied to other models of interest. The

local model is physically motivated, in this case the contributions from the squeezed triangular

configurations dominate. The leading contribution to the f local
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where ∆Φ ≡ PΦ/kns−4, and PΦ(k) is the curvature power spectrum. The equilateral model is a

good approximation to the higher derivative models (Creminelli 2003) and the DBI inflationary

model(Alishahiha et al. 2004). The bispectrum of curvature perturbation for the equilateral model
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Figure 1. Left: one-dimensional baseline distribution n(r) of various Tianlai configurations, calculated from Equation (28). Here the x axis r is the physical distance in
the interferometer frame; we also display the corresponding cosmological scale it probes at a frequency of ν = 750 MHz on the upper abscissa. Right: the measurement
error contributed from thermal noise, ∆P N (k) = P N (k)/

√
Nc(k) (solid lines), and that from sample variance, ∆P SV(k) = P SV(k)/

√
Nc(k) (dashed lines). The case

for Tianlai pathfinder+ is shown as the magenta lines, while the cases for full-scale Tianlai at various frequencies are shown as other colors. The 21 cm signal power
spectra, P∆T (k), at corresponding redshifts are shown by dotted lines with corresponding colors, assuming a constant H i fraction xH i = 0.008 at all redshifts. Here
we adopt a wavenumber bin width of ∆k = 0.005 h Mpc−1 and ∆z = 0.2.

The baseline number density n(u⊥) is normalized so that
the half-plane integral would give a total baseline number of
nb = nr (nr − 1)/2, where nr is the total number of receivers.

In the left panel of Figure 1, we plot the baseline distribution
n(r) of the different configurations of Tianlai. Besides the
baseline distance r in the interferometer frame, we also show on
the upper abscissa the cosmological scales that the array could
probe at a frequency of ν = 750 MHz. Given the same cylinder
dimension for pathfinder and its upgrade, the baseline densities
of these two configurations drop at similar scales, around 20 m.
However, the larger feed numbers of the pathfinder+ would
increase the number of baselines available at a given scale. For
the full-scale Tianlai, both the numbers of shorter and longer
baselines are increased, and therefore the sensitivity will be
significantly improved.

In the right panel of Figure 1, we plot the measurement
error on the power spectrum due to thermal noise ∆P N (k) =
P N (k)/

√
Nc(k) (solid lines) and sample variance ∆P SV(k) =

P SV(k)/
√

Nc(k) (dashed lines). While only the errors at the
medium frequency of f = 750 MHz are shown (the magenta
set of lines) for the pathfinder+, we display four different
frequencies from 500 MHz to 1100 MHz (from top to bottom
for the thermal noise, and from bottom to top for the sample
variance) for the full-scale survey. For the sample variance
power spectra, we adopt the conservative assumption that
xH i = 0.008 at all redshifts. For comparison, we also plot
the 21 cm signal power spectra, P∆T (k), at the corresponding
redshifts with the dotted lines.

From the figure, we can see that for Tianlai pathfinder+, the
thermal noise will dominate over the sample variance at all
scales. This is also true for the high-redshift observation of
the full-scale Tianlai, but the thermal noise gradually decreases
toward lower redshift. At z ∼ 1 (Full 700 MHz), the two
contributions are comparable at the BAO scale.

2.4. The Power Spectrum with Expected Tianlai Errors

As discussed in Section 2.2, the measurement error of the
power spectrum is a sum of the sampling error and thermal noise.
Since the measured 21 cm power spectrum is proportional to the
H i power spectrum by a factor of T̄ 2

sig, we use the measurement
error on the H i power spectrum for the Fisher forecasts in the
following sections:

∆Pobs(k) = 1√
Nc

[Pobs(k) + N (k)] , (29)

where N (k) is related to the thermal noise power by P N =
T̄ 2

sig N (k), and Nc is the number of independent modes in that
pixel in Fourier space, as discussed in Section 2.2.

The instantaneous field of view of a cylindrical radio telescope
is narrow in right ascension but very broad in declination,
limitted primarily by the illumination angle of the feeds. The
rotation of the Earth results in a broad coverage in right
ascension. The illumination angle of the feeds of Tianlai is
about 120◦. Assuming a latitude of θlat = 44◦, the Tianlai array
covers the declination angle from −16◦ to 90◦. Considering the
masking effects in order to avoid the disk area of the Milky Way
and bright radio sources, we conservatively assume a survey
area of 10,000 deg2 throughout.

The left panel of Figure 2 shows the power spectrum at z = 1
with measurement errors expected from the Tianlai pathfinder
(shaded area) and the pathfinder+ (error bars), while the right
panel shows the relative power spectrum with respect to the
smooth power spectrum with errors expected from the Tianlai
pathfinder+ (shaded area) and the full-scale Tianlai (error bars),
respectively. The integration time is assumed to be one year.
Note that the error bar for P (k) depends on the binning of k.
Here, we have chosen a bin width of ∆k = 0.005 h Mpc−1. If
a different bin width is chosen, then the error bar on power
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the higher derivative models (Creminelli 2003) and the DBI
inflationary model(Alishahiha et al. 2004). The bispectrum of
the curvature perturbation for the equilateral model is

B
equil.
Φ = 6 f

equil.
NL ∆2

Φ

[

− 1

k
4−ns

1 k
4−ns

2

− 1

k
4−ns

2 k
4−ns

3

− 1

k
4−ns

3 k
4−ns

1

− 2
(k1 k2 k3)2(4−ns )/3

+

(
1

k
(4−ns )/3
1 k

2(4−ns )/3
2 k

4−ns

3

+ (5 perm.)

) ]

. (42)

Following Scoccimarro et al. (1998), a bispectrum estimator
for a cubic survey volume of V can be defined as

B̂(k1, k2, k3) ≡ Vf

VB(k1, k2, k3)

∫

k1

d3q1

∫

k2

d3q2

×
∫

k3

d3q3 δD(q1 + q2 + q3) δ(q1) δ(q2) δ(q3),

(43)

where Vf ≡ k3
f = (2π )3/V is the elemental volume in k space

of the observation cells, and each integration is over the range
[ki −∆k/2, ki +∆k/2] centered on ki, with ∆k equal to a multiple
of kf . Here, δD(q1 + q2 + q3) is the Dirac delta function which
ensures that the vectors q1, q2, and q3 form a triangle, while
VB(k1, k2, k3) is the normalization factor given by

VB ≡
∫

k1

d3q1

∫

k2

d3q2

∫

k3

d3q3 δD(q1 + q2 + q3)

≃ 8π2 k1 k2 k3 ∆k1 ∆k2 ∆k3. (44)

In the following, we assume ∆ki = kf so as to take into account
all “fundamental” triangular configurations.

