

Measuring the Dark Energy and Primordial Non-Gaussianity: Forecasts for the Tianlai Cylinder Array

Yidong Xu (NAOC), Xin Wang (JHU), Xuelei Chen (NAOC)

2015-09-08@Balikun

Xu, Wang & Chen 2015, ApJ, 798, 40

Outline

- Introduction

- Baryon Acoustic Oscillations (BAO) and Dark Energy
- The primordial non-Gaussianity (PNG) and its imprint on the large scale structure
- Intensity Mapping and the Tianlai Cylinder Array

- The Power Spectrum Measurement with Tianlai Intensity Mapping

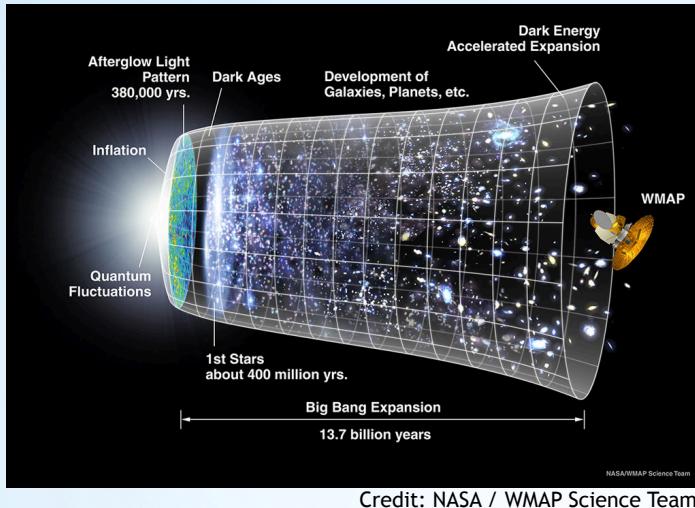
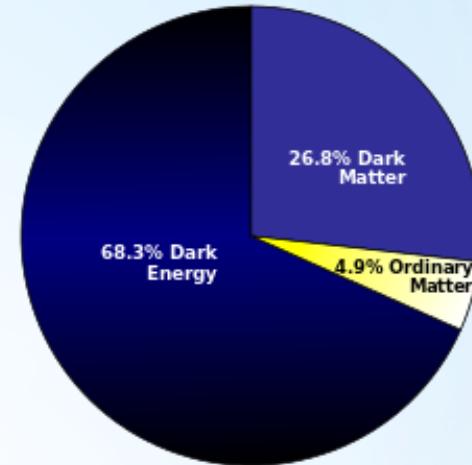
- Signal power spectrum and noise power spectrum

- Fisher Forecast on the Constraint on Dark Energy

- Fisher Forecasts for the PNG

- PNG from scale-dependent bias
- PNG from bispectrum

Dark Energy and its Probes



Proportion of dark energy, dark matter, and ordinary matter in the universe.

* “Seeing” the dark energy via...

➤ The expansion rate of the universe:

$$\frac{H(z)}{H_0} = \left[\Omega_m (1+z)^3 + \Omega_k (1+z)^2 + \Omega_X e^{3 \int_0^z \frac{1+w(z')}{1+z'} dz'} \right]^{1/2}$$

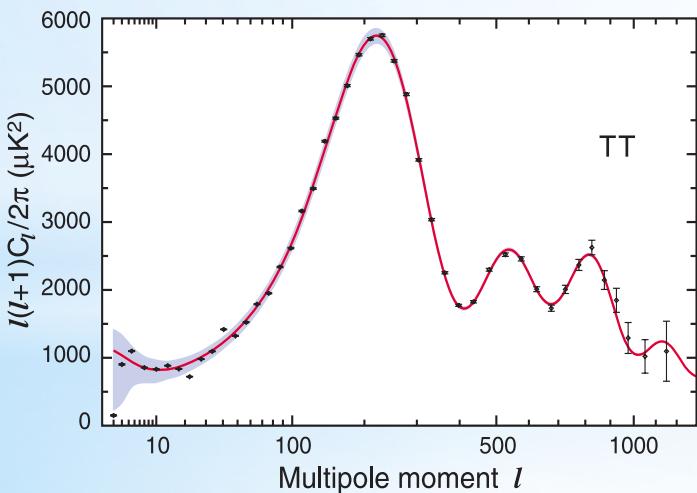
➤ The growth rate of structures $f(z)$:

crucial for testing extra ρ
components vs modified gravity.

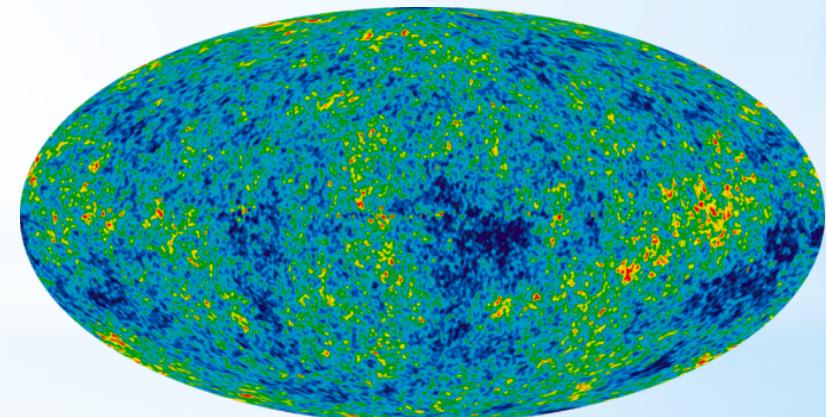
- ✓ Standard candles:
 - measure d_L (integral of H^{-1})
- ✓ Standard rulers:
 - measure d_A (integral of H^{-1}) and $H(z)$

Baryon Acoustic Oscillations - the cosmological standard ruler

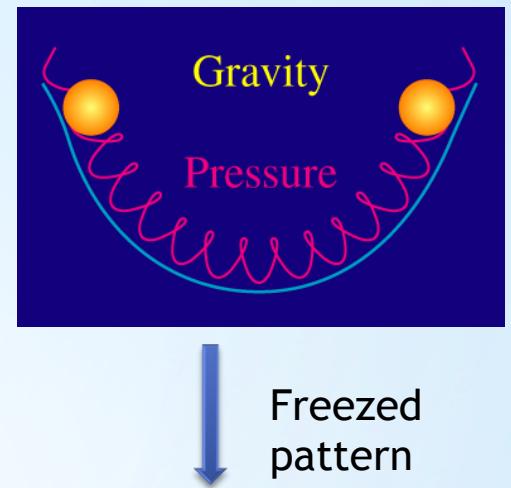
- * BAOs are the frozen sound waves that were present in the photon-baryon plasma prior to recombination.
- * The standard ruler of the sound horizon at the last scattering surface
 - * $r_s(z_d) = 153.3 \pm 2.0 \text{ Mpc}$ (Komatsu et al. 2009)



