

Transforming Wikipedia into a Search Engine for Local Experts

Gregory Grefenstette
WikiData Day
Febraury 2, 2016

Familiar way to look for knowledge

WikipediA The Free Encyclopedia

Unfamiliar knowledge source

Explo-Raweb

Explo-RAweb is an experimental browsing application that allows to navigate within the activity reports of the Inria's

This application is not updated. In particular, it doesn't contain the highlighting of the "Best-papers"

Man page Contests
Feature consist
Feature cons

Machine learning For the journal, see Machine Learning (journal)

Machine learning is a subfield of computer science^[1] that evolved from the study of pattern recognition and con Arthur Samuel defined machine learning as a "Field of study that gives computers the ability to tearn without bei

PDF par sections study and construction of algorithms that can learn from and make predictions on data. ^[5] Such algorithms opera data-driven predictions or decisions. ^[4] rather than following strictly static program instructions.

Machine learning is closely related to and often overlaps with computational statistics; a discipline which also for strong ties to mathematical optimization, which delivers methods, theory and application domains to the field. Mr where designing and programming explicit algorithms is infeasible. Example applications include spam filtering computer vision. Machine learning is sometimes conflated with data mining. [6] where the latter sub-field focu unsupervised learning. [9] where the latter sub-field focu unsupervised learning. [9] with

- Overview
 1.1 Types of problems and tasks
 Overview to other file History and relationships to other fields
 Relation to statistics
- 3 Theory
- 4.2 Association rule learning 4.3 Artificial neural network
- 4.4 Inductive logic programming
- 4.5 Support vector machines
- 4.7 Bayesian networks
 4.8 Reinforcement learning
 4.9 Representation learning
- 4.10 Similarity and metric learning
- 4.12 Genetic algorithms

- 6.2 Commercial software with open-source editions

Accès Intranet

Direction générale déléquée à la science

Assistance technique:

▶ DSI-SEISM

Archives 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994

Inria - 2014 Teams Activity Report

The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. This reports includes the m by the team and the new results of the year. The report also describes the grants and contracts and the activities of dissemination and teaching.

ABCDEFGHIKLMNOPQRSTUVWZ

Abs - Algorithms, Biology, Structure

Alf - Amdahl's Law is Forever Algorille - Algorithms for the Grid

Alice - Geometry and Lighting

Alpage - Large-scale deep linguistic processing

Alpines - Algorithms and parallel tools for integrated numerical simulations

Amib - Algorithms and Models for Integrative Biology

Ange - Numerical Analysis, Geophysics and Ecology

Antique - Analyse Statique par Interprétation Abstraite

Aoste - Models and methods of analysis and optimization for systems with real-time and embedding constraints

Apics - Analysis and Problems of Inverse type in Control and Signal processing

Aramis - Algorithms, models and methods for images and signals of the human brain

Aric - Arithmetic and Computing

Asap - As Scalable As Possible: foundations of large scale dynamic distributed systems

Asclepios - Analysis and Simulation of Biomedical Images

Ascola - Aspect and composition languages

Aspi - Applications of interacting particle systems to statistics

Ateams - Analysis and Transformation based on rEliAble tool coMpositionS

Athena - Computational Imaging of the Central Nervous System

Atlanmod - Modeling Technologies for Software Production, Operation, and Evolution

Avalon - Algorithms and Software Architectures for Distributed and HPC Platforms

Aviz - Analysis and Visualization

Ayin - Models of spatio-temporal structure for high-resolution image processing

Bacchus - Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems

Bamboo - An algorithmic view on genomes, cells, and environments

Beagle - Artificial Evolution and Computational Biology

Bigs - Biology, genetics and statistics

Biocore - Biological control of artificial ecosystems

Bipop - Modelling, Simulation, Control and Optimization of Non-Smooth Dynamical Systems

Bonsai - Bioinformatics and Sequence Analysis

Explo-Raweb

Explo-RAweb is an experimental browsing application that allows to navigate within the activity reports of the Inria's research teams.

This application is not updated. In particular, it doesn't contain the highlighting of the "Best-papers"

Accès Intranet

PDF par sections

Infos pratiques

Contact:

• Direction générale déléguée à la science

Assistance technique:

DSI-SEISM

Archives 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994

Inria - 2014 Teams Activity Report

The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. This reports includes the m by the team and the new results of the year. The report also describes the grants and contracts and the activities of dissemination and teaching.