To leading order, the variance of this estimator is
(Scoccimarro et al. 1998)

∆B2
s (k1, k2, k3) ≃ (2π )3 Vf

s123

VB
Ptot(k1) Ptot(k2) Ptot(k3),

(45)
where s123 = 6, 2, 1, respectively, for equilateral, isosceles,
and general triangles, and Ptot(k) is the total measured power
spectrum including the redshift space H i power spectrum,
Ps(k) = aP

0 (β) PH i(k), and the noise power spectrum N (k).
The Fisher matrix for observations of reduced bispectrum at

a given redshift bin can be written as

Fαβ ≡
kmax∑

k1=kmin

k1∑

k2=kmin

k2∑

k3=k⋆
min

∂Qs

∂α

∂Qs

∂β

1
∆Q2

s

, (46)

where ∆Q2
s is the variance of the reduced H i bispectrum

measured in redshift space, and α and β represent the parameters
we are interested in, i.e., fNL, and bH i

1 (zi) and bH i
2 (zi) for each

redshift bin zi of the survey. The three sums are over all of
the combinations of k1, k2, and k3 that form triangles, in steps
of ∆ki with k⋆

min = max(kmin, |k1 − k2|). In each redshift bin,
we divide the survey volume into cubes and kmin is still set by
the scale spanning the redshift bin. kmax is set by the Nyquist
frequency or the smallest scale at which we can trust our model
for the H i bispectrum. Here, we assume that the tree-level

Table 3
The Marginalized 1σ Errors of fNL Using the H i

Bispectrum Measured by Tianlai

Pathfinder Pathfinder+ Full Scale
Nfeed per cylinder 32 72 256

σ local
fNL

70814 2272 21.7

σ
equil
fNL

79427 2754 157

bispectrum breaks down below the nonlinear scale cutoff, so that
kmax = Min{kNyq, knonl}. If we assume that the variance of the
H i bispectrum ∆Bs dominates over the variance of the H i power
spectrum ∆Ps , then the variance of the reduced H i bispectrum
in redshift space can be written as (Sefusatti & Komatsu 2007)

∆Q2
s (k1, k2, k3) ≃ ∆B2

s (k1, k2, k3)

[Ps(k1)Ps(k2) + (2 perm.)]2 (47)

with ∆B2
s given by Equation (45).

We assume the fiducial values of H i bias parameters as given
in Section 2.1, and take the fiducial value of fNL = 0 for both the
local and equilateral models. Assuming one year’s integration
time and a total survey area of 10,000 deg2, the marginalized
1σ errors on f local

NL and f
equil
NL are listed in Table 3. Again, we

find that the pathfinder and pathfinder+ data are insufficient to
provide much constraint to the bispectrum, due to the large error
in its measurement. With the full-scale Tianlai experiment, we
could achieve σ local

fNL
∼ 22 for the local model and σ

equil
fNL

∼ 157
for the equilateral model.

5. CONCLUSIONS

In this work, we assess the ability of the Tianlai experiments
to constrain various cosmological parameters, specifically the
dark energy equation of state and the level of primordial non-
Gaussianity. We use the Fisher information matrix method,
which is widely used for making such predictions. We have
compared our results with other predictions of 21 cm intensity
mapping experiments (Chang et al. 2008; Ansari et al. 2008;
Seo et al. 2010; Ansari et al. 2012; Alonso et al. 2014), and
found that they generally yield similar results when the same
conditions are assumed.

Currently, our plan is to first test the principle and key
technologies with a smaller-scale pathfinder experiment and
then upgrade to the pathfinder+ experiment, before eventually
building the full-scale Tianlai experiment. The goal of the
pathfinders is to test the technologies and feasibility of H i
intensity mapping observations with cylinder arrays, and as
shown in this work, we expect to be able to measure the H i
power spectrum with the pathfinders, but the constraints that
could be obtained on cosmological parameters would be fairly
weak.

The full-scale Tianlai experiment will significantly tighten
the constraints by adding the number of receivers, thereby
increasing the effective collecting area of the cylinders, and
by expanding the scale of the cylinders, thereby increasing the
spatial resolution. Assuming an integration time of one year
and a survey area of 10,000 deg2, we expect σw0 ∼ 0.082
and σwa

∼ 0.21 from the BAO and RSD measurements. This
is comparable to the expected precision from stage IV dark
energy experiments as defined by the DETF report (Albrecht
et al. 2006), while the cost would only be a small fraction of
such experiments.
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broader redshift coverage and larger survey volume) will provide us with more stringent constraints
on PNG than those achievable by other experiments such as the Tianlai project.

For SKA1-MID, IM may be conducted with the dishes used individually in auto-correlation
mode, being calibrated using interferometry. In this case, kmax is limited by the Nyquist frequency,
as well as the smallest scale above which we could trust the tree-level matter bispectrum. We
adopt a non-linear scale cutoff, knl, for the tree-level matter bispectrum, by requiring the variance
in the density contrast field at π/(2knl) to equal 0.5 in each redshift bin. With Nd = 254 15 m
diameter dishes, a survey area of 20,000 deg2, and a total integration time of 5,000 hr, we find
σ( f locNL) = 45.7 and σ( f

eq
NL) = 214.3 when we marginalise over the HI bias factors bHI,1 and bHI,2

at each redshift bin, while σ( f locNL) = 15.3 and σ( f
eq
NL) = 61.8 if we assume a constant bias factors.

Otherwise, by using interferometry with the full SKA, kmax is set by the non-linear scale knl, and
we find much accurate marginalised errors σ( f locNL) = 6.6 and σ( f

eq
NL) = 55.4, or σ( f locNL) = 2.2 and

σ( f eqNL) = 10.9.

3.2 Intensity Mapping from the Epoch of Reionisation

The PNG affects the clustering of the early star-forming galactic haloes responsible for cre-
ating a network of ionised patches in the surrounding intergalactic medium during the EoR. This
leaves a PNG imprint on the HI tomographic mapping in the intergalactic medium using its red-
shifted 21 cm radiation. On large scales, where the typical size of ionised regions is much smaller
than the scale of interest, we can neglect the non-linear effects of reionisation patchiness on the 21
cm power spectrum. Then the 21 cm temperature power spectrum during the EoR can be written
as

P∆T (k,z) = δ̃T
2
bx̄
2
HI
[
bHI(k,z)+µ2k

]2Pδ (k,z), (3.3)

where δ̃Tb(z) = 23.88(Ωbh2/0.02)
√
0.15/(Ωmh2)(1+ z)/10 mK, x̄HI(z) is the global neutral hy-

drogen fraction, and µk ≡ k · n̂/k, i.e. the cosine of angle between the line-of-sight n̂ and wave
vector k of a given Fourier mode.

The ionised density bias bHII is the fundamental quantity derived from reionisation models,
related to the neutral density bias bHI by bHI = (1− x̄HII bHII)/x̄HI. The reionisation in the presence
of PNG can be modelled using two independent methods as follows (D’Aloisio et al. 2013):

1. Excursion-set model of reionisation (ESMR) – We can use a parameter ζESMR to characterize
the efficiency of the local collapsed fraction of mass in luminous sources above some mass
threshold in releasing ionising photons into the intergalactic medium (Furlanetto et al. 2004).
The full functions x̄HI(z) and bHII(k,z) are set by two parameters, f locNL and ζESMR.

