# Economics, Complexity and Agent Based Models

#### Francesco LAMPERTI 1,2,

<sup>1</sup>Institute of Economics and LEM, Scuola Superiore Sant'Anna (Pisa)

<sup>2</sup>Université Paris 1 Pathéon-Sorbonne, Centre d'Economie de la Sorbonne and CNRS

#### RAMP Macroeconomics January 8th, 2016











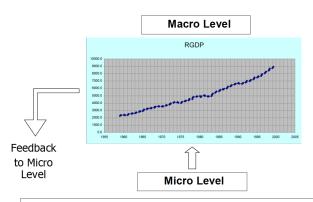
Many thanks to A. Roventini and G. Fagiolo for part of the material used here

Research supported by Horizons 2020 FET, DOLFINS project.

A revalant issue: Price Formation mechanisms

The Brock and Hommes Model

What is Economics about?


#### What is Economics about?

Explaining emergence of order from disorder... ...in social phenomena

- Disorder: self-interested and interacting agents
- Order: some stable and persistent behaviour

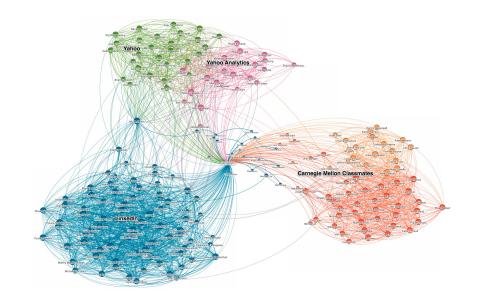
- Examples
  - How do market prices and interest rates emerge?
  - How do some technological standards manage to dominate the market?
  - How do GDP, employment and inflation move together along economic cycles?
  - Why real and financial economy do not correlate across time but across episodes?

#### Economics and Complexity: from Disorder to Order

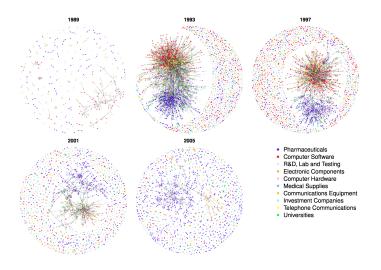


- Firms competing in turbulent markets
- Undertaking strategic decisions (output, investments, marketing, R&D, innovation, etc.)

#### **Complex Systems**


A system is typically defined to be **complex** if it exhibits the following two properties

- ► The system is composed of *interacting* units
- ► The system exhibits *emergent* properties,

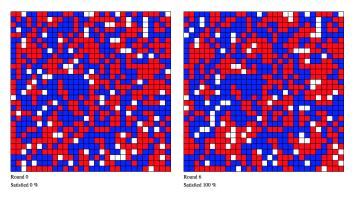

that is, properties arising from the interactions of the units that are not properties of the individual units themselves.

(Flake, 1998; Tesfatsion and Judd, 2006)

# Complex Systems - Labour Market: Search

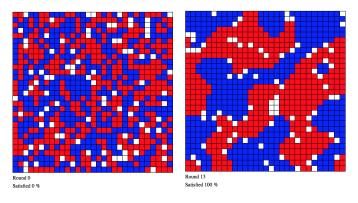


## Complex Systems - Firms R&D alliances




#### Complex Systems in Social Sciences: an Example

- Schelling segregation model (Schelling, 1971)
  - reds and blues live in a grid
  - they are happy if enough neighbours of same color, unhappy if not
  - at each period, one agent is randomly chosen:
    - if unhappy, moves in another place where she is happy
    - ▶ if happy, stays there
  - process repeats until everybody is happy or no more movements are possible


# Schelling's model - very tolerant people

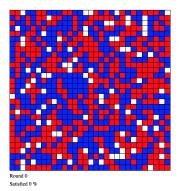
▶ to be happy: 10% of neighbours of the same color




# Schelling's model - moderately tolerant people

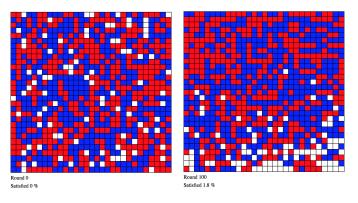
▶ to be happy: 50% of neighbours of the same color