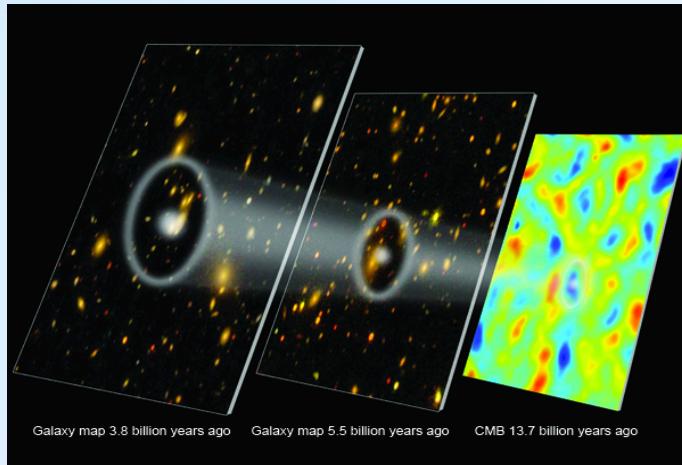
Statistical standard ruler



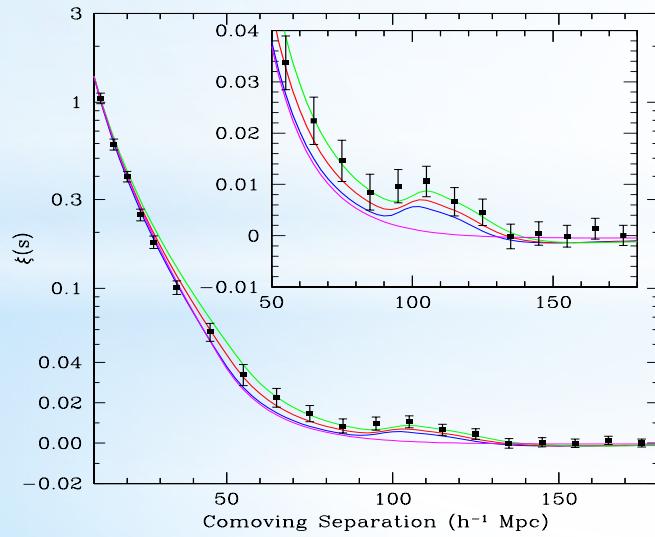
Temperature anisotropies of the CMB based on the nine year WMAP data (2012). (Credit: NASA / WMAP Science Team)



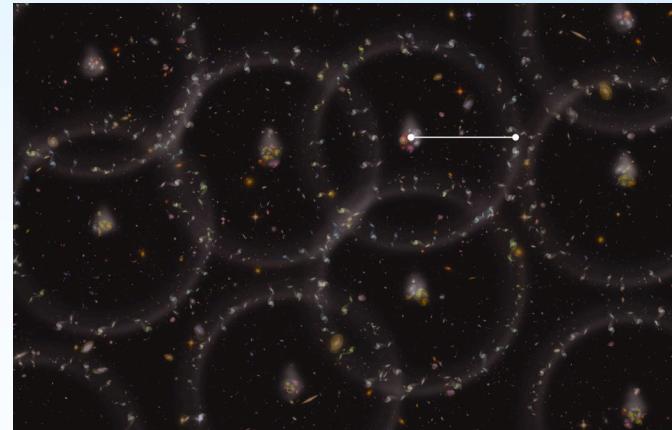
Baryon Acoustic Oscillations on large-scale structures



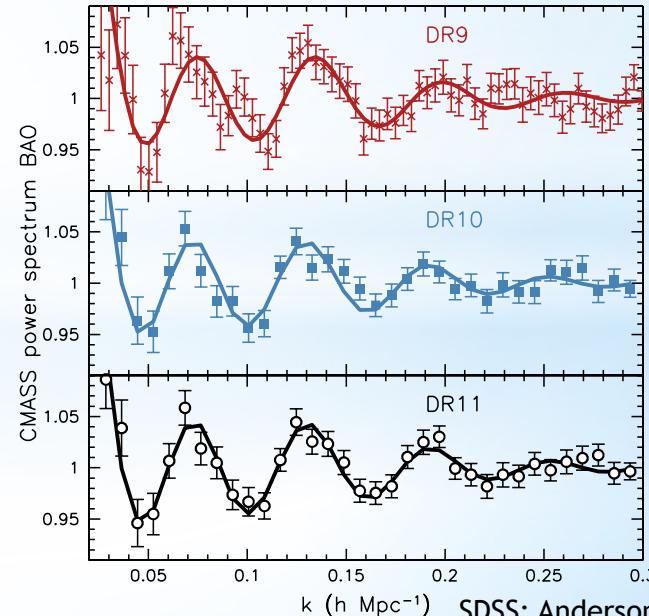
(E.M. Huff, the SDSS-III team, and the South Pole Telescope team.
Graphic by Zosia Rostomian.)



BAP in the clustering of the SDSS LRG galaxy sample (Eisenstein et al. 2005)



An artist's illustration depicting exaggerated BAOs in the distant universe. (Zosia Rostomian (LBNL), SDSS-III, BOSS)