2. Phenomenological model – Similar to the scale-dependent halo bias, D’Aloisio et al. (2013)
derived a scale-dependent non-Gaussian correction to the ionised density bias, ∆bHII(k,z),
analogous to Eq. (2.2). It depends upon the scale-independent Gaussian ionised density bias
bHII(z). Therefore, we can marginalise fNL over two phenomenological parameters, x̄HI(zi)
and bHII(zi), in each redshift bin zi.

Both methods can be used to constrain PNG with the 21 cm power spectrum from the EoR. Mao
et al. (2013) demonstrated that for a single frequency bin measurement, their constraints on f locNL
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derived a scale-dependent non-Gaussian correction to the ionised density bias, ∆bHII(k,z),
analogous to Eq. (2.2). It depends upon the scale-independent Gaussian ionised density bias
bHII(z). Therefore, we can marginalise fNL over two phenomenological parameters, x̄HI(zi)
and bHII(zi), in each redshift bin zi.

Both methods can be used to constrain PNG with the 21 cm power spectrum from the EoR. Mao
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Thus the present density and equation of state parameters of
dark energy can be constrained by measuring the acoustic peaks
on the power spectrum.

The RSD of the power spectrum also provides information on
the growth history of the universe. The linear growth rate f (z)
affects the observed power spectrum (Equation (2)) through the
RSD factor β, by

β = f (z)/bH i
1 (z), (5)

and through the linear growth factor G(z), which is related to
f (z) by

f = d ln G(a)
d ln a

= − (1 + z)
G(z)

dG(z)
dz

. (6)

Since the growth factor G(z) is degenerate with the H i bias
factor, here we focus on the growth rate obtained from the RSD,
and will discuss the measurement error on f (z).

The redshift space power spectrum measured from 21 cm
intensity mapping could also be used as a test for gravity (Hall
et al. 2013; Masui et al. 2010), or provide extra information on
dark energy if general relativity is assumed. For dark energy
models, the growth rate can be parameterized as f (z) = Ωγ

m(z)
with γΛCDM ≈ 0.55 for the ΛCDM+GR model. The value of
γ in other dark energy models with w other than −1 does not
deviate from γΛCDM significantly.

The intensity mapping observation directly measures the
21 cm brightness temperature, and the measured 21 cm power
spectrum, P∆T (k) = T̄ 2

sigPobs(k), is the power spectrum of
brightness temperature δTb due to 21 cm emission, in which
the average signal temperature T̄sig has been estimated (Barkana
& Loeb 2007; Chang et al. 2008; Seo et al. 2010) to be

T̄sig = 190
xH i(z) ΩH,0 h (1 + z)2

H (z) /H0
mK, (7)

where xH i(z) is the neutral fraction of hydrogen at redshift z
and ΩH,0 is the ratio of the hydrogen mass density to the critical
density at z = 0.

After the completion of cosmic reionization, the H i gas in
the universe was mostly distributed in galaxies hosted by halos.
Therefore, we model the H i bias factors as halo bias factors
weighted by the neutral hydrogen mass hosted by these halos
(Gong et al. 2011):

bH i
i (z) =

∫ Mmax

Mmin
dM n(M, z) MH i(M) bi(M, z)

ρH i
, (8)

for i = 1 and 2, where ρH i is the mass density of H i gas, n(M,z)
is the halo mass function for which we use Sheth & Tormen’s
formalism (Sheth & Tormen 1999), MH i(M) is the H i mass
in a halo of mass M, and b1(M, z) and b2(M, z) are halo bias
parameters. The mass density of H i clouds is given by

ρH i =
∫ Mmax

Mmin

dM n(M, z) MH i(M). (9)

Following Gong et al. (2011), we take Mmin = 108 h−1M⊙ for
halos to retain their neutral gas (Loeb & Barkana 2001), and
take Mmax = 1013 h−1M⊙ for the gas to have sufficient time to
cool and form galaxies.

As for the relation between the H i gas mass MH i and the
host halo mass M, we use the fitting result from Gong et al.

(2011), which is based on numerical simulation and consistent
with observations:

MH i(M) = A ×
(

1 +
M

c1

)b (
1 +

M

c2

)d

, (10)

for M > 1010 M⊙, and MH i(M) = X
gal
H i (Ωb/Ωm) M with

X
gal
H i = 0.15 for M ! 1010 M⊙. The best-fit parameters are

A = 2.1 × 108, c1 = 1.0 × 1011, c2 = 4.55 × 1011, b = 2.65,
and d = −2.64 for redshift z = 1. As the MH i − M relation does
not change much from z = 1 to z = 3 (Gong et al. 2011), we
use fixed values of these parameters throughout our calculation.

The halo bias factors can be obtained from the halo model
(see Cooray & Sheth 2002 for a review). The linear and the first
nonlinear bias factors of halos are (Scoccimarro et al. 2001; Mo
et al. 1997)

b1(M, z) = 1 + ϵ1 + E1, (11)

b2(M, z) = 2 (1 + a2) (ϵ1 + E1) + ϵ2 + E2, (12)
where

ϵ1 = qν − 1
δsc(z)

, ϵ2 = qν

δsc(z)

(
qν − 3
δsc(z)

)
, (13)

and

E1 = 2p/δsc(z)
1 + (qν)p

,
E2

E1
= 1 + 2p

δsc(z)
+ 2ϵ1. (14)

Here, a2 = −17/21, ν ≡ δ2
sc(z)/σ 2(M), and δsc(z) =

1.686/G(z) is the critical overdensity required for spherical
collapse at z, extrapolated to the present time using linear the-
ory. For Sheth & Tormen’s halo mass function (Sheth & Tormen
1999), p ≈ 0.3 and q = 0.707.

2.2. Generalized Noise Power Spectrum

The fundamental observable of a radio interferometer is
the visibility, which is the correlation between the outputs of
two receivers for a given baseline. For a given sky brightness
distribution I (n̂, ν), where n̂ and ν are the sky position and the
observing frequency, respectively, the corresponding visibility,
in units of flux density, can be written as the Fourier transform
of the sky brightness weighted by the beam pattern A(n̂) of the
two receivers:

Vαβ,[Jy](uαβ , ν) =
∫

d2n̂e−i2π n̂·uαβ Aα(n̂, ν)A∗
β (n̂, ν)I (n̂, ν)

≈
∫

d2n̂e−i2π n̂·u⊥Aα(n̂, ν)A∗
β (n̂, ν)I (n̂, ν),

(15)

where uαβ denotes the baseline vector in units of wavelength.
Here, in the second equality, we have used the flat-sky approxi-
mation, and u⊥ is the component of uαβ perpendicular to the line
of sight. In a large-scale survey like Tianlai, the flat-sky assump-
tion will certainly break down, and so a full-sky representation
based on the spherical harmonic expansion has been developed
(Shaw et al. 2014). Here, we use the flat-sky approximation and
Fourier expansion, as it is still sufficient for forecasting.

