Calibrating Agent-Based Models with Machine Learning Surrogates

Francesco LAMPERTI ^{1,2}, Antoine MANDEL ², Andrea ROVENTINI ¹, Amir SANI ²

¹Institute of Economics and LEM, Scuola Superiore Sant'Anna (Pisa)

²Université Paris 1 Pathéon-Sorbonne, Centre d'Economie de la Sorbonne and CNRS, Paris School of Economics

Macroeconomic Agent-Based Modeling Surrogates Workshop February 9th, 2016

What is the Problem?

What is our Approach?

Example

Evaluation Times

Empirical Results

Empirical Results

What is the Problem?

(many) Macroeconomic Agent-Based Models (ABMs) are

- computationally expensive
- defined by dozens of parameters
- hard to calibrate, estimate, test, explore *

^{*}Due to complex parameter-specific behaviours.

What are we proposing?

Machine Learning Surrogates!

Faster

► Agent-Based Model "Calibration" (e.g. Inference)

Faster

- ► Agent-Based Model "Calibration" (e.g. Inference)
- Scenario Stress Testing (e.g. Monte Carlo)

Faster

- ► Agent-Based Model "Calibration" (e.g. Inference)
- Scenario Stress Testing (e.g. Monte Carlo)
- Policy Exercises (e.g. Exploration)

Surrogate(ABM + "Calibration" Quality Test)	

 $Surrogate \left(\textbf{Brock \& Hommes} \ \mathsf{ABM} + \begin{array}{c} \mathsf{Kolmogorov-Smirnov} \\ \mathsf{Two \ Sample \ Test} \end{array} \right)$

Brock & Hommes (BH)

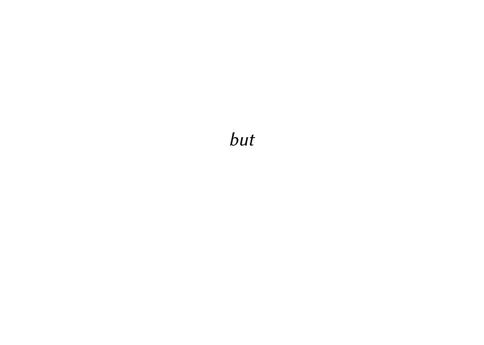
Very simple ABM with 10 parameters

Brock & Hommes

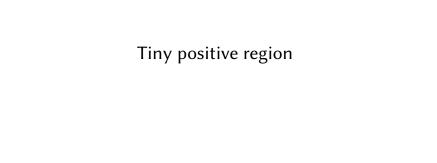
This model is **NOT** representative of complex Macroeconomic Agent-Based Models

Brock & Hommes

Smooth Learning Manifold



13.4 quadrillion combinations



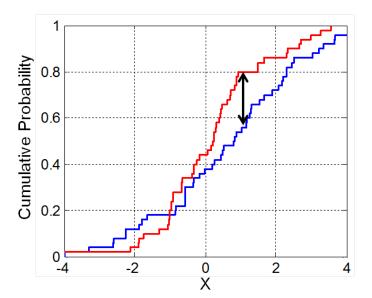
Enormous parameter space!

The Curse of Dimensionality!

How do we measure calibration quality?

Kolmogorov-Smirnov Two Sample Test (KS)

$$D_{n,n'} = \sup_{x} \left| F_{X^{SP500},n}(x) - F_{X^{BH},n'}(x) \right|$$



Single Evaluation

$$BH + KS = 0.30$$
 seconds

Policy Constraint

Security prices are not negative

Policy Constraint

Only run parameters y_i that pass the following constraint (filter),

$$S(T_1 * P + B_1) + (1 - S) * (T_2 * P + B_2) > 0,$$

where S is the share type, P is the initial deviation from the fundamental price, B_1 and B_2 are the bias of agent 1 and 2, and T_1 and T_2 are the trend of agent 1 and 2.

Simulation X

$$BH(y_i) = X^{BH}$$

Simulation Objective

 y_i that produce 250 Log Returns

An *obvious* Constraint

Length Filter

ABM simulations should produce **250** Log Returns

Length Filter

$$len(X^{\rm BH}) == 250$$

Length Filter (Density)

3,000 per 100,000[†]

[†]Random Latin Hypercube Sampling[4]

2-Sample KS Test

$$\mathsf{KS}(X^{\mathsf{SP500}}, X^{\mathsf{BH}}) = \{D_{X^{\mathsf{SP500}}, X^{\mathsf{BH}}}, \mathsf{p\text{-}value}\}$$

KS Threshold

p-value >0.05 $D_{\chi^{\mathrm{SP500}},\chi^{\mathrm{BH}}} <$ 0.20

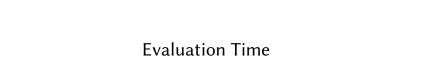
KS Threshold (Density)

55 per 1,000,000[‡]

[‡]Random Latin Hypercube Sampling[4]

Dataset

Highly Imbalanced!



Evaluation Time

 $1,000,000 \text{ samples} \approx 3.5 \text{ days}$

Evaluation Time

100 passing tests \approx 20.4 days

What about a Machine Learning Surrogate?