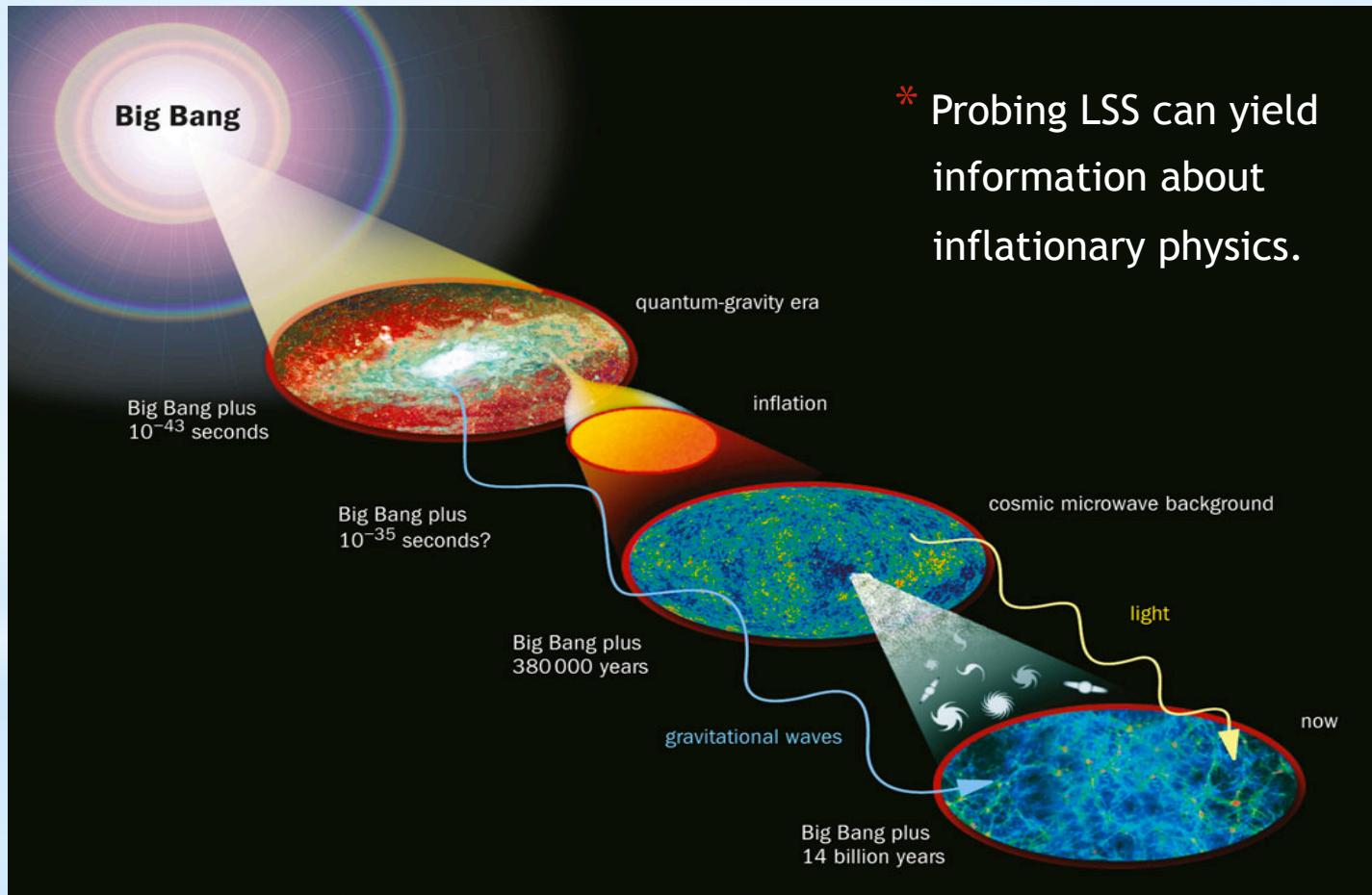
SDSS: Anderson et al. 2014

Baryon Acoustic Oscillations as a Probe of Dark Energy

- * The BAOs imprint features on the CMB as well as large-scale structures (LSS) in the later universe.
- a standard ruler at various z to measure the angular diameter distance $D_A(z)$ and the Hubble parameter $H(z)$
- expansion rate
- properties of dark energy

The LSS as a Probe of the Primordial Non-Gaussianity

- * Inflation → Initial density perturbations → Structure Formation → LSS today



(Courtesy: NASA)

The LSS as a Probe of the Primordial Non-Gaussianity

- * Standard slow-roll inflation - nearly Gaussian density fields

$$\langle \Phi(\mathbf{k}) \Phi^*(\mathbf{k}') \rangle = (2\pi)^3 \delta_D(\mathbf{k} - \mathbf{k}') P_\Phi(k)$$

- * Other inflation mechanisms - potentially detectable non-Gaussianity
- * Lowest order non-Gaussianity: bispectrum

$$\langle \Phi(\mathbf{k}_1) \Phi(\mathbf{k}_2) \Phi(\mathbf{k}_3) \rangle = (2\pi)^3 \delta_D(\mathbf{k}_{123}) B_\Phi(k_1, k_2, k_3).$$

$$B_\Phi(k_1, k_2, k_3) \equiv f_{\text{NL}} F(k_1, k_2, k_3)$$

amplitude shape
(Model-dependent)

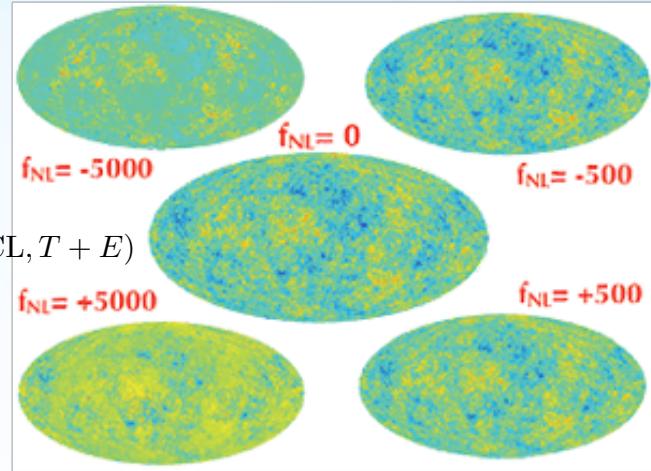
- * The PNG as a powerful probe to the dynamics of inflation.

The LSS as a Probe of the Primordial Non-Gaussianity

* PNG imprint on the CMB:

- Angular bispectrum measurement

$$\begin{pmatrix} f_{\text{NL}}^{\text{loc}} = 2.5 \pm 5.7 \\ f_{\text{NL}}^{\text{eq}} = -16 \pm 70 \\ f_{\text{NL}}^{\text{forth}} = -34 \pm 33 \end{pmatrix} \text{ (68\% CL, } T\text{)} \quad \begin{pmatrix} f_{\text{NL}}^{\text{loc}} = 0.8 \pm 5.0 \\ f_{\text{NL}}^{\text{eq}} = -4 \pm 43 \\ f_{\text{NL}}^{\text{forth}} = -26 \pm 21 \end{pmatrix} \text{ (68\% CL, } T + E\text{)}$$



* PNG effects on LSS:

- High-order correlations of galaxy distribution - bispectrum, trispectrum

(e.g. Sefusatti & Komatsu 2007)

- Abundance of rare objects - cluster number density

(e.g. Afshordi & Tolley 2008; Dalal *et al.* 2008)

- The large-scale clustering of halos - scale-dependent bias

(e.g. Dalal *et al.* 2008; Desjacques *et al.* 2011)

LSS measured in radio - HI galaxy survey

- * Currently: ALFALFA
 - * limited to $z < \sim 0.2$
- * Upcoming: FAST, ASKAP, MeerKAT
 - * Higher sensitivities, but still challenging at high redshift
- * Future: SKA
 - * Comparable to the existing optical galaxy surveys (Rawlings et al. 2004; Abdalla et al. 2010)

HI Intensity Mapping

- * The 21 cm intensity mapping technique
 - * During EoR - HI gas in the IGM → Post-EoR - HI gas in halos
- * 21 cm cosmology with *intensity mapping*
 - * High efficiency
 - * Map the large scale structure at $0 < z < 3$
 - * Tested with the Green Bank Telescope (GBT) and the Parkes telescope

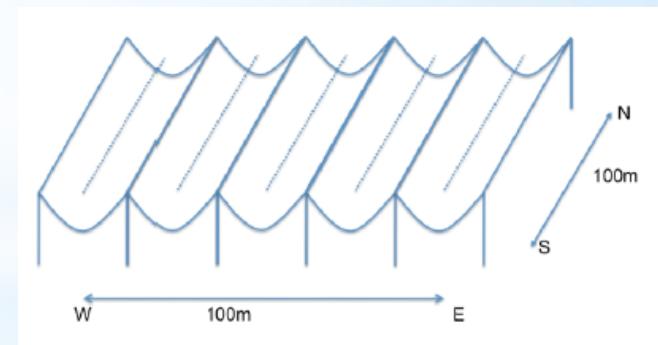
(Chang et al. 2010; Masui et al. 2013; Switzer et al. 2013)