For radio interferometers, it is convenient to define the
equivalent visibility in units of brightness temperature, using
the Rayleigh–Jeans approximation, so that

Vαβ,[K](u⊥, ν) =
∫

d2n̂e−i2π n̂·u⊥Aα(n̂, ν)A∗
β (n̂, ν)δTb(n̂, ν).

(16)
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Thus the present density and equation of state parameters of
dark energy can be constrained by measuring the acoustic peaks
on the power spectrum.

The RSD of the power spectrum also provides information on
the growth history of the universe. The linear growth rate f (z)
affects the observed power spectrum (Equation (2)) through the
RSD factor β, by

β = f (z)/bH i
1 (z), (5)

and through the linear growth factor G(z), which is related to
f (z) by

f = d ln G(a)
d ln a

= − (1 + z)
G(z)

dG(z)
dz

. (6)

Since the growth factor G(z) is degenerate with the H i bias
factor, here we focus on the growth rate obtained from the RSD,
and will discuss the measurement error on f (z).

The redshift space power spectrum measured from 21 cm
intensity mapping could also be used as a test for gravity (Hall
et al. 2013; Masui et al. 2010), or provide extra information on
dark energy if general relativity is assumed. For dark energy
models, the growth rate can be parameterized as f (z) = Ωγ

m(z)
with γΛCDM ≈ 0.55 for the ΛCDM+GR model. The value of
γ in other dark energy models with w other than −1 does not
deviate from γΛCDM significantly.

The intensity mapping observation directly measures the
21 cm brightness temperature, and the measured 21 cm power
spectrum, P∆T (k) = T̄ 2

sigPobs(k), is the power spectrum of
brightness temperature δTb due to 21 cm emission, in which
the average signal temperature T̄sig has been estimated (Barkana
& Loeb 2007; Chang et al. 2008; Seo et al. 2010) to be

T̄sig = 190
xH i(z) ΩH,0 h (1 + z)2

H (z) /H0
mK, (7)

where xH i(z) is the neutral fraction of hydrogen at redshift z
and ΩH,0 is the ratio of the hydrogen mass density to the critical
density at z = 0.

After the completion of cosmic reionization, the H i gas in
the universe was mostly distributed in galaxies hosted by halos.
Therefore, we model the H i bias factors as halo bias factors
weighted by the neutral hydrogen mass hosted by these halos
(Gong et al. 2011):

bH i
i (z) =

∫ Mmax

Mmin
dM n(M, z) MH i(M) bi(M, z)

ρH i
, (8)

for i = 1 and 2, where ρH i is the mass density of H i gas, n(M,z)
is the halo mass function for which we use Sheth & Tormen’s
formalism (Sheth & Tormen 1999), MH i(M) is the H i mass
in a halo of mass M, and b1(M, z) and b2(M, z) are halo bias
parameters. The mass density of H i clouds is given by

ρH i =
∫ Mmax

Mmin

dM n(M, z) MH i(M). (9)

Following Gong et al. (2011), we take Mmin = 108 h−1M⊙ for
halos to retain their neutral gas (Loeb & Barkana 2001), and
take Mmax = 1013 h−1M⊙ for the gas to have sufficient time to
cool and form galaxies.

As for the relation between the H i gas mass MH i and the
host halo mass M, we use the fitting result from Gong et al.

(2011), which is based on numerical simulation and consistent
with observations:

MH i(M) = A ×
(

1 +
M

c1

)b (
1 +

M

c2

)d

, (10)

for M > 1010 M⊙, and MH i(M) = X
gal
H i (Ωb/Ωm) M with

X
gal
H i = 0.15 for M ! 1010 M⊙. The best-fit parameters are

A = 2.1 × 108, c1 = 1.0 × 1011, c2 = 4.55 × 1011, b = 2.65,
and d = −2.64 for redshift z = 1. As the MH i − M relation does
not change much from z = 1 to z = 3 (Gong et al. 2011), we
use fixed values of these parameters throughout our calculation.

The halo bias factors can be obtained from the halo model
(see Cooray & Sheth 2002 for a review). The linear and the first
nonlinear bias factors of halos are (Scoccimarro et al. 2001; Mo
et al. 1997)

b1(M, z) = 1 + ϵ1 + E1, (11)

b2(M, z) = 2 (1 + a2) (ϵ1 + E1) + ϵ2 + E2, (12)
where

ϵ1 = qν − 1
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(
qν − 3
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)
, (13)

and

E1 = 2p/δsc(z)
1 + (qν)p

,
E2

E1
= 1 + 2p

δsc(z)
+ 2ϵ1. (14)

Here, a2 = −17/21, ν ≡ δ2
sc(z)/σ 2(M), and δsc(z) =

1.686/G(z) is the critical overdensity required for spherical
collapse at z, extrapolated to the present time using linear the-
ory. For Sheth & Tormen’s halo mass function (Sheth & Tormen
1999), p ≈ 0.3 and q = 0.707.

2.2. Generalized Noise Power Spectrum

The fundamental observable of a radio interferometer is
the visibility, which is the correlation between the outputs of
two receivers for a given baseline. For a given sky brightness
distribution I (n̂, ν), where n̂ and ν are the sky position and the
observing frequency, respectively, the corresponding visibility,
in units of flux density, can be written as the Fourier transform
of the sky brightness weighted by the beam pattern A(n̂) of the
two receivers:

Vαβ,[Jy](uαβ , ν) =
∫

d2n̂e−i2π n̂·uαβ Aα(n̂, ν)A∗
β (n̂, ν)I (n̂, ν)

≈
∫

d2n̂e−i2π n̂·u⊥Aα(n̂, ν)A∗
β (n̂, ν)I (n̂, ν),

(15)

where uαβ denotes the baseline vector in units of wavelength.
Here, in the second equality, we have used the flat-sky approxi-
mation, and u⊥ is the component of uαβ perpendicular to the line
of sight. In a large-scale survey like Tianlai, the flat-sky assump-
tion will certainly break down, and so a full-sky representation
based on the spherical harmonic expansion has been developed
(Shaw et al. 2014). Here, we use the flat-sky approximation and
Fourier expansion, as it is still sufficient for forecasting.

For radio interferometers, it is convenient to define the
equivalent visibility in units of brightness temperature, using
the Rayleigh–Jeans approximation, so that

Vαβ,[K](u⊥, ν) =
∫

d2n̂e−i2π n̂·u⊥Aα(n̂, ν)A∗
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The thermal noise of the measurement can be written as

δVαβ,[K](u⊥, ν) =
λ2 Tsys

Ae

√
∆νtu

, (17)

where ∆ν is the observed full bandwidth, tu is the integration
time of this baseline, Tsys is the system temperature per polar-
ization (we assume Tsys = 50 K in this paper), and Ae is the
effective collecting area of each element. We can make a further
Fourier transform of the visibility with respect to ν, to obtain
the so-called visibility delay spectrum (Parsons et al. 2012),

Vαβ,[K·MHz](u⊥, u∥) =
∫

dνe−i2πνu∥Vαβ,[K](u⊥, ν). (18)

Now the three-dimensional vector u ≡ {u⊥, u∥} is the Fourier
conjugate of the sky position vector θ = {n̂, ν}. The thermal
noise in this representation is then (Morales 2005)

∆TN (u) =
Tsys√
∆νtu

(
λ2∆ν

Ae

)
. (19)

Here, the factor λ2∆ν/Ae represents the Fourier space resolution
of the observation, in the sense that any two vectors within it
will be highly correlated.