# Schelling's model - moderately intolerant people

▶ to be happy: 70% of neighbours of the same color




# Schelling's model - very intolerant people

▶ to be happy: 90% of neighbours of the same color



# Schelling's model - very intolerant people

▶ to be happy: 90% of neighbours of the same color



# Simple Lesson from Schelling

#### 

- for moderate level of tolerance, segregation appears robustly
- ▶ for extreme level of (in)tolerance, segregation absent



The economy, both in broad and strict sense, is a complex system!

## Features of (Social) Complex Systems

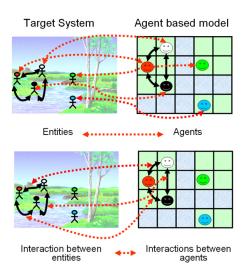
- Many micro entities
  - relatively simple and routinised behaviour
- People decisions might be affected by
  - Inherent difficulty in dealing with uncertainty and probability (risk)
  - Framing and Context matters
  - ► Adaptive (Trial & Error) and Simple Behavioral Rules
  - Problem decomposition (Rubik's Cube)

## Features of (Social) Complex Systems

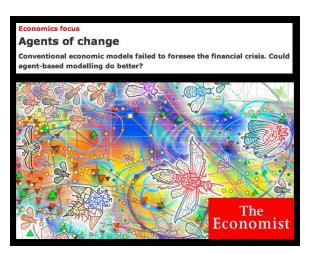
- ► People exchange **locally** information, knowledge, goods
- Interaction Structures as non-trivial networks
  - Who owns who, boards of directors, ...
  - ▶ Patent citations, collaboration citations, ...
  - ► R&D joint-ventures, knowledge spillovers, ...
  - Banks' liabilities
- Persistently heterogeneous economic agents

## How to model complex systems

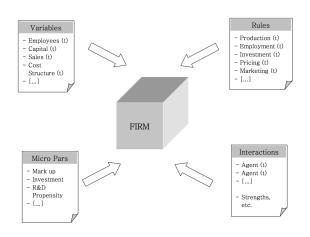
**Agent Based Models** 


## How to model complex systems

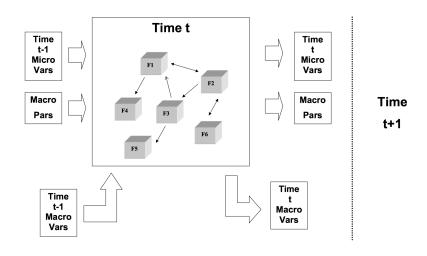
#### **Agent Based Models**


An Agent Based Model (ABM) is a computational tool used to study the behaviour of complex systems composed by multiple agents that are

- possibly heterogenous in all their characteristics
- boundedly rational (especially in economic applications)
- interacting among each other


#### Agent Based Models



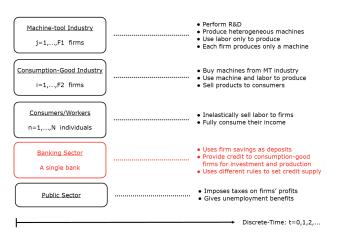

# Why ABM?



## Agent Based Models: an Agent



# Agent Based Models: an Economy




#### Some Macro-oriented ABM

- 1. Schumpeter meeting Keynes model Pisa Group
- 2. **EURACE** Bielefeld/Genoa Groups
- 3. **CATS** Milan/Ancona Group
- 4. Housing Market Model Axtell et al.
- 5. **ENGAGE** Darthmouth/Pisa Groups
- 6. Macro-Finance model Brown Group

## Schumpeter meeting Keynes (K+S)

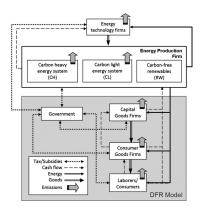
- objective: study growth and business cycles dynamics
- ▶ number of agents: >500
- ► number of parameters: >30
- ▶ time scale: quarters