- * The cylinder interferometer array design

- * Tianlai (天籁)
- * CHIME

- * Competitive with Stage III dark energy experiments

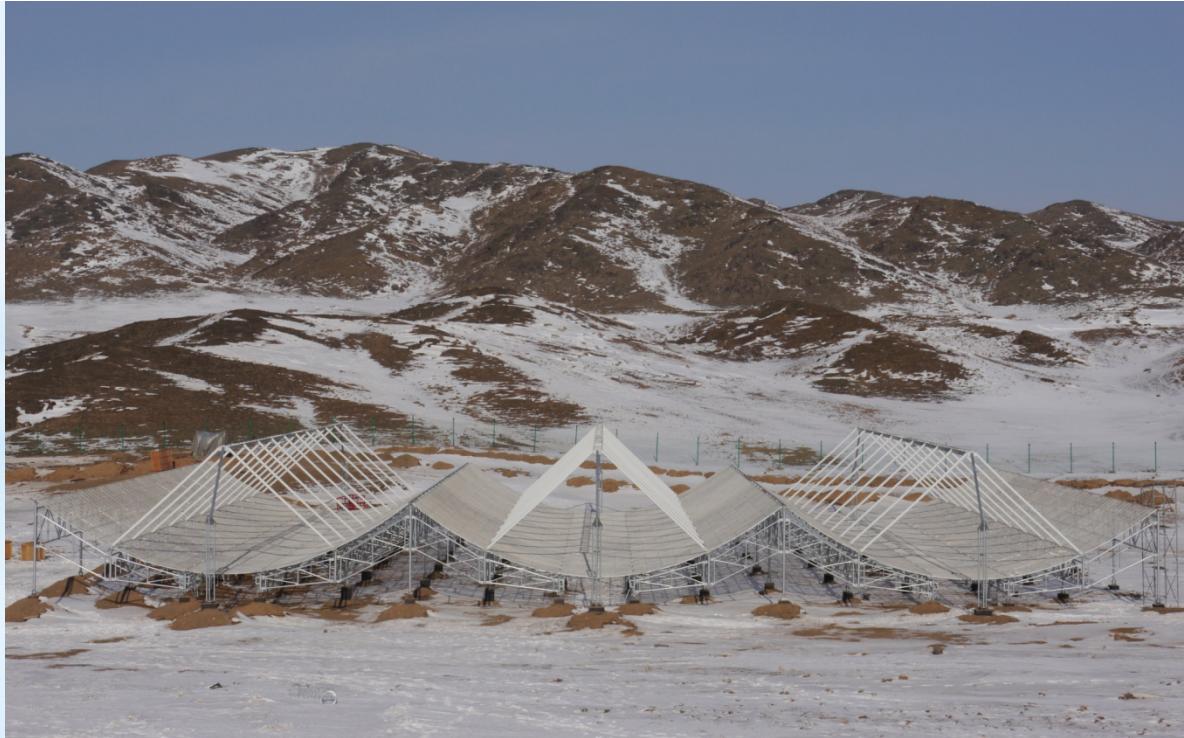
(e.g. Chang et al. 2008; Seo et al. 2010; Ansari et al. 2012)



The Tianlai cylinder array

表 1.1: The experiment parameters for Tianlai.

	cylinders	width	length	dual pol. units/cylinder	Frequency
Pathfinder	3	15 m	40 m	32	700 – 800 MHz
Pathfinder+	3	15 m	40 m	72	700 – 800 MHz
Full scale	8	15 m	120 m	256	400 – 1420 MHz



The Power Spectrum Measurement with Tianlai Intensity Mapping

* The Signal Power Spectrum

$$P_{\text{obs}}(k_{\text{ref}\perp}, k_{\text{ref}\parallel}) = \frac{D_A(z)_{\text{ref}}^2 H(z)}{D_A(z)^2 H_{\text{ref}}(z)} \left(b_1^{\text{HI}}(z) + f(z) \frac{k_{\parallel}^2}{k_{\perp}^2 + k_{\parallel}^2} \right)^2 \times G(z)^2 P_{\text{m0}}(k) + P_{\text{shot}}, \quad (2)$$

$$\frac{H(z)}{H_0} = \left[\Omega_m(1+z)^3 + \Omega_k(1+z)^2 + \Omega_X e^{3 \int_0^z \frac{1+w(z')}{1+z'} dz'} \right]^{1/2}$$

and

$$D_A(z) = \frac{c}{1+z} \int_0^z \frac{dz'}{H(z')}.$$

- The linear growth rate $f(z)$ affects the observed power spectrum

through the RSD factor β , by $\beta = f(z)/b_1^{\text{HI}}(z)$,

and through the linear growth factor $G(z)$ by $f = \frac{d \ln G(a)}{d \ln a} = -\frac{(1+z)}{G(z)} \frac{dG(z)}{dz}$

The Signal Power Spectrum

- * The intensity mapping measures the power spectrum of brightness temperature δT_b due to 21cm emission:

$$P_{\Delta T}(\mathbf{k}) = \bar{T}_{\text{sig}}^2 P_{\text{obs}}(\mathbf{k}),$$

$$\bar{T}_{\text{sig}} = 190 \frac{x_{\text{HI}}(z) \Omega_{\text{H},0} h (1+z)^2}{H(z) / H_0} \text{ mK},$$

- * The HI bias model:

$$b_i^{\text{HI}}(z) = \frac{\int_{M_{\text{min}}}^{M_{\text{max}}} dM n(M, z) M_{\text{HI}}(M) b_i(M, z)}{\rho_{\text{HI}}},$$

(Gong et al. 2011)

Generalized Noise Power Spectrum

- * The correlation function of the visibilities measured at the discrete baselines u_i and u_j
- * The ***noise covariance matrix for visibilities*** (McQuinn et al. 2006; Bharadwaj & Pandey 2003)

$$C^N(u_i, u_j) = \langle \Delta T_N(u_i) \Delta T_N^*(u_j) \rangle = \left(\frac{\lambda^2 T_{\text{sys}} \Delta \nu}{A_e} \right)^2 \frac{\delta_{ij}}{\Delta \nu t_u}.$$

- * The ***sample variance*** contribution to the covariance matrix is (McQuinn et al. 2006)

$$\begin{aligned} C^{\text{SV}}(u_i, u_j) &= \langle \delta T_b(u_i) \delta T_b^*(u_j) \rangle \\ &\approx \delta_{ij} \int d^3 u |R(u_i - u)|^2 P_{\Delta T}(u) \\ &\approx \delta_{ij} \frac{\lambda^2 \Delta \nu^2}{r_a^2(z) \Delta r(z) A_e} P_{\Delta T}(k_{i\perp}, k_{i\parallel}), \end{aligned}$$

Generalized Noise Power Spectrum

- * The total covariance matrix $\mathbf{C} = \mathbf{C}^N + \mathbf{C}^{\text{SV}}$
- * Uncertainty of bandpower from the Fisher matrix:

$$F_{ab} = \text{Tr} \left[\mathbf{C}^{-1} \frac{\partial \mathbf{C}}{\partial \mathbf{p}_a} \mathbf{C}^{-1} \frac{\partial \mathbf{C}}{\partial \mathbf{p}_b} \right]$$

→ the measurement error:

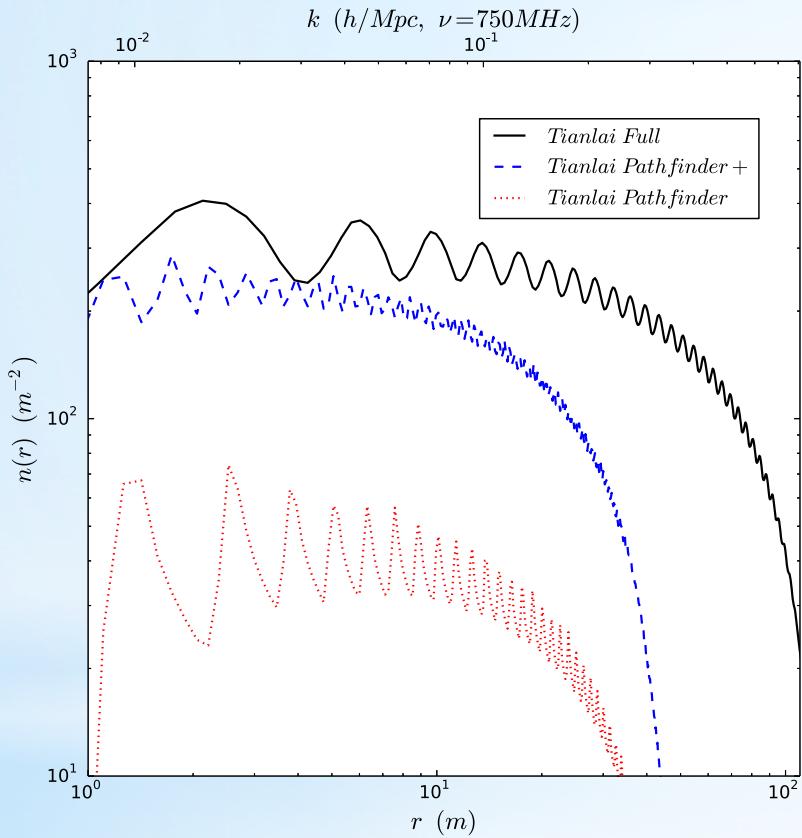
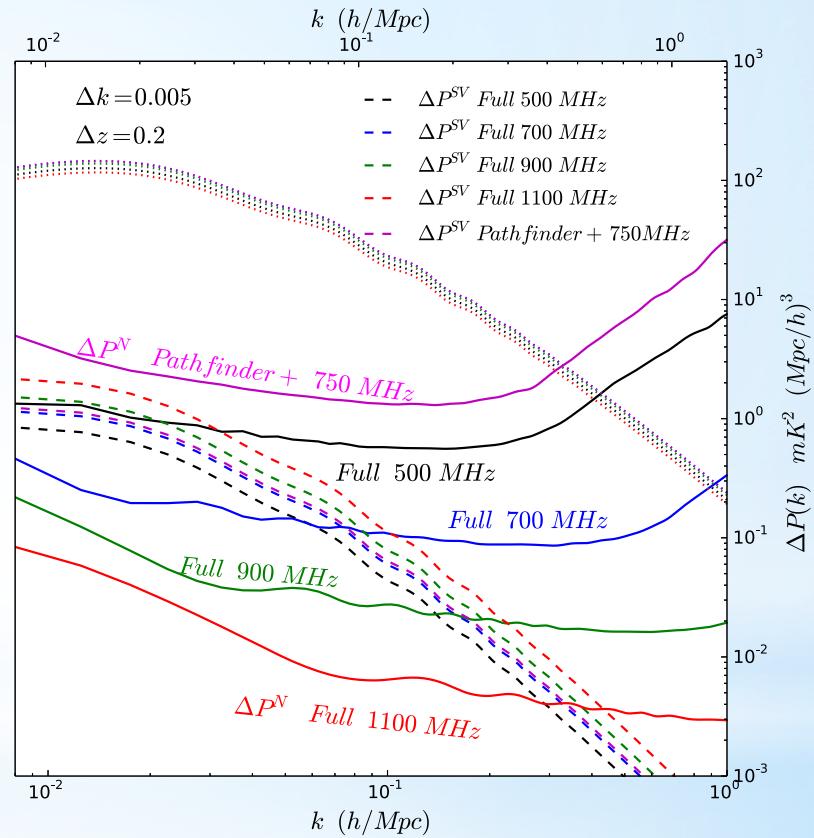
$$\begin{aligned} \delta P_{\Delta T}(\mathbf{k}_i) &= \frac{1}{\sqrt{N_c(\mathbf{k}_i)}} \frac{A_e r_a^2 \Delta r}{\lambda^2 \Delta \nu^2} [C^N(\mathbf{k}_i, \mathbf{k}_i) + C^{\text{SV}}(\mathbf{k}_i, \mathbf{k}_i)] \\ &= \frac{1}{\sqrt{N_c(\mathbf{k}_i)}} [P^N(\mathbf{k}_i) + P^{\text{SV}}(\mathbf{k}_i)], \end{aligned} \quad (25)$$

- * The noise power spectrum:

$$P^N(k, z) = \frac{4\pi f_{\text{sky}} \lambda^2 T_{\text{sys}}^2 y(z) r_a(z)^2}{A_e \Omega_{\text{FOV}} t_{\text{tot}}} \left(\frac{\lambda^2}{A_e n(\mathbf{k}_\perp)} \right)$$

Baseline distribution

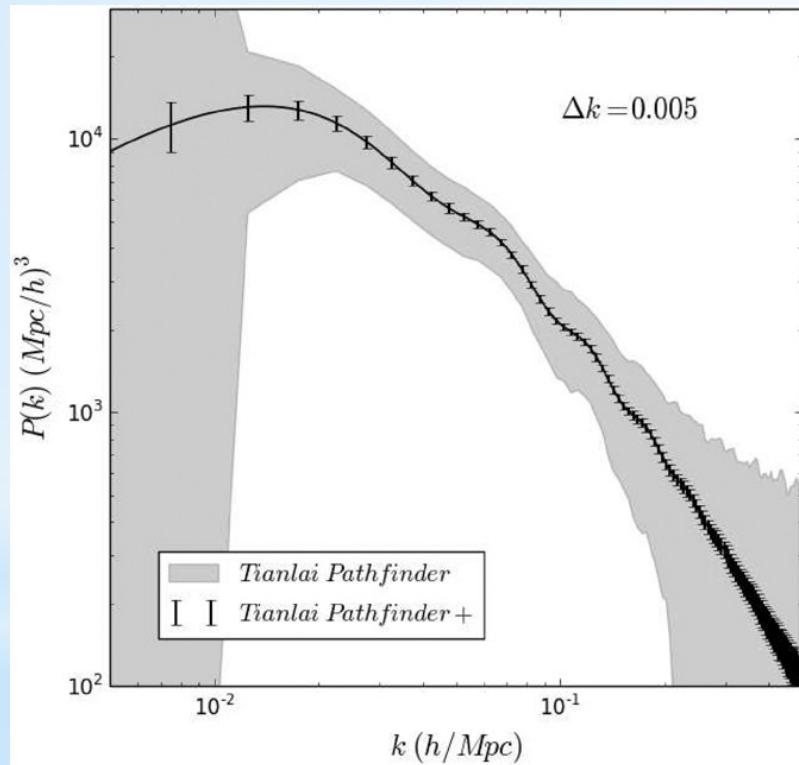
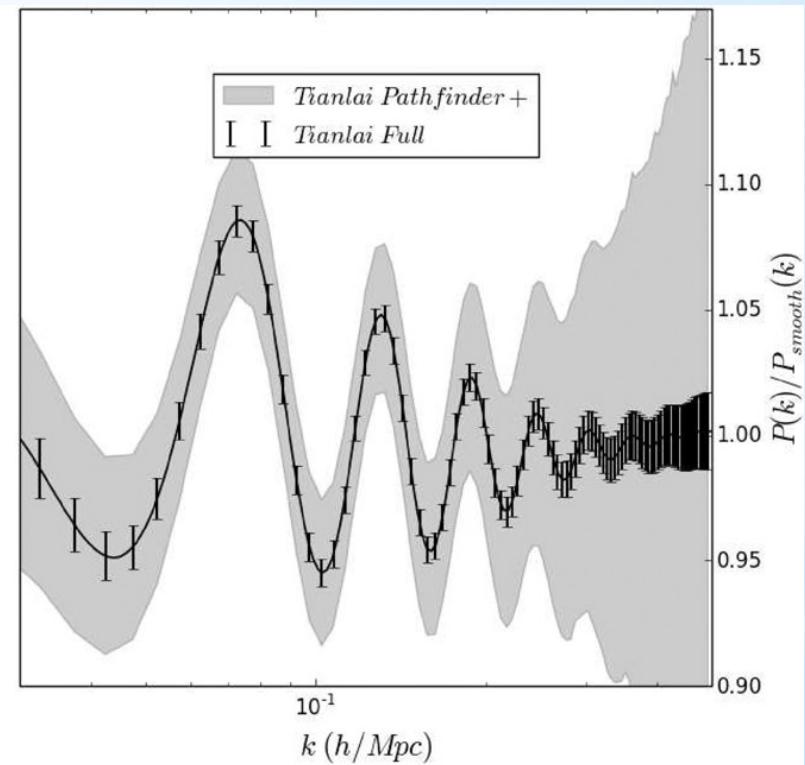
Tianlai Noise Power Spectra