Surrogate Modeling

- Function Approximation [3]
- Meta-Modeling [1]
- "Response Surface" Methodology [2, 5]
- Experimental Design
- Model Emulation
- "Model of a Model"

- Draw 1,000,000 parameters using RLH
- Policy Constraint $\approx 500,000$
- Time to compute $y_i^{PC} \approx 0.25 \text{ secs}$

- Draw 1,000,000 parameters using RLH
- Policy Constraint ≈ 500,000
- Time to compute $y_i^{PC} \approx 0.25 \text{ secs}$
- BH $(y_i^{PC}) = X_i^{PC}$: 2,500 min
- Length Constraint $\approx 3,000 \ y_i^{\text{PC,len}}$: 5 min

- Draw 1,000,000 parameters using RLH
- Policy Constraint $\approx 500,000$
- Time to compute $y_i^{PC} \approx 0.25 \text{ secs}$
- BH $(y_i^{PC}) = X_i^{PC}$: 2,500 min
- Length Constraint $\approx 3,000 \ y_i^{\text{PC,len}}$: 5 min
- $KS(X^{SP500}, X_i^{PC, len}) = \{D_{X^{SP500}, X_i^{PC, len}}, p\text{-value}_i^{PC, len}\}$: 800 min

- Draw 1,000,000 parameters using RLH
- Policy Constraint $\approx 500,000$
- Time to compute $y_i^{PC} \approx 0.25 \text{ secs}$
- BH $(y_i^{PC}) = X_i^{PC}$: 2,500 min
- Length Constraint $\approx 3,000 \ y_i^{\text{PC,len}}$: 5 min
- $KS(X^{SP500}, X_i^{PC, len}) = \{D_{X^{SP500}, X_i^{PC, len}}, p\text{-value}_i^{PC, len}\}$: 800 min
- Threshold Constraint $\approx 55 \ y_i^{\text{PC},\text{len},\textit{Thresholded}}$: 1 min

- Draw 1,000,000 parameters using RLH
- Policy Constraint ≈ 500,000
- Time to compute $y_i^{PC} \approx 0.25 \text{ secs}$
- BH $(y_i^{PC}) = X_i^{PC}$: 2,500 min
- Length Constraint $\approx 3,000 \ y_i^{\text{PC,len}}$: 5 min
- $KS(X^{SP500}, X_i^{PC, len}) = \{D_{X^{SP500}, X_i^{PC, len}}, p\text{-value}_i^{PC, len}\}: 4,000 \text{ min}$
- Threshold Constraint \approx 55 $y_i^{\text{PC}, \text{len}, Thresholded}$: 1 min

Total Time

BH+KS: $6,508\frac{1}{4}$ min

Out of Sample

100, 000, 000 out of sample y_i [§] ≈ 2 min

[§]using RLH

BH+KS

$$1,000 \times 6,508 \tfrac{1}{4} min = 6,508,250 \; min$$

Machine Learning Surrogate

• (naive) Budgeted Model Search 1: 60 min

 $[\]P$ https://github.com/hyperopt/hyperopt-sklearn

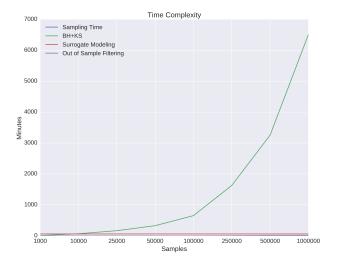
Machine Learning Surrogate

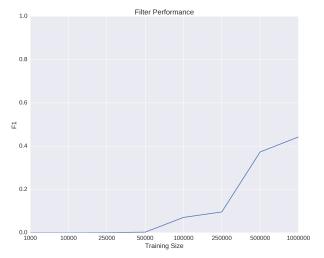
Filter OOS using Learned Model ≈ 12 min

Speedup (OOS Only)

BH+KS: $1,000 \times 6,508\frac{1}{4}$ min = 6,508,250 min Machine Learning Surrogate: 72 min $\approx 90,392\frac{1}{3} \times \text{Speedup!}$ Advantage

Reusable Machine Learning Surrogate Model





Thank you!

References

- [1] Robert W Blanning. The construction and implementation of metamodels. *simulation*, 24(6):177–184, 1975.
- [2] George EP Box and KB Wilson. On the experimental attainment of optimum conditions. *Journal of the Royal Statistical Society. Series B (Methodological)*, 13(1):1–45, 1951.
- [3] Donald R Jones. A taxonomy of global optimization methods based on response surfaces. *Journal of global optimization*, 21(4):345–383, 2001.
- [4] Michael D McKay, Richard J Beckman, and William J Conover. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. *Technometrics*, 21(2):239–245, 1979.
- [5] Raymond H Myers, Douglas C Montgomery, and Christine M Anderson-Cook. Response surface methodology: process and product optimization using designed experiments, volume 705. John Wiley & Sons, 2009.
- [6] The Art of Software. *Derivation of Bias-Variance Decomposition*, September 2012. http://artofsoftware.org/2012/09/13/derivation-of-bias-variance-decomposition/.