#### EURACE@UniBi

 objective: study of business cycles dynamics of EU economy (with spacial structure)

▶ number of agents: >1600


► number of parameters: >50

▶ time scale: months

| Agent                 | Context                  | Role      | Messages                       |
|-----------------------|--------------------------|-----------|--------------------------------|
| Household             | Consumption goods market | Buyer     | units demanded                 |
|                       | Labour market            | Worker    | application, accept/reject job |
|                       | Credit market            | Depositor | cash holdings                  |
|                       | Financial market         | Investor  | index share orders             |
| Firm                  | Investment goods market  | Buyer     | units demanded                 |
|                       | Consumption goods market | Seller    | price, quality                 |
|                       | Labour market            | Employer  | vacancy, job offer             |
|                       | Credit market            | Borrower  | loan request                   |
| Investment Goods Firm | Investment goods market  | Seller    | price, productivity            |
|                       | Labour market            | Employer  | vacancy, job offer             |
| Bank                  | Credit market            | Lender    | credit conditions              |
| Government            | Public sector            |           | tax payments                   |
| Central Bank          | Credit market            | Regulator | base interest                  |

#### **ENGAGE**

- objective: study the transition towards a "green" economy and emissions paths
- ▶ number of agents: >600
- ► number of parameters: >40
- **time scale**: years



#### Simulation time

- Models are usually stochastic
- Monte Carlo runs of size at least 50 are typically required

- Simulation time for a complete MC exercise vary from:
  - few seconds
  - more then a week

## Challenges with ABM

- computational time
- calibration/estimation
- validation

#### Calibration

► **Calibration**  $\simeq$  find a parameter vector that minimize some distance between real data and simulation output

"Even in our extremely simple model, with one parameter only, simulation time accounts for more than 50% of all estimation (calibration) time."

Grazzini et al. (2015)

#### Calibration

► **Calibration**  $\simeq$  find a parameter vector that minimize some distance between real data and simulation output

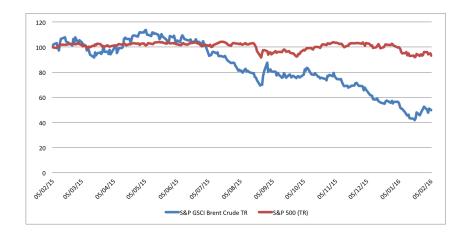
"Even in our extremely simple model, with one parameter only, simulation time accounts for more than 50% of all estimation (calibration) time."

Grazzini et al. (2015)

▶ the time required to estimate the model in Grazzini et al. (2015) is about **800 hours** on a 36 cores machine

## Computational Time

- ▶ If a model has to be used by policy makers or regulators
  - ► ECB, FED
  - United States Securities and Exchange Commission


## Computational Time

- ▶ If a model has to be used by policy makers or regulators
  - ► ECB, FED
  - United States Securities and Exchange Commission
- it has to provide timely insight into the problem

## **Computational Time**

- ▶ If a model has to be used by policy makers or regulators
  - ► ECB, FED
  - United States Securities and Exchange Commission
- ▶ it has to provide **timely insight** into the problem
- Models that take too long to run and produce data that is too large are of limited interest for such users

### Our issue: Behaviour of Prices



► Can we model a pricing system such that returns show some of the observed behaviours?

- ► Can we model a pricing system such that returns show some of the observed behaviours? IF YES
- Can we link price dynamics to traders attitudes?

- Can we model a pricing system such that returns show some of the observed behaviours? IF YES
- Can we link price dynamics to traders attitudes? IF YES

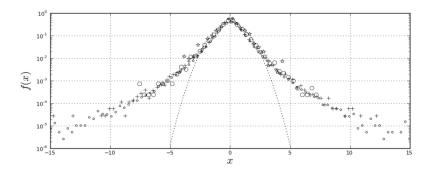
- ► Can we model a pricing system such that returns show some of the observed behaviours? IF YES
- Can we link price dynamics to traders attitudes? IF YES
- Can we detect early-signal predictors of crashes and busts from traders behaviours?