The Power Spectrum with Expected Tianlai Errors

*

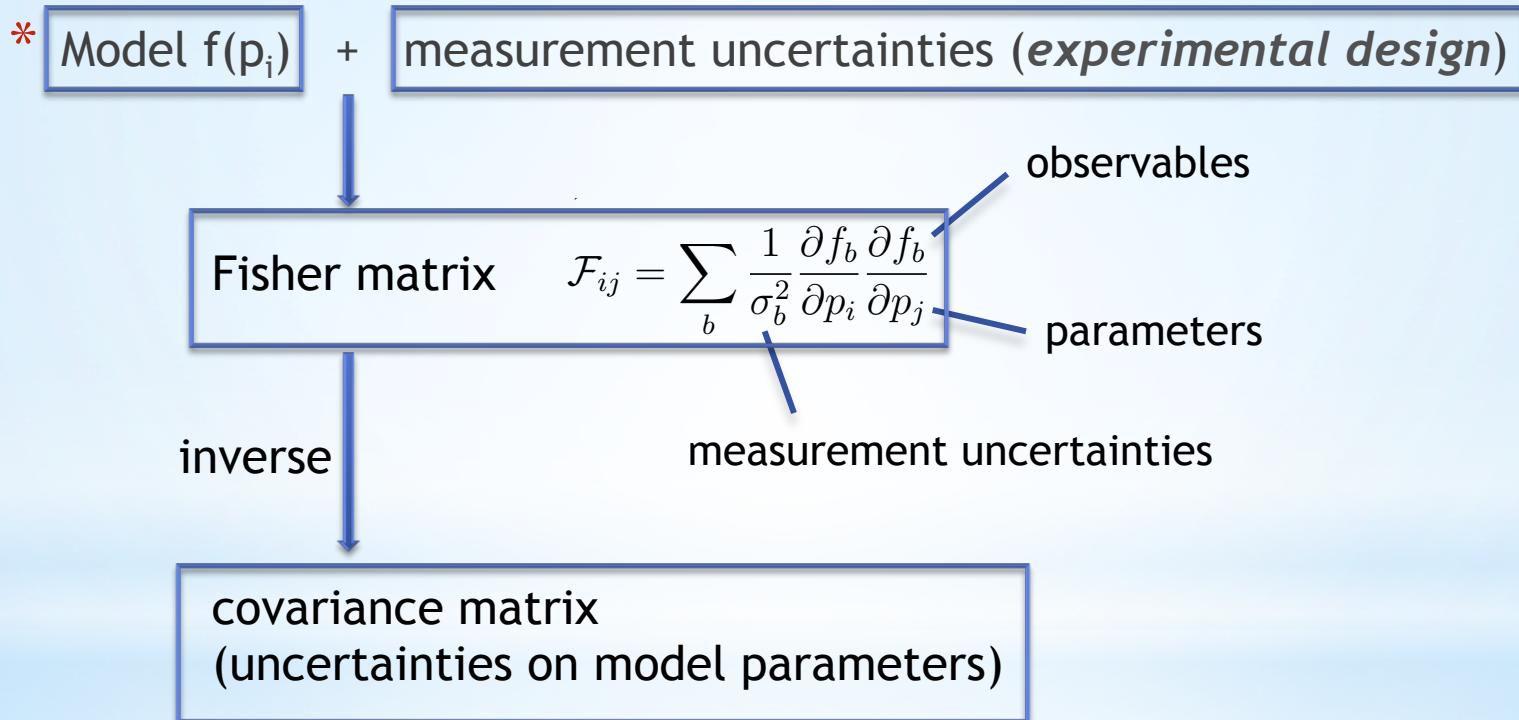
$$\Delta P_{\text{obs}}(\mathbf{k}) = \frac{1}{\sqrt{N_c}} [P_{\text{obs}}(\mathbf{k}) + N(k)],$$



survey area: 10,000 deg², integration time: 1 year.

The Fisher Information Matrix

- * To predict how well the experiment will be able to constrain the model parameters, *before doing the experiment*.



- * The Cramer-Rao limit: $\Delta p_i \geq (\mathbf{F}^{-1})_{ii}^{1/2}$

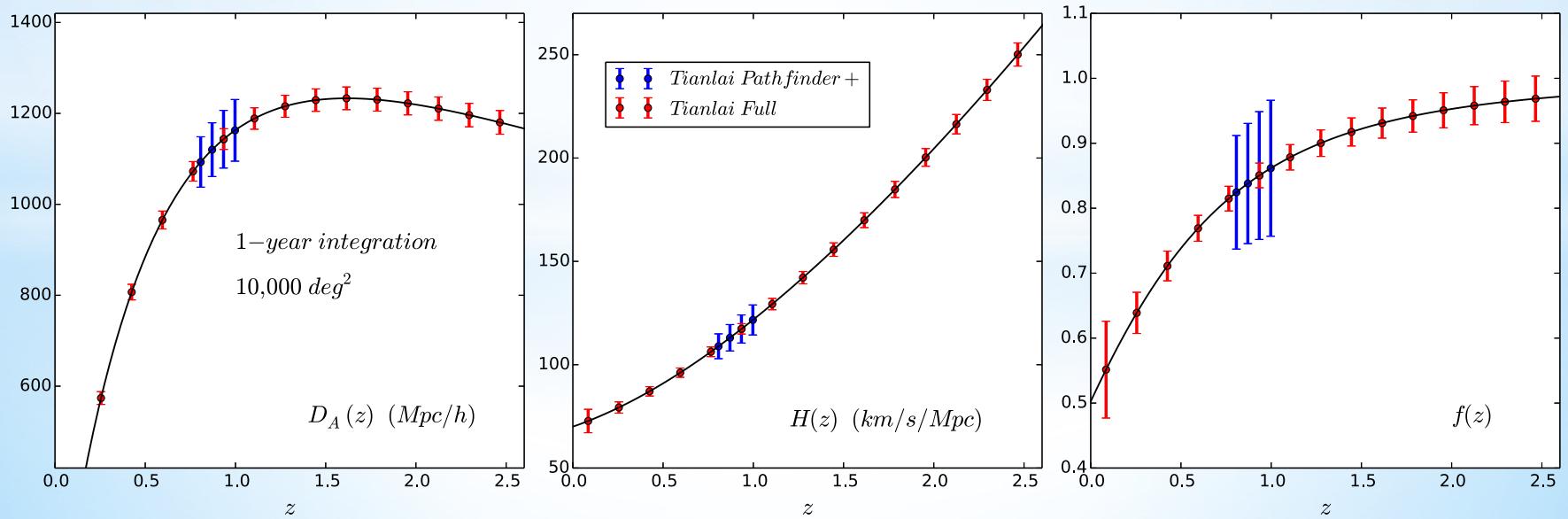
Fisher Forecast on the Constraint on Dark Energy