For the extraction of cosmological information, we are
interested in the correlation function of the visibilities measured
at the discrete baselines ui and uj . If we neglect the correlation
of thermal noise errors between measurements, then the noise
covariance matrix for visibilities is approximately diagonal, and
can be written as (McQuinn et al. 2006; Bharadwaj & Pandey
2003)

CN (ui , u j ) = ⟨"T N (ui )"T ∗
N(u j )⟩ =

(
λ2 T sys"ν

Ae

)2
δij

"ν tu
.

(20)

The integration time for the baseline u can be written as

tu = Ae

λ2
n(u⊥)tint, (21)

where n(u⊥) is the baseline number density of the interferometer
in the u−v plane, and Ae/λ

2 ≈ δu δv is the u-space resolution.
For an observation with a survey area of Ωmap larger than the
field of view ΩFOV and uniform survey coverage, the integration
time of each pointing tint = ttot(ΩFOV/Ωmap).

The sample variance contribution to the covariance matrix is
(McQuinn et al. 2006)

CSV(ui , u j ) = ⟨δTb(ui)δT ∗
b (uj )⟩

≈ δij

∫
d3u|R(ui − u)|2P∆T (u)

≈ δij

λ2∆ν2

r2
a (z)∆r(z)Ae

P∆T (ki⊥, ki∥), (22)

where P∆T is the 21 cm signal power spectrum. Here, R(ui − u)
is the response function for a given baseline ui , which is defined
as the Fourier transform of the primary beam Aα(n̂, ν)A∗

β (n̂, ν)
in Equation (15). The Kronecker δij arises due to the choice
of a pixel size that is approximately the same as the support
of function R(u). The integration of |R|2 then introduces a
factor that approximately equals the inverse of the Fourier space

resolution, λ2∆ν/Ae, due to the normalization of R(u). Here,
∆r = y(z)∆ν is the spatial resolution corresponding to the
bandwidth ∆ν. The comoving angular diameter distance ra(z)
and the factor y(z) = λ21(1 + z)2/H (z) are used to convert the
power spectrum from u space to the comoving k space:

u⊥ = ra(z)k⊥

2π
, u∥ = y(z)k∥

2π
. (23)

Given the total covariance matrix C = CN + CSV, one could
then estimate the measurement uncertainty of the bandpower
from the Fisher matrix

Fab = Tr
[

C−1 ∂C
∂ pa

C−1 ∂C
∂ pb

]
, (24)

where the parameter pa is the bandpower pa = P∆T (ka). For
diagonal C, the measurement error δP∆T is

δP∆T (ki) = 1√
Nc(ki)

Aer
2
a ∆r

λ2∆ν2

[
CN (ki , ki) + CSV(ki , ki)

]

= 1√
Nc(ki)

[
P N (ki) + P SV(ki)

]
, (25)

where the number of modes Nc(k) = k⊥dk⊥dk∥ V/(2π )2, with
V being the survey volume. Here we have denoted the signal
power spectrum in the sample variance term as the sample
variance power spectrum, i.e., P SV(ki) = P∆T (ki), and the noise
power spectrum P N (k) is

P N (k, z) =
4πfskyλ

2 T 2
sys y(z) ra(z)2

Ae ΩFOV ttot

(
λ2

Ae n(k⊥)

)
, (26)

where fsky is the fraction of the sky coverage, i.e., fsky =
Ωmap/4π , and ΩFOV is the field of view of a single pointing.

2.3. Tianlai Noise Power Spectra

We first calculate the baseline distribution function n(u⊥)
of the interferometer. In a real interferometer, for a pair of
antennae with separation u, the output is actually the average
of the visibility on a region of the u–v plane centered at u.
Instead of the discrete histogram, therefore, we incorporate the
response function of an antenna pair R(u) (Ansari et al. 2012)
and derive a continuous function n(u⊥) with the caveat that only
n(u⊥)(Ae/λ

2) is physically meaningful in this formalism. For
the Tianlai cylinder array with receivers fixed along the focal
lines of the cylinders, the pair response pattern of a cylinder can
be approximated as a two-dimensional triangular function with
rectangular support (Thompson et al. 2001; Ansari et al. 2008,
2012), which is set by the cylinder width W in the east–west
direction, ∆uW = W/λ, and the feed length L in the north–south
direction, ∆uL = L/λ:

R(u⊥) =
(

λ2

Ae

)
Λ

(
uL

∆uL

)
Λ

(
uW

∆uW

)
. (27)

Here, the triangular function Λ(x) is defined as 1 − |x| for
|x| < 1, and 0 otherwise. The baseline number density n(u⊥)
could be obtained simply by summing up R(u) for all of the
baselines, i.e.,

n(u⊥) =
nb∑

i

R(u⊥ − ui
⊥). (28)
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The thermal noise of the measurement can be written as

δVαβ,[K](u⊥, ν) =
λ2 Tsys

Ae

√
∆νtu

, (17)

where ∆ν is the observed full bandwidth, tu is the integration
time of this baseline, Tsys is the system temperature per polar-
ization (we assume Tsys = 50 K in this paper), and Ae is the
effective collecting area of each element. We can make a further
Fourier transform of the visibility with respect to ν, to obtain
the so-called visibility delay spectrum (Parsons et al. 2012),

Vαβ,[K·MHz](u⊥, u∥) =
∫

dνe−i2πνu∥Vαβ,[K](u⊥, ν). (18)

Now the three-dimensional vector u ≡ {u⊥, u∥} is the Fourier
conjugate of the sky position vector θ = {n̂, ν}. The thermal
noise in this representation is then (Morales 2005)

∆TN (u) =
Tsys√
∆νtu

(
λ2∆ν

Ae

)
. (19)

Here, the factor λ2∆ν/Ae represents the Fourier space resolution
of the observation, in the sense that any two vectors within it
will be highly correlated.

For the extraction of cosmological information, we are
interested in the correlation function of the visibilities measured
at the discrete baselines ui and uj . If we neglect the correlation
of thermal noise errors between measurements, then the noise
covariance matrix for visibilities is approximately diagonal, and
can be written as (McQuinn et al. 2006; Bharadwaj & Pandey
2003)

CN (ui , u j ) = ⟨"T N (ui )"T ∗
N(u j )⟩ =

(
λ2 T sys"ν

Ae

)2
δij

"ν tu
.

(20)

The integration time for the baseline u can be written as

tu = Ae

λ2
n(u⊥)tint, (21)

where n(u⊥) is the baseline number density of the interferometer
in the u−v plane, and Ae/λ

2 ≈ δu δv is the u-space resolution.
For an observation with a survey area of Ωmap larger than the
field of view ΩFOV and uniform survey coverage, the integration
time of each pointing tint = ttot(ΩFOV/Ωmap).