- Can we model a pricing system such that returns show some of the observed behaviours? IF YES
- Can we link price dynamics to traders attitudes? IF YES
- Can we detect early-signal predictors of crashes and busts from traders behaviours? IF YES

- Can we model a pricing system such that returns show some of the observed behaviours? IF YES
- Can we link price dynamics to traders attitudes? IF YES
- Can we detect early-signal predictors of crashes and busts from traders behaviours? IF YES
- Can we regulate the market in a way to reduce the likelihood of crashes?

- Can we model a pricing system such that returns show some of the observed behaviours? IF YES
- Can we link price dynamics to traders attitudes? IF YES
- Can we detect early-signal predictors of crashes and busts from traders behaviours? IF YES
- Can we regulate the market in a way to reduce the likelihood of crashes? IF YES

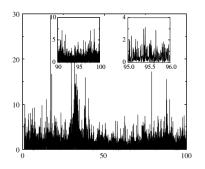
- Can we model a pricing system such that returns show some of the observed behaviours? IF YES
- Can we link price dynamics to traders attitudes? IF YES
- Can we detect early-signal predictors of crashes and busts from traders behaviours? IF YES
- Can we regulate the market in a way to reduce the likelihood of crashes? IF YES
- We are going to win the Nobel prize


- ► Can we model a pricing system such that returns show some of the observed behaviours? IF YES
- Can we link price dynamics to traders attitudes? IF YES
- Can we detect early-signal predictors of crashes and busts from traders behaviours? IF YES
- Can we regulate the market in a way to reduce the likelihood of crashes? IF YES
- We are going to win the Nobel prize or make a lot of money

### Prices and Returns: basics

- Let p(t) be the **price** of an asset at time t, then
- ▶  $r_{\tau}(t) = [p(t+\tau) p(t)]/p(t) \simeq \ln p(t+\tau) \ln p(t)$  is the **return** over the period  $\tau$
- ▶  $r_{\tau}(t) m\tau$ , where  $m\tau$  is the mean return at scale  $\tau$ , is the **normalized return** over the period  $\tau$ .

# Behaviour of Price is Complex


- ▶ linear growth of variance with time scale:  $\langle [r_{\tau}(t) m\tau]^2 \rangle \simeq \sigma^2 \tau$
- distribution of returns has power law tails:  $|r|^{-1-\mu}$



(Ibex35 data at different time scales); y-axis in log

# Behaviour of Price is Complex

volatility clustering



(absolute value of SP500 returns for 100, 10, 1 year) Source: Borland et al. (2005)

and a lot of others features (multifractality, leverage effects...)

### Price Behaviour

- Random Walks and Brownian Motion (Bachelier, 1900)
  - returns are i.i.d.; the underlying distribution is normal

### Price Behaviour

- ► Random Walks and Brownian Motion (Bachelier, 1900)
  - returns are i.i.d.; the underlying distribution is normal
- Eugene Fama
  - Efficient Markets
    - (strong form) all information is reflected by prices
    - implicit rationality of traders

#### Price Behaviour

- ► Random Walks and Brownian Motion (Bachelier, 1900)
  - returns are i.i.d.; the underlying distribution is normal
- Eugene Fama
  - Efficient Markets
    - (strong form) all information is reflected by prices
    - implicit rationality of traders
  - ► The joint hypothesis
    - ▶ market equilibrium hypothesis ⇔ market efficiency
    - a challenge for the price formation mechanism!

# A simple asset pricing model

#### The Brock and Hommes model

- Key references:
  - William A. Brock, Cars H. Hommes, Heterogeneous beliefs and routes to chaos in a simple asset pricing model, Journal of Economic Dynamics and Control, Volume 22, Issues 8–9, Pages 1235-1274, 1998.
  - William A. Brock, Cars H. Hommes, A Rational Route to Randomness, Econometrica, vol. 65, issue 5, pages 1059-1096, 1997.