- * From the power spectrum measurement at a given redshift, the Fisher information matrix: (Tegmark 1997; Seo & Eisenstein 2003; Mao et al. 2008)

$$F_{\alpha\beta} = \sum_k \left[\frac{\partial P_{\text{obs}}(\mathbf{k})}{\partial \alpha} \frac{\partial P_{\text{obs}}(\mathbf{k})}{\partial \beta} \right] / [\Delta P_{\text{obs}}(\mathbf{k})]^2$$

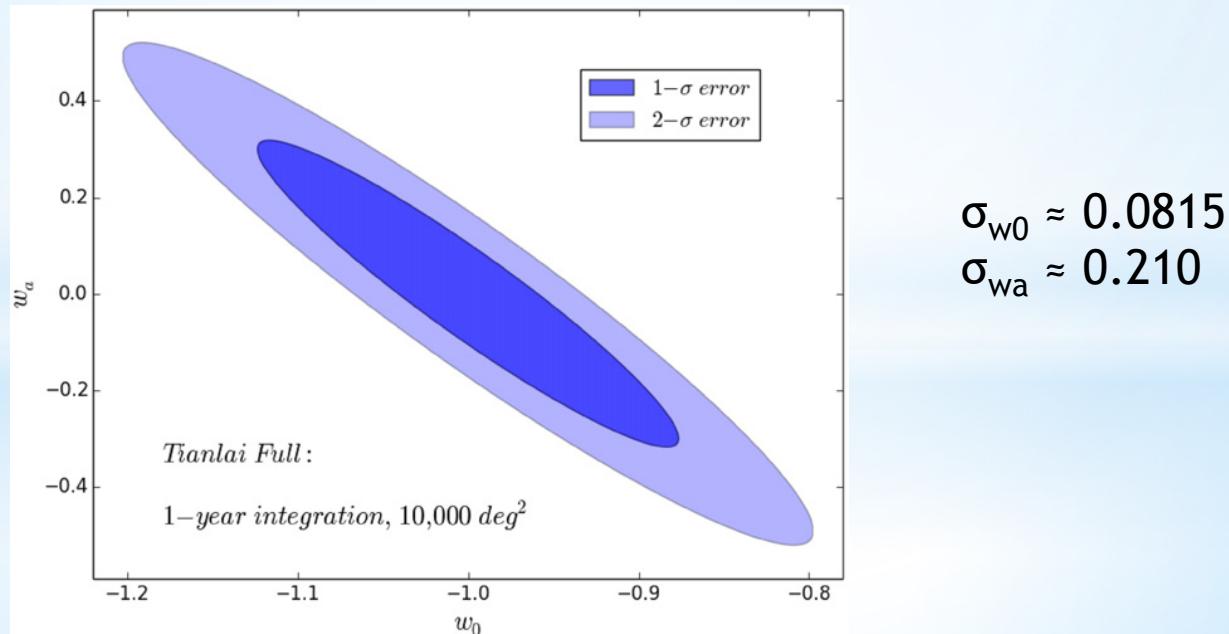
Free parameters α and β : $\{D_A(z_i), H(z_i), b_{1,i}^{\text{HI}}, f(z_i), \text{ and } P_{\text{shot},i}\}$

Nuisance parameters: $\{b_{1,i}^{\text{HI}}, P_{\text{shot},i}\}$



Fisher Forecast on the Constraint on Dark Energy

- * DE parameterization: $w(z) = w_0 + w_a[1 - a(z)] = w_0 + w_a \frac{z}{1+z}.$
- * Converting the parameter space: $F_{mn}^{DE} = \sum_{\alpha,\beta} \frac{\partial p_\alpha}{\partial q_m} F_{\alpha\beta}^{dis} \frac{\partial p_\beta}{\partial q_n}.$
- * Combine with CMB observations (Wang et al. 2009): $F_{\alpha\beta}^{\text{tot}} = F_{\alpha\beta}^{\text{CMB}} + \sum_i F_{\alpha\beta}^{\text{IM}}(z_i),$



Fisher Forecasts for the PNG

- * HI -- a less biased tracer of the underlying matter density

(1) A scale-dependent and redshift-dependent HI bias

- * Most prominent on very large scale - suitable for intensity mapping
- * Camera et al. (2013): a small but compact array working at ~ 400 MHz could possibly achieve $\sigma_{fNL} \sim 1$.

(2) Bispectrum of HI gas distribution

- * The relative importance of primordial non-Gaussianity increases toward higher redshifts

Constraints on f_{NL} from the HI Power Spectrum

- * For the standard local type PNG, the scale-dependent non-Gaussian correction to the linear halo bias:

$$\Delta b^d(k, z) = \frac{2 f_{NL} (b_1^G - 1) \delta_c}{\mathcal{M}(k, z)}$$

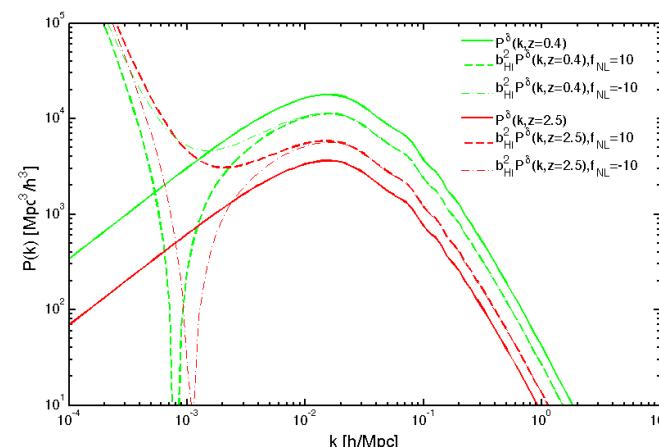
halo bias

- * The HI bias factors: $b_i^{\text{HI}}(z) = \frac{\int_{M_{\min}}^{M_{\max}} dM n(M, z) M_{\text{HI}}(M) b_i(M, z)}{\rho_{\text{HI}}}$

- * The observed HI power spectrum:

$$P_s(k, z) = a_0^P(\beta) P_{\text{HI}}(k, z)$$

where $P_{\text{HI}}(k, z) = [b_1^{\text{HI}}(k, z)]^2 P_{\text{L}}(k, z)$



Constraints on f_{NL} from the HI Power Spectrum

* The Fisher information matrix for f_{NL} :

$$F_{\alpha\beta} = \sum_k \left[\frac{\partial P_{\text{obs}}(\mathbf{k})}{\partial \alpha} \frac{\partial P_{\text{obs}}(\mathbf{k})}{\partial \beta} \right] / [\Delta P_{\text{obs}}(\mathbf{k})]^2$$

$$\Delta P_{\text{obs}}(\mathbf{k}) = \frac{1}{\sqrt{N_c}} [P_{\text{obs}}(\mathbf{k}) + N(k)]$$

Table 2
The Predicted 1σ Errors of f_{NL} Using the HI Power Spectrum Measured by Tianlai

	Pathfinder	Pathfinder+	Full Scale
N_{feed} per cylinder	32	72	256
$\sigma_{f_{NL}}^{\text{local}}$	1504	161	14.1

survey area = 10000 deg², integration time = 1 year.