The sample variance contribution to the covariance matrix is
(McQuinn et al. 2006)

CSV(ui , u j ) = ⟨δTb(ui)δT ∗
b (uj )⟩

≈ δij

∫
d3u|R(ui − u)|2P∆T (u)

≈ δij

λ2∆ν2

r2
a (z)∆r(z)Ae

P∆T (ki⊥, ki∥), (22)

where P∆T is the 21 cm signal power spectrum. Here, R(ui − u)
is the response function for a given baseline ui , which is defined
as the Fourier transform of the primary beam Aα(n̂, ν)A∗

β (n̂, ν)
in Equation (15). The Kronecker δij arises due to the choice
of a pixel size that is approximately the same as the support
of function R(u). The integration of |R|2 then introduces a
factor that approximately equals the inverse of the Fourier space

resolution, λ2∆ν/Ae, due to the normalization of R(u). Here,
∆r = y(z)∆ν is the spatial resolution corresponding to the
bandwidth ∆ν. The comoving angular diameter distance ra(z)
and the factor y(z) = λ21(1 + z)2/H (z) are used to convert the
power spectrum from u space to the comoving k space:

u⊥ = ra(z)k⊥

2π
, u∥ = y(z)k∥

2π
. (23)

Given the total covariance matrix C = CN + CSV, one could
then estimate the measurement uncertainty of the bandpower
from the Fisher matrix

Fab = Tr
[

C−1 ∂C
∂ pa

C−1 ∂C
∂ pb

]
, (24)

where the parameter pa is the bandpower pa = P∆T (ka). For
diagonal C, the measurement error δP∆T is

δP∆T (ki) = 1√
Nc(ki)

Aer
2
a ∆r

λ2∆ν2

[
CN (ki , ki) + CSV(ki , ki)

]

= 1√
Nc(ki)

[
P N (ki) + P SV(ki)

]
, (25)

where the number of modes Nc(k) = k⊥dk⊥dk∥ V/(2π )2, with
V being the survey volume. Here we have denoted the signal
power spectrum in the sample variance term as the sample
variance power spectrum, i.e., P SV(ki) = P∆T (ki), and the noise
power spectrum P N (k) is

P N (k, z) =
4πfskyλ

2 T 2
sys y(z) ra(z)2

Ae ΩFOV ttot

(
λ2

Ae n(k⊥)

)
, (26)

where fsky is the fraction of the sky coverage, i.e., fsky =
Ωmap/4π , and ΩFOV is the field of view of a single pointing.

2.3. Tianlai Noise Power Spectra

We first calculate the baseline distribution function n(u⊥)
of the interferometer. In a real interferometer, for a pair of
antennae with separation u, the output is actually the average
of the visibility on a region of the u–v plane centered at u.
Instead of the discrete histogram, therefore, we incorporate the
response function of an antenna pair R(u) (Ansari et al. 2012)
and derive a continuous function n(u⊥) with the caveat that only
n(u⊥)(Ae/λ

2) is physically meaningful in this formalism. For
the Tianlai cylinder array with receivers fixed along the focal
lines of the cylinders, the pair response pattern of a cylinder can
be approximated as a two-dimensional triangular function with
rectangular support (Thompson et al. 2001; Ansari et al. 2008,
2012), which is set by the cylinder width W in the east–west
direction, ∆uW = W/λ, and the feed length L in the north–south
direction, ∆uL = L/λ:

R(u⊥) =
(

λ2

Ae

)
Λ

(
uL

∆uL

)
Λ

(
uW

∆uW

)
. (27)

Here, the triangular function Λ(x) is defined as 1 − |x| for
|x| < 1, and 0 otherwise. The baseline number density n(u⊥)
could be obtained simply by summing up R(u) for all of the
baselines, i.e.,

n(u⊥) =
nb∑

i

R(u⊥ − ui
⊥). (28)
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The thermal noise of the measurement can be written as

δVαβ,[K](u⊥, ν) =
λ2 Tsys

Ae

√
∆νtu

, (17)

where ∆ν is the observed full bandwidth, tu is the integration
time of this baseline, Tsys is the system temperature per polar-
ization (we assume Tsys = 50 K in this paper), and Ae is the
effective collecting area of each element. We can make a further
Fourier transform of the visibility with respect to ν, to obtain
the so-called visibility delay spectrum (Parsons et al. 2012),

Vαβ,[K·MHz](u⊥, u∥) =
∫

dνe−i2πνu∥Vαβ,[K](u⊥, ν). (18)

Now the three-dimensional vector u ≡ {u⊥, u∥} is the Fourier
conjugate of the sky position vector θ = {n̂, ν}. The thermal
noise in this representation is then (Morales 2005)

∆TN (u) =
Tsys√
∆νtu

(
λ2∆ν

Ae

)
. (19)

Here, the factor λ2∆ν/Ae represents the Fourier space resolution
of the observation, in the sense that any two vectors within it
will be highly correlated.

For the extraction of cosmological information, we are
interested in the correlation function of the visibilities measured
at the discrete baselines ui and uj . If we neglect the correlation
of thermal noise errors between measurements, then the noise
covariance matrix for visibilities is approximately diagonal, and
can be written as (McQuinn et al. 2006; Bharadwaj & Pandey
2003)

CN (ui , u j ) = ⟨"T N (ui )"T ∗
N(u j )⟩ =

(
λ2 T sys"ν

Ae

)2
δij

"ν tu
.

(20)

The integration time for the baseline u can be written as

tu = Ae

λ2
n(u⊥)tint, (21)

where n(u⊥) is the baseline number density of the interferometer
in the u−v plane, and Ae/λ

2 ≈ δu δv is the u-space resolution.
For an observation with a survey area of Ωmap larger than the
field of view ΩFOV and uniform survey coverage, the integration
time of each pointing tint = ttot(ΩFOV/Ωmap).

The sample variance contribution to the covariance matrix is
(McQuinn et al. 2006)

CSV(ui , u j ) = ⟨δTb(ui)δT ∗
b (uj )⟩

≈ δij

∫
d3u|R(ui − u)|2P∆T (u)

≈ δij

λ2∆ν2

r2
a (z)∆r(z)Ae

P∆T (ki⊥, ki∥), (22)

where P∆T is the 21 cm signal power spectrum. Here, R(ui − u)
is the response function for a given baseline ui , which is defined
as the Fourier transform of the primary beam Aα(n̂, ν)A∗

β (n̂, ν)
in Equation (15). The Kronecker δij arises due to the choice
of a pixel size that is approximately the same as the support
of function R(u). The integration of |R|2 then introduces a
factor that approximately equals the inverse of the Fourier space

resolution, λ2∆ν/Ae, due to the normalization of R(u). Here,
∆r = y(z)∆ν is the spatial resolution corresponding to the
bandwidth ∆ν. The comoving angular diameter distance ra(z)
and the factor y(z) = λ21(1 + z)2/H (z) are used to convert the
power spectrum from u space to the comoving k space:

u⊥ = ra(z)k⊥

2π
, u∥ = y(z)k∥

2π
. (23)