#### Basic structure and time-line of events

1 risky asset, 1 risk-free asset, N traders of different type

- 1. history of prices and dividends is observed
- 2. agents form their expectation on next period prices
- 3. each agent submit her sell/buy orders
- 4. market clears and asset prices are determined in equilibrium
- 5. dividends are paid to stockholders

# The BH model - trader types

trend followers



# The BH model - trader types

trend contrarians



# The BH model - trader types

both types might have a bias towards some value

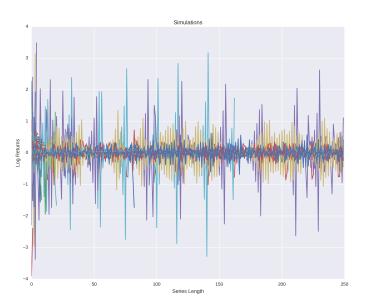


### The BH model

- ▶ Agents' trading strategy is determined by a function  $f_h(\cdot)$
- ightharpoonup rational:  $f_{Rt} = x_{t+1}$
- ▶ all other types:  $f_{ht} = g_h x_{t-1} + b_h$ 
  - trend chasers  $g_h > 0$
  - trend contrarians  $g_h < 0$
  - fundamentalists  $g_h = b_h = 0$

### The BH model

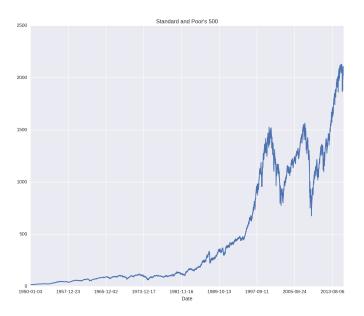
- ▶ Agents' trading strategy is determined by a function  $f_h(\cdot)$
- ightharpoonup rational:  $f_{Rt} = x_{t+1}$
- ▶ all other types:  $f_{ht} = g_h x_{t-1} + b_h$ 
  - trend chasers  $g_h > 0$
  - ▶ trend contrarians  $g_h < 0$
  - fundamentalists  $g_h = b_h = 0$
- agents might switch their type according to accumulated past profits and a switching parameter


### The BH model - I

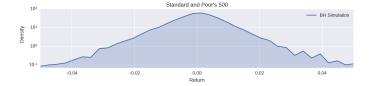
- agents' wealth evolves according to
  - $W_{t+1} = RW_t + (p_{t+1} + y_{t+1} Rp_t)z_t$

#### The BH model - I

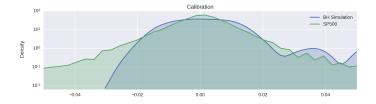
- agents' wealth evolves according to
  - $W_{t+1} = RW_t + (p_{t+1} + y_{t+1} Rp_t)z_t$
- Equilibrium of demand and supply implies (no supply of external shares)
  - $Rp_t = \sum n_{ht} E_{ht} (p_{t+1} + y_{t+1})$ , where
- agent of type h forms expectations on future price and dividend
  - $ightharpoonup E_{ht}(p_{t+1}+y_{t+1})=E_t(p_{t+1}^*)+f_h(x_{t-1},...,x_{t-L}),$  where
  - p\* denotes the fundamental price
  - $f_h(\cdot)$  is a *deterministic function* depending on the agent's type
  - $x_t = p_t p_t^*$  denotes the price deviation from the fundamental


# The BH model - returns dynamics

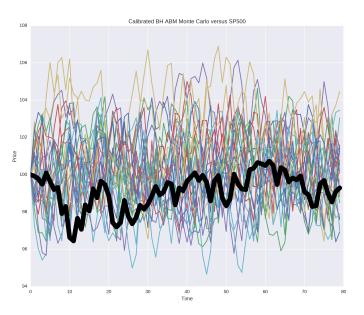



# Challenge

Can we calibrate the model in a way that it resembles real-world return dynamics?


## Our target: S&P 500 - long run dynamics




# Our target: distribution of last year returns



## Distribution of returns: "calibrated" model vs. real data



### MC runs of "calibrated" model



# Challenge

Can we do better?

Can we calibrate avoidind/reducing the computational burden of simulations?