Constraints on f_{NL} from the HI Bispectrum

- * The tree-level expression for the reduced HI bispectrum in redshift space after averaging over angles in k space:

$$Q_s(k_1, k_2, k_3) = \frac{a_0^B(\beta)}{[a_0^P(\beta)]^2} \left[\frac{1}{b_1^{\text{HI}}} Q^{\text{tree}}(k_1, k_2, k_3) + \frac{b_2^{\text{HI}}}{(b_1^{\text{HI}})^2} \right]$$

- * The reduced matter bispectrum

$$\begin{aligned} Q^{\text{tree}}(k_1, k_2, k_3) &= Q_I(k_1, k_2, k_3) + Q_G(k_1, k_2, k_3) \\ &= \frac{B_I(k_1, k_2, k_3)}{P_L(k_1)P_L(k_2) + (2 \text{ perm.})} + \frac{B_G(k_1, k_2, k_3)}{P_L(k_1)P_L(k_2) + (2 \text{ perm.})} \end{aligned}$$

1 - primordial non-Gaussianity

$$B_I(k_1, k_2, k_3) = \mathcal{M}(k_1; z) \mathcal{M}(k_2; z) \mathcal{M}(k_3; z) \underline{B_\Phi(k_1, k_2, k_3)}$$

$\left. \begin{array}{l} \text{Local model} \\ \text{Equilateral model} \\ \dots \end{array} \right\}$

3 - non-linear bias

2 - non-linear gravitational evolution

Constraints on f_{NL} from the HI Bispectrum

- * The Fisher matrix for observations of reduced bispectrum at a given redshift bin:

$$F_{\alpha\beta} \equiv \sum_{k_1=k_{\min}}^{k_{\max}} \sum_{k_2=k_{\min}}^{k_1} \sum_{k_3=k_{\min}^*}^{k_2} \frac{\partial Q_s}{\partial \alpha} \frac{\partial Q_s}{\partial \beta} \frac{1}{\Delta Q_s^2},$$

- * The variance of the reduced HI bispectrum in redshift space:

$$\Delta Q_s^2(k_1, k_2, k_3) \simeq \frac{\Delta B_s^2(k_1, k_2, k_3)}{[P_s(k_1)P_s(k_2) + (2 \text{ perm.})]^2}$$

(Sefusatti & Komatsu 2007)

$$\Delta B_s^2(k_1, k_2, k_3) \simeq (2\pi)^3 V_f \frac{S_{123}}{V_B} P_{\text{tot}}(k_1) P_{\text{tot}}(k_2) P_{\text{tot}}(k_3),$$

(Scoccimarro et al. 1998)

The total measured power spectrum = $P_{\text{obs}}(\mathbf{k}) + N(k)$

Noise power spectrum

Constraints on f_{NL} from the HI Bispectrum

- * The PNG from *Tianlai* intensity mapping

Table 3

The Marginalized 1σ Errors of f_{NL} Using the HI Bispectrum Measured by Tianlai

N_{feed} per cylinder	Pathfinder	Pathfinder+	Full Scale
	32	72	256
$\sigma_{f_{NL}^{\text{local}}}^{\text{local}}$	70814	2272	21.7
$\sigma_{f_{NL}^{\text{local}}}^{\text{equil}}$	79427	2754	157

survey area = 10000 deg²,
integration time = 1 year,
system temperature = 50 K.

400 - 1420 MHz

- * The PNG from *SKA* intensity mapping

- * SKA1-mid (auto-correlation)

$$\sigma(f_{NL}^{\text{loc}}) = 45.7 \text{ and } \sigma(f_{NL}^{\text{eq}}) = 214.3$$

- * SKA2-mid (interferometry)

$$\sigma(f_{NL}^{\text{loc}}) = 6.6 \text{ and } \sigma(f_{NL}^{\text{eq}}) = 55.4$$

survey area = 20000 deg²,
integration time = 5000 hr,
system temperature = 25 K,
350 - 1420 MHz

Summary

- * The Tianlai experiment - a cylinder array to map the large-scale structure of matter distribution
- * Assuming $t_{\text{int}} \sim 1$ year and a survey area of $10,000 \text{ deg}^2$, we expect $\sigma_{w0} \sim 0.082$ and $\sigma_{wa} \sim 0.21$ from the BAO and RSD measurements. (This is comparable to stage IV dark energy experiments, while the cost would only be a small fraction of such experiments.)
- * To constrain PNG, we find $\sigma_{fNL}^{\text{local}} \sim 14$ from the power spectrum measurements with scale-dependent bias, and $\sigma_{fNL}^{\text{local}} \sim 22$ and $\sigma_{fNL}^{\text{equil}} \sim 157$ from the bispectrum measurements.

THANK YOU!

Generalized Noise Power Spectrum

* The visibility:

$$\begin{aligned}
 V_{\alpha\beta, [\text{Jy}]}(\mathbf{u}_{\alpha\beta}, \nu) &= \int d^2\hat{n} e^{-i2\pi\hat{n}\cdot\mathbf{u}_{\alpha\beta}} A_\alpha(\hat{n}, \nu) A_\beta^*(\hat{n}, \nu) I(\hat{n}, \nu) \\
 &\approx \int d^2\hat{n} e^{-i2\pi\hat{n}\cdot\mathbf{u}_\perp} A_\alpha(\hat{n}, \nu) A_\beta^*(\hat{n}, \nu) I(\hat{n}, \nu),
 \end{aligned}$$

Rayleigh-Jeans
approximation

* The thermal noise:

$$V_{\alpha\beta, [\text{K}]}(\mathbf{u}_\perp, \nu) = \int d^2\hat{n} e^{-i2\pi\hat{n}\cdot\mathbf{u}_\perp} A_\alpha(\hat{n}, \nu) A_\beta^*(\hat{n}, \nu) \delta T_b(\hat{n}, \nu). \quad \delta V_{\alpha\beta, [\text{K}]}(\mathbf{u}_\perp, \nu) = \frac{\lambda^2 T_{\text{sys}}}{A_e \sqrt{\Delta\nu t_u}}, \quad T_{\text{sys}} = 50 \text{ K}$$

FT w.r.t. ν

$$V_{\alpha\beta, [\text{K}\cdot\text{MHz}]}(\mathbf{u}_\perp, u_\parallel) = \int d\nu e^{-i2\pi\nu u_\parallel} V_{\alpha\beta, [\text{K}]}(\mathbf{u}_\perp, \nu). \quad \Delta T_N(\mathbf{u}) = \frac{T_{\text{sys}}}{\sqrt{\Delta\nu t_u}} \left(\frac{\lambda^2 \Delta\nu}{A_e} \right).$$

$$\mathbf{u} \equiv \{u_\perp, u_\parallel\} \quad \xleftrightarrow[\text{FT}]{\quad} \quad \boldsymbol{\theta} = \{\hat{n}, \hat{\nu}\}$$