

Istituto Nazionale di Fisica Nucleare

THE 750-GEV EXCESS AT THE CMS EXPERIMENT

ROBERTO COVARELLI (UNIV./INFN TORINO) ON BEHALF OF THE CMS COLLABORATION

> HIGGS HUNTING 2016 LPNHE, PARIS

31-Aug-16

HIGH-MASS SEARCHES AT CMS

- LHC is the ideal experimental setup to look for BSM resonances at high-mass
 - The addition of a second scalar doublet (2HDMs) is the most natural way to introduce high-mass spin-0 resonances
 - Other BSM models predict different types of neutral bosonic resonances, which may:
 - have spin of 1 or 2
 - have widths that are comparable, or negligible w.r.t. experimental resolutions («narrow»)

• Typical benchmark models:

- Randall-Sundrum (RS) warped extra-dimension models
- **«Bulk-graviton»** warped extradimension models
- Heavy vector triplet (HVT) model

Phys. Rev. Lett. 83 (1999) 3370 Phys. Rev. Lett. 83 (1999) 4690

> Phys. Rev. D 76 (2007) 036006 JHEP 09 (2007) 013 Phys. Lett. B 666 (2008) 155

JHEP 09 (2014) 060

RS AND BULK GRAVITONS

- Hierarchy problem solved by adding one compactified («warped») extra dimension where just gravity can propagate
 → in ordinary space-time, gravitons appear as Kaluza-Klein (narrow) spin-2 resonances decaying to SM particles
- In the original RS model, two free parameters:
 - Mass of lightest KK resonance
 - Curvature radius ($\tilde{k} = c/M_{Pl}$) All masses/widths calculable (observable rates in II and $\gamma\gamma$)
- «Bulk graviton»: explains unobserved G* → II by re-locating SM fields between the two branes
 → G* decays preferentially to heavy bosons and top

THE HVT MODEL

- A simplified model based on the hypothesis of an additional triplet of heavy spin-1 bosons (Z', W'[±])
- A generic effective Lagrangian covers both the possible weak and strong couplings to SM

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V^{a}_{\nu]} D^{[\mu} V^{\nu] a} + \frac{m_{V}^{2}}{2} V^{a}_{\mu} V^{\mu a} + i g_{V} c_{H} V^{a}_{\mu} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V^{a}_{\mu} J^{\mu a}_{F} + \text{self-interaction terms}$$

- General simplified-model results
 - New states almost degenerate in mass
 - Large decay rates to longitudinal SM dibosons ($\gamma\gamma$, ZZ forbidden but all other combinations of V and H possible) \rightarrow BRs controlled by the parameter combinations $g_V c_H$ and $g^2 c_F/g_V$
 - Easy combination of charged vs. neutral final states

HADRONIC BOSON DECAYS

- We will focus on high-mass resonance decays to SM bosons
 - While γ is «easy», W/Z/H can produce several combinations of final states, each with its own experimental challenge
- W/Z $\rightarrow q\overline{q}$ and H $\rightarrow bb$ are particularly affected by SM backgrounds
 - Exploit «boosted» topology
- If ΔR between the two quarks is:
 - > 0.8: the quarks from V decay hadronize in two R = 0.4 jets
 - < 0.8: the the quarks from V decay may hadronize in a single «fat» jet with R = 0.8 and large pruned mass
 - Subjet finding techniques help in finding smaller-radius jets within («subjettiness»), providing additional handles to clean up BSM signals

$X \rightarrow \gamma \gamma$ (8 TEV AND 2015)

Phys. Rev. Lett. 117 (2016) 051802

- Simultaneous analysis of 8 TeV and early 13 TeV data
- Event selection
 - High-energy γ (> 75 GeV)
 - Cut-based photon identification
 - Track and electromagnetic-energy isolation
- Di-photon candidates
 - Primary-vertex determination à la H $\rightarrow \gamma\gamma$
 - Two categories: both γ in ECAL barrel (EBEB), or one in barrel/one in endcap (EBEE)
 - For 8 TeV data: further categorize events based on min(R₉) variable (> or < 0.94)
- Selection efficiency
 - 50-70% depending on signal hypothesis

$X \rightarrow \gamma \gamma$ (CONTINUED)

Phys. Rev. Lett. 117 (2016) 051802

- Photon energy calibration
 - Use multivariate-regression technique and correct residual data/MC discrepancy on Z \rightarrow ee events in bins of R₉ and η_{γ}
 - Final uncertainties on corrections:
 0.5% (0.7%) for EBEB (EBEE) → larger at very high η_γ and E > 500 GeV