A B C D E F G H I K L M N O P Q R S T U V W Z

Abs - Algorithms, Biology, Structure Alf - Amdahl's Law is Forever

All - Amballs Law is Forever Algorities - Algoritims for the Grid Aliage - Geometry and Lightine Aliage - Large-scale deep linguistic processing Alianes - Algorithms and parallel tools for integrated numerical simulations Amir - Algorithms and Models for Integrative Biology

Amb. - Algorithms and Models for Integrative Biology
Amg. - Augurent Analysis, Geophics and Ecology
Antique. - Analyse Statique an Integretation Astronomy.
Antique. - Analyse Statique parties and Ecology
Antique. - Analyse Statique parties and optimization for systems with real-time and embedding constraints
Acids: - Analysis and Politicis and optimization for systems with real-time and embedding constraints
Acids: - Analysis and Politicis and Interest byte in Corticol and Signal processing
Acids: - Analysis and Politicis and Interest byte in Corticol and Signal processing
Acids: - Analysis and Politicis (bundations of large scale dynamic distributed systems
Acids: - Analysis and Politicis (bundations of large scale dynamic distributed systems
Acids: - Analysis and Politicis (bundations of large scale dynamic distributed systems
Acids: - Analysis and Politicis (bundations of large scale dynamic distributed systems
Acids: - Analysis and Politicis (bundations of large scale dynamic distributed systems
Acids: - Analysis and Politicis (bundations of large scale dynamic distributed systems
Acids: - Analysis and Politicis (bundations of large scale dynamic distributed systems
Acids: - Analysis and Politicis (bundations of large scale dynamic distributed systems
Acids: - Analysis and Politicis (bundations of large scale dynamic distributed systems)

Asoi - Applications of interacting particle systems to statistics

Aleams - Analysis and Transformation based on rEliAble tool coMpositionS

Athena - Computational Imaging of the Central Nervous System

Altheria - Computational Imaging of the Central Nervous System
Altaming - Modelling Technologies for Software Production, Operation, and Evolution
Avaion - Algorithms and Software Architectures for Distributed and HPC Platforms
Aviz - Analysis and Visualization
Avin - Models of spatio-temporal structure for high-resolution image processing

Bacchus - Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems
Bamboo - An algorithmic view on genomes, cells, and environments
Bacgie - Artificial Evolution and Computational Blology

Bigg - Biology, genetics and statistics
Biocore - Biological control of artificial ecosystems
Bigg - Modelling, Simulation, Control and Optimization of Non-Smooth Dynamical Systems

sai - Bioinformatics and Sequence Analysis

CCS 2012 - Table of Contents

General and reference

What is the CCS?

Contact Us

Hardware

Switch to Interactive View

Computer systems organization

Authors: Generate CCS Codes

Networks

Software and its engineering

Theory of computation

Mathematics of computing

Information systems

Security and privacy

Human-centered computing

Computing methodologies

Applied computing

Social and professional topics

- General and reference ↑
 - Document types
 - Surveys and overviews
 - · Reference works
 - · General conference proceedings
 - Biographies
 - General literature
 - · Computing standards, RFCs and guidelines
 - · Cross-computing tools and techniques
 - Reliability
 - Empirical studies
 - Measurement
 - Metrics
 - Evaluation
 - Experimentation
 - Estimation
 - Design
 - Performance
 - Validation
 - Verification
- Hardware ↑
 - Printed circuit boards
 - · Electromagnetic interference and compatibility
 - · PCB design and layout
 - · Communication hardware, interfaces and storage
 - · Signal processing systems
 - · Digital signal processing
 - Beamforming
 - Noise reduction
 - · Sensors and actuators
 - Buses and bigh speed links

Domain vocabulary - pivot

- Distributed programming language
- · Concurrent computing methodologies
 - · Concurrent programming languages
- Concurrent algorithms
- Applied computing ↑
 - · Electronic commerce
 - Digital cash
 - · E-commerce infrastructure
 - · Electronic data interchange
 - · Electronic funds transfer
 - · Online shopping
 - · Online banking
 - · Secure online transactions
 - Online auctions
 - · Enterprise computing
 - · Enterprise information systems
 - Intranets
 - Extranets
 - Enterprise resource planning
 - · Enterprise applications
 - Data centers
 - · Business process management
 - · Business process modeling
 - Business process management systems
 - · Business process monitoring
 - · Cross-organizational business processes
 - · Business intelligence
 - · Enterprise architectures
 - · Enterprise architecture management
 - · Enterprise architecture frameworks
 - Enterprise architecture modeling
 - · Service-oriented architectures

 - Event-driven architectures
 - Business rules
 - Enterprise modeling
 - · Enterprise ontologies, taxonomies and vocabularies
 - Enterprise data management
 - Reference models
 - Business-IT alignment
 - IT architectures
 - · IT governance
 - · Enterprise computing infrastructures
 - · Enterprise interoperability
 - · Enterprise application integration
 - · Information integration and interoperability
 - · Physical sciences and engineering
 - Aerospace
 - Avionics
 - Archaeology

HDR Grefenstette 2015 - 5

Inria report from the TAI team http://raweb.inria.fr/rapportsactivite/RA2014/tao/uid 70.html