Given the total covariance matrix C = CN + CSV, one could
then estimate the measurement uncertainty of the bandpower
from the Fisher matrix

Fab = Tr
[

C−1 ∂C
∂ pa

C−1 ∂C
∂ pb

]
, (24)

where the parameter pa is the bandpower pa = P∆T (ka). For
diagonal C, the measurement error δP∆T is

δP∆T (ki) = 1√
Nc(ki)

Aer
2
a ∆r

λ2∆ν2

[
CN (ki , ki) + CSV(ki , ki)

]

= 1√
Nc(ki)

[
P N (ki) + P SV(ki)

]
, (25)

where the number of modes Nc(k) = k⊥dk⊥dk∥ V/(2π )2, with
V being the survey volume. Here we have denoted the signal
power spectrum in the sample variance term as the sample
variance power spectrum, i.e., P SV(ki) = P∆T (ki), and the noise
power spectrum P N (k) is

P N (k, z) =
4πfskyλ

2 T 2
sys y(z) ra(z)2

Ae ΩFOV ttot

(
λ2

Ae n(k⊥)

)
, (26)

where fsky is the fraction of the sky coverage, i.e., fsky =
Ωmap/4π , and ΩFOV is the field of view of a single pointing.

2.3. Tianlai Noise Power Spectra

We first calculate the baseline distribution function n(u⊥)
of the interferometer. In a real interferometer, for a pair of
antennae with separation u, the output is actually the average
of the visibility on a region of the u–v plane centered at u.
Instead of the discrete histogram, therefore, we incorporate the
response function of an antenna pair R(u) (Ansari et al. 2012)
and derive a continuous function n(u⊥) with the caveat that only
n(u⊥)(Ae/λ

2) is physically meaningful in this formalism. For
the Tianlai cylinder array with receivers fixed along the focal
lines of the cylinders, the pair response pattern of a cylinder can
be approximated as a two-dimensional triangular function with
rectangular support (Thompson et al. 2001; Ansari et al. 2008,
2012), which is set by the cylinder width W in the east–west
direction, ∆uW = W/λ, and the feed length L in the north–south
direction, ∆uL = L/λ:

R(u⊥) =
(

λ2

Ae

)
Λ

(
uL

∆uL

)
Λ

(
uW

∆uW

)
. (27)

Here, the triangular function Λ(x) is defined as 1 − |x| for
|x| < 1, and 0 otherwise. The baseline number density n(u⊥)
could be obtained simply by summing up R(u) for all of the
baselines, i.e.,

n(u⊥) =
nb∑

i

R(u⊥ − ui
⊥). (28)
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The thermal noise of the measurement can be written as

δVαβ,[K](u⊥, ν) =
λ2 Tsys

Ae

√
∆νtu

, (17)

where ∆ν is the observed full bandwidth, tu is the integration
time of this baseline, Tsys is the system temperature per polar-
ization (we assume Tsys = 50 K in this paper), and Ae is the
effective collecting area of each element. We can make a further
Fourier transform of the visibility with respect to ν, to obtain
the so-called visibility delay spectrum (Parsons et al. 2012),

Vαβ,[K·MHz](u⊥, u∥) =
∫

dνe−i2πνu∥Vαβ,[K](u⊥, ν). (18)

Now the three-dimensional vector u ≡ {u⊥, u∥} is the Fourier
conjugate of the sky position vector θ = {n̂, ν}. The thermal
noise in this representation is then (Morales 2005)

∆TN (u) =
Tsys√
∆νtu

(
λ2∆ν

Ae

)
. (19)

Here, the factor λ2∆ν/Ae represents the Fourier space resolution
of the observation, in the sense that any two vectors within it
will be highly correlated.

For the extraction of cosmological information, we are
interested in the correlation function of the visibilities measured
at the discrete baselines ui and uj . If we neglect the correlation
of thermal noise errors between measurements, then the noise
covariance matrix for visibilities is approximately diagonal, and
can be written as (McQuinn et al. 2006; Bharadwaj & Pandey
2003)

CN (ui , u j ) = ⟨"T N (ui )"T ∗
N(u j )⟩ =

(
λ2 T sys"ν

Ae

)2
δij

"ν tu
.

(20)

The integration time for the baseline u can be written as

tu = Ae

λ2
n(u⊥)tint, (21)

where n(u⊥) is the baseline number density of the interferometer
in the u−v plane, and Ae/λ

2 ≈ δu δv is the u-space resolution.
For an observation with a survey area of Ωmap larger than the
field of view ΩFOV and uniform survey coverage, the integration
time of each pointing tint = ttot(ΩFOV/Ωmap).

The sample variance contribution to the covariance matrix is
(McQuinn et al. 2006)

CSV(ui , u j ) = ⟨δTb(ui)δT ∗
b (uj )⟩

≈ δij

∫
d3u|R(ui − u)|2P∆T (u)

≈ δij

λ2∆ν2

r2
a (z)∆r(z)Ae

P∆T (ki⊥, ki∥), (22)

where P∆T is the 21 cm signal power spectrum. Here, R(ui − u)
is the response function for a given baseline ui , which is defined
as the Fourier transform of the primary beam Aα(n̂, ν)A∗

β (n̂, ν)
in Equation (15). The Kronecker δij arises due to the choice
of a pixel size that is approximately the same as the support
of function R(u). The integration of |R|2 then introduces a
factor that approximately equals the inverse of the Fourier space

resolution, λ2∆ν/Ae, due to the normalization of R(u). Here,
∆r = y(z)∆ν is the spatial resolution corresponding to the
bandwidth ∆ν. The comoving angular diameter distance ra(z)
and the factor y(z) = λ21(1 + z)2/H (z) are used to convert the
power spectrum from u space to the comoving k space:

u⊥ = ra(z)k⊥

2π
, u∥ = y(z)k∥

2π
. (23)

Given the total covariance matrix C = CN + CSV, one could
then estimate the measurement uncertainty of the bandpower
from the Fisher matrix

Fab = Tr
[

C−1 ∂C
∂ pa

C−1 ∂C
∂ pb

]
, (24)

where the parameter pa is the bandpower pa = P∆T (ka). For
diagonal C, the measurement error δP∆T is

δP∆T (ki) = 1√
Nc(ki)

Aer
2
a ∆r

λ2∆ν2

[
CN (ki , ki) + CSV(ki , ki)

]

= 1√
Nc(ki)

[
P N (ki) + P SV(ki)

]
, (25)

where the number of modes Nc(k) = k⊥dk⊥dk∥ V/(2π )2, with
V being the survey volume. Here we have denoted the signal
power spectrum in the sample variance term as the sample
variance power spectrum, i.e., P SV(ki) = P∆T (ki), and the noise
power spectrum P N (k) is

P N (k, z) =
4πfskyλ

2 T 2
sys y(z) ra(z)2

Ae ΩFOV ttot

(
λ2

Ae n(k⊥)

)
, (26)

where fsky is the fraction of the sky coverage, i.e., fsky =
Ωmap/4π , and ΩFOV is the field of view of a single pointing.