- Peak resolution:1.0% (1.5%) for EBEB (EBEE)
- For no-magnet data (~20% of 2015 13-TeV sample)
 - Simpler primary-vertex assignment (maximum N_{tracks})
 - Remove track isolation and loosen ECAL isolation
 - Tighten requirements on shower shape and size
 - Selection efficiency reduced to 40-50%

$X \rightarrow \gamma \gamma$ (8 TEV AND 2015)

- Modest excess around 750 GeV tested against 3 signal hypotheses (spin-0 and spin-2)
 - Narrow
 - Width similar to detector resolution ($\Gamma/m = 1.4\%$)
 - «Broad» (Γ/m = 5.6%)
- Largest significance for narrow hypothesis (3.4σ local, 1.6σ with LEE)

σ(8 TeV)/σ(13 TeV) = 0.22 - 0.24

- Together with ATLAS result, triggered enormous theory speculation
 - Some «tension» found when accounting for small σ-ratio, likely gg production (no extra energetic particles observed in the events) and no observation in dijets
 e.g. JHEP 03 (2016) 144

Phys. Rev. Lett. 117 (2016) 051802

 $X \rightarrow \gamma \gamma$ (2016)

CMS-PAS EXO-16-027

16.2 fb⁻¹ (13 TeV)

CMS Preliminary

- 2016 data are analyzed using exactly the same technique
 - No significant excess found

R. Covarelli

- Combining with previous results, 750 GeV is not the largest excess anymore
 - Limits on RS gravitons up to 1.95-4.5 TeV, depending on curvature parameter

$X \rightarrow Z\gamma \ (2016)$

CMS-PAS EXO-16-034 / EXO-16-035

- An effort towards cross-check of 750-GeV excess started in many other channels
- Zγ searches for spin-0 narrow and broad resonances (same width hypotheses as in γγ)
 - Leptonic Z
 - down to low resonance mass, mainly irreducible background
 - Boosted hadronic Z
 - only high mass, background dominated by γ+jet
 - Exploits b-tagging of subjets to define a purer category
 - Leptonic more sensitive in overlap regions

$X \rightarrow VV/VH$ FINAL STATES

Several different analyses targeting in general narrow or almostnarrow resonances with very high mass (≥ 0.8 TeV)

- VV «golden channels» for bulk-graviton model
- WZ/WW/VH «golden channels» for HVT model

COMBINATION AFTER 2015

- 12 analyses combined at 8 and 13 TeV
 - All-hadronic final states generally more sensitive at very large mass, between 1 and 2.5 TeV all analyses contribute with similar sensitivity (smaller backgrounds balance smaller BRs)
 - HVT (strongly coupled) excluded at 95% CL for $M_{V'}$ < 2.4 TeV
 - Still open room for bulk-G* even with moderate k

CMS-PAS B2G-16-007

$X \rightarrow WV (2016)$

1 lepton

Merged

W/Z jet

- Target narrow resonance (charged and neutral)
 - 0.6-1 TeV region separately opimized in order to test low-mass excesses
- Main backgrounds after kinematic cuts:
 - W+jet with misidentified jet (use (subjettiness) variable τ_{21} to suppress)
 - tt with 2 genuine W's (use b-tag veto)
- Inverted b-tag veto sample is used to estimate:
 - Amount of the peaking background
 - W-signal efficiency of τ₂₁ cut
- Sensitivities start to approach k = 0.5 bulk-G predictions

CMS-PAS B2G-16-020

 $X \rightarrow ZV (2015)$

CMS-PAS B2G-16-010

- Analysis optimized more aggressively in the 0.6-1 TeV region by adding 2-jet final state when no merged jet is found
- Signal extraction
 - Merged-jet selection: similar to WV
 - Resolved-jet selection: use Z+jets MC, • normalized to m_{ii} or m_J sidebands
- Modest excess observed at 650 GeV (3.4 σ , 2.9 σ with low-mass LEE)
 - To be tested with 2016 data

600 800 1000 1200 1400 1600 1800 2000 2200 2400

G_{Bulk} mass [GeV]

ZV

CONCLUSIONS

- Several BSM models predict boson resonances which have negligible or comparable width w.r.t. CMS resolution
- Hint of a narrow γγ resonance at 750 GeV has not stood the test of time, but it triggered interesting ideas:
 - From theory: simple phenomenological extrapolations from previous LHC results provide guidance on when/where an excess can be expected
 - In CMS: renewed effort in extending existing searches to mass regions not investigated before (Zγ, VV, VH etc.) → cross-section limits already superseding 8-TeV results
- 650-GeV «younger brother» doomed already?
 - A lot to learn from full-2016 and future LHC datasets