Artificial intelligence: Supervised learning: http://raweb.inria.fr/rapportsactivite/RA2014/tao/uid70.html: TAO

Unría HDR Grefenstette 2015 - 7

Artificial intelligence: Supervised learning: http://raweb.inria.fr/rapportsactivite/RA2014/tao/uid70.html: TAO

http://dl.acm.org/buildccscode.cfm?id=10010259&lid=f a http://dl.acm.org/ontology#code; rdfs:label "Supervised learning"; wdt:P2179 10010259. rdfs:label "Artificial_intelligence"; wdt:P2179 10010259; rdfs:seeAlso http://raweb.inria.fr/rapportsactivite/RA2014/tao/uid70.html. http://raweb.inria.fr/rapportsactivite/RA2014/tao/uid70.html a inria:team; rdfs:label "TAO"; rdfs:comment "Machine Learning and Optimisation"; wdt:P2179 10010259. https://opendata1.opendata.u-psud.fr/sparql/

Unria HDR Grefenstette 2015 - 8

https://meta.wikimedia.org/wiki/Special:MyPage/global.js

// [[d:User:Ggrefen/DisplayInriaTeam2.js]]

mw.loader.load("//www.wikidata.org/w/index.php?title=User:Ggrefen/DisplayInriaTeam2.js&action=raw&ctype=text/javascript");

Main page Contents Featured content Current events Random article Article Talk Inria

Artificial intelligence

From Wikipedia, the free encyclopedia

"Al" redirects here. For other uses, see Ai and Artificial intelligence (disambiguation)

Artificial intelligence (AI) is the intelligence exhibited by machines or software. It is als intelligent behavior. Major AI researchers and textbooks define this field as "the study armaximize its chances of success.^[2] John McCarthy, who coined the term in 1955,^[3] def

HDR Grefenstette 2015 - 9

Main page Contents Featured content Current events Random article

Article Talk Inria

Artificial intelligence

From Wikipedia, the free encyclopedia

"Al" redirects here. For other uses, see Ai and Artificial intelligence (disambiguation)

Artificial intelligence (AI) is the intelligence exhibited by machines or software. It is als intelligent behavior. Major AI researchers and textbooks define this field as "the study at maximize its chances of success.[2] John McCarthy, who coined the term in 1955,[3] def

https://en.wikipedia.org/wiki/Artificial_intelligence

- Supervised learning: SIROCCO (Analysis representation, compression and communication of visual data). Source: 2014 Annual report
- Supervised learning: STARS (Spatio-Temporal Activity Recognition Systems). Source: 2014 Annual report
- Supervised learning: TAO (Machine Learning and Optimisation). Source: 2014 Annual report
- Support vector machines: ALPAGE (Large-scale deep linguistic processing). Source: 2014 Annual report
- Support vector machines: AVIZ (Analysis and Visualization). Source: 2014 Annual report
- Support vector machines: AYIN (Models of spatio-temporal structure for high-resolution image processing). Source: 2014 Annual report
- Support vector machines: BONSAI (Bioinformatics and Sequence Analysis). Source: 2014 Annual report
- Support vector machines: CAIRN (Energy Efficient Computing Architectures). Source: 2014 Annual report

Presentation

► Context and overall goal of the project

Research Program

▶ The Four Pillars of TAO

- Application Domains Energy Management
- ▶ Air Traffic Control
- New Software and Platforms

- ▶ METIS
- ▶ MoGo
- ► CMA-ES: Covariance Matrix Adaptation **Evolution Strategy**
- COmparing Continuous Optimizers

DELIGNIOL OF SOUMALE-DASED AGEINS IN THEIR ENVIRONMENT

Multi-objective Al Planning

This activity had almost stopped since the end of the DESCARWIN ANR project. However, a produc in the ZenoTravel domain together with an exact solver ensuring the knowledge of the true Pareto fr

Algorithm Selection

Algorithm Selection can be viewed as a Collaborative Filtering problem, in which a problem "likes" as during Mustafa Misir's ERCIM postdoc in 2013, this idea has also been applied for Process Manager Gonards's PhD funded by IRT SystemX in the context of aeronautics and car industry.

Outlier rejection in classification

An original approach based on One-Class SVM has been proposed during Blaise Hanczar's on year

Learning sparse representations by auto-encoders

Auto-encoders (AE) are a widely used tool for unsupervised learning, which consists of a neural netsmaller-dimensional layers. The usual training criterion is the reconstruction error, however, the usual data representation. In [62] we formalize this latter criterion using Minimum Description Length (MDL traditional reconstruction criterion. The MDL criterion has an interpretation as a denoising reconstruc contrary to the literature on denoising AEs. More surprisingly, AE (aka Auto-associators) can also be context of supervised learning [51].

HDR Grefenstette 2015 - 10

or any domain vocabulary

2015 - 11

Thank you!

www.inria.fr