2.3. Tianlai Noise Power Spectra

We first calculate the baseline distribution function n(u⊥)
of the interferometer. In a real interferometer, for a pair of
antennae with separation u, the output is actually the average
of the visibility on a region of the u–v plane centered at u.
Instead of the discrete histogram, therefore, we incorporate the
response function of an antenna pair R(u) (Ansari et al. 2012)
and derive a continuous function n(u⊥) with the caveat that only
n(u⊥)(Ae/λ

2) is physically meaningful in this formalism. For
the Tianlai cylinder array with receivers fixed along the focal
lines of the cylinders, the pair response pattern of a cylinder can
be approximated as a two-dimensional triangular function with
rectangular support (Thompson et al. 2001; Ansari et al. 2008,
2012), which is set by the cylinder width W in the east–west
direction, ∆uW = W/λ, and the feed length L in the north–south
direction, ∆uL = L/λ:

R(u⊥) =
(

λ2

Ae

)
Λ

(
uL

∆uL

)
Λ

(
uW

∆uW

)
. (27)

Here, the triangular function Λ(x) is defined as 1 − |x| for
|x| < 1, and 0 otherwise. The baseline number density n(u⊥)
could be obtained simply by summing up R(u) for all of the
baselines, i.e.,

n(u⊥) =
nb∑

i

R(u⊥ − ui
⊥). (28)
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The thermal noise of the measurement can be written as

δVαβ,[K](u⊥, ν) =
λ2 Tsys

Ae

√
∆νtu

, (17)

where ∆ν is the observed full bandwidth, tu is the integration
time of this baseline, Tsys is the system temperature per polar-
ization (we assume Tsys = 50 K in this paper), and Ae is the
effective collecting area of each element. We can make a further
Fourier transform of the visibility with respect to ν, to obtain
the so-called visibility delay spectrum (Parsons et al. 2012),

Vαβ,[K·MHz](u⊥, u∥) =
∫

dνe−i2πνu∥Vαβ,[K](u⊥, ν). (18)

Now the three-dimensional vector u ≡ {u⊥, u∥} is the Fourier
conjugate of the sky position vector θ = {n̂, ν}. The thermal
noise in this representation is then (Morales 2005)

∆TN (u) =
Tsys√
∆νtu

(
λ2∆ν

Ae

)
. (19)

Here, the factor λ2∆ν/Ae represents the Fourier space resolution
of the observation, in the sense that any two vectors within it
will be highly correlated.

For the extraction of cosmological information, we are
interested in the correlation function of the visibilities measured
at the discrete baselines ui and uj . If we neglect the correlation
of thermal noise errors between measurements, then the noise
covariance matrix for visibilities is approximately diagonal, and
can be written as (McQuinn et al. 2006; Bharadwaj & Pandey
2003)

CN (ui , u j ) = ⟨"T N (ui )"T ∗
N(u j )⟩ =

(
λ2 T sys"ν

Ae

)2
δij

"ν tu
.

(20)

The integration time for the baseline u can be written as

tu = Ae

λ2
n(u⊥)tint, (21)

where n(u⊥) is the baseline number density of the interferometer
in the u−v plane, and Ae/λ

2 ≈ δu δv is the u-space resolution.
For an observation with a survey area of Ωmap larger than the
field of view ΩFOV and uniform survey coverage, the integration
time of each pointing tint = ttot(ΩFOV/Ωmap).

The sample variance contribution to the covariance matrix is
(McQuinn et al. 2006)

CSV(ui , u j ) = ⟨δTb(ui)δT ∗
b (uj )⟩

≈ δij

∫
d3u|R(ui − u)|2P∆T (u)

≈ δij

λ2∆ν2

r2
a (z)∆r(z)Ae

P∆T (ki⊥, ki∥), (22)

where P∆T is the 21 cm signal power spectrum. Here, R(ui − u)
is the response function for a given baseline ui , which is defined
as the Fourier transform of the primary beam Aα(n̂, ν)A∗

β (n̂, ν)
in Equation (15). The Kronecker δij arises due to the choice
of a pixel size that is approximately the same as the support
of function R(u). The integration of |R|2 then introduces a
factor that approximately equals the inverse of the Fourier space

resolution, λ2∆ν/Ae, due to the normalization of R(u). Here,
∆r = y(z)∆ν is the spatial resolution corresponding to the
bandwidth ∆ν. The comoving angular diameter distance ra(z)
and the factor y(z) = λ21(1 + z)2/H (z) are used to convert the
power spectrum from u space to the comoving k space:

u⊥ = ra(z)k⊥

2π
, u∥ = y(z)k∥

2π
. (23)

Given the total covariance matrix C = CN + CSV, one could
then estimate the measurement uncertainty of the bandpower
from the Fisher matrix

Fab = Tr
[

C−1 ∂C
∂ pa

C−1 ∂C
∂ pb

]
, (24)

where the parameter pa is the bandpower pa = P∆T (ka). For
diagonal C, the measurement error δP∆T is

δP∆T (ki) = 1√
Nc(ki)
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[
CN (ki , ki) + CSV(ki , ki)

]

= 1√
Nc(ki)

[
P N (ki) + P SV(ki)

]
, (25)

where the number of modes Nc(k) = k⊥dk⊥dk∥ V/(2π )2, with
V being the survey volume. Here we have denoted the signal
power spectrum in the sample variance term as the sample
variance power spectrum, i.e., P SV(ki) = P∆T (ki), and the noise
power spectrum P N (k) is

P N (k, z) =
4πfskyλ
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sys y(z) ra(z)2
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(
λ2

Ae n(k⊥)

)
, (26)

where fsky is the fraction of the sky coverage, i.e., fsky =
Ωmap/4π , and ΩFOV is the field of view of a single pointing.

2.3. Tianlai Noise Power Spectra

We first calculate the baseline distribution function n(u⊥)
of the interferometer. In a real interferometer, for a pair of
antennae with separation u, the output is actually the average
of the visibility on a region of the u–v plane centered at u.
Instead of the discrete histogram, therefore, we incorporate the
response function of an antenna pair R(u) (Ansari et al. 2012)
and derive a continuous function n(u⊥) with the caveat that only
n(u⊥)(Ae/λ

2) is physically meaningful in this formalism. For
the Tianlai cylinder array with receivers fixed along the focal
lines of the cylinders, the pair response pattern of a cylinder can
be approximated as a two-dimensional triangular function with
rectangular support (Thompson et al. 2001; Ansari et al. 2008,
2012), which is set by the cylinder width W in the east–west
direction, ∆uW = W/λ, and the feed length L in the north–south
direction, ∆uL = L/λ:

R(u⊥) =
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)
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)
Λ

(
uW

∆uW

)
. (27)

Here, the triangular function Λ(x) is defined as 1 − |x| for
|x| < 1, and 0 otherwise. The baseline number density n(u⊥)
could be obtained simply by summing up R(u) for all of the
baselines, i.e.,

n(u⊥) =
nb∑

i

R(u⊥ − ui
⊥). (28)

4

FT 


