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HH production processes
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Several production channels
but tiny cross section in the SM

✦ leading: gluon fusion

✦ potentially interesting:

• vector boson fusion (VBF)

• ttHH production
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Why double Higgs?
Obvious answer:   directly accessing the Higgs potential!
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HH production at 14 TeV LHC at (N)LO in QCD
MH=125 GeV, MSTW2008 (N)LO pdf (68%cl)
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Significant dependence in the 
production rates

✦ in gluon fusion destructive 
interference
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Why double Higgs?

Less obvious answers:

✦ extract non-linear couplings not accessible  
in single Higgs

✦ alternative measurement of single-Higgs vertices

✦ probe the strength of EWSB dynamics 
at high energy E � mh

✦ explore extended Higgs sectors
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Non-resonant processes 
The Gluon Fusion channel



The Higgs effective Lagrangian
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Several vertices contribute to double Higgs production in GF
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✦ modifications of the single Higgs couplings can affect HH 
production   (eg.       )t̄th

Modified single Higgs couplings
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Several vertices contribute to double Higgs production in GF
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Non-linear Higgs couplings
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Several vertices contribute to double Higgs production in GF
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✦ modifications of the single Higgs couplings can affect HH 
production   (eg.       )t̄th

✦ some vertices can be probed independently only in HH 
processes   (eg.         ,                )h2Gµ⌫G

µ⌫t̄thh



Parametrization for a doublet Higgs

If the Higgs is part of an SU(2) doublet the number of 
independent operators is reduced
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Dependence on Higgs couplings

c2 t=D

c3=1+D

ct=1+D
LHC 14 TeV

SM

-1.0 -0.5 0.0 0.5 1.0

0.1
0.2
0.5
1.0
2.0
5.0
10.0
20.0

D

s
HppÆ

hh
LêsH

pp
Æ
hh
L SM

�3

✦ Shape analysis could disentangle the various interactions

✦ mild dependence on �3

• effects mostly at threshold

✦ strong dependence on top
couplings       and     ct c2t

• affect peak and tail of mhh

In many BSM scenarios modifications to all Higgs couplings
arise simultaneously and have comparable size



Behaviour of amplitudes

✦ Different behaviour at high energy

Double Higgs production via gluon fusion

g

g h

h

t

g

g h

h

t
h

g

g h

h

t

⇠ c

2

t

⇥ const. ⇠ c

t

c

3

⇥
m

2

h

ŝ
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ŝ

v

2

v Di↵erent behaviour at high energy
p
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✦ Dependence on Higgs trilinear suppressed in the tail
• events at threshold more sensitive to Higgs trilinear, 

events at large         more important to determine the other operatorsmhh
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ŝ = mhh � 2mh



�SM
14TeV ' 39.5 fb

Final states
GF is the hh production channel with highest cross section

Many final states with reasonable number of events at HL-LHC

• small number of events
• clean final state (small bkg)
• can access total cross section

✦ golden channel:

✦ other modes:
                  ,               , bb̄bb̄

bb̄��

bb̄WW ⇤bb̄⌧+⌧�

• larger cross section
• large bkg
• may be useful to probe tail of distribution (boosted jet techniques)

decay channel BR events (3 ab�1)

bb̄bb̄ 33% 40000

bb̄WW ⇤ 25% 31000

bb̄⌧+⌧� 7.3% 8900

ZZbb̄ 3.1% 3800

WW ⇤⌧+⌧� 2.7% 3300

ZZWW ⇤ 1.1% 1300

bb̄�� 0.26% 320

Full LO: Glover, van der Bij ’88
Full NLO: Borowka, Greiner et al. ‘16
Approximate NNLO + NNLL: De Florian, Mazzitelli ’13, ’15; 
Grigo, Melnikov, Steinauser ’14; Grigo, Hoff, Steinauser ’15; 
Shao, Li, Wang ’13



Gluon Fusion at 100 TeV
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✦ huge increase in cross section  
(~40 times 14 TeV)

�SM
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✦ similar shape at threshold and 
around the peak

✦ significant increase in the  
high         tailmhh

14 TeV

100 TeV



• 

• 

• 

• 

• comprehensive study at 100 TeV:

(Partial) List of theoretical analyses
hh ! bb̄��

hh ! bb̄bb̄

hh ! bb̄⌧+⌧�

hh ! bb̄WW ⇤

Baur, Plehn, Rainwater hep-ph/0310056
Baglio, Djouadi, Grober, Mullheitner, Quevillon et al. 1212.5581
Yao 1308.6302
Barger, Everett, Jackson, Shaughnessy 1311.2931
Azatov, Contino, Panico, Son 1502.00539
Kling, Plehn, Schichtel 1607.07441

Baur, Plehn, Rainwater hep-ph/0304015
Dolan, Englert, Spannowsky 1206.5001
Baglio, Djouadi, Grober, Mullheitner, Quevillon et al. 1212.5581
Barr, Dolan, Englert, Spannowsky 1309.6318
Goertz, Papaefstathiou, Yang, Zurita 1410.3471

Dolan, Englert, Spannowsky 1206.5001
Baglio, Djouadi, Grober, Mullheitner, Quevillon et al. 1212.5581
Papaefstathiou, Yang, Zurita 1209.1489

de Lima, Papaefstathiou, Spannowsky 1404.7139

Contino et al., “Physics at a 100 TeV pp collider : Higgs and EW symmetry breaking studies”,1606.09408



                    The Golden Channel bb̄��



Tiny cross section: �SM(HH ! bb̄��) ' 0.1 fb

The Higgs trilinear at HL-LHC
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events after selection  (CMS analysis FTR-15-002)
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see also ATLAS: PHYS-PUB-2014-019, PHYS-PUB-2015-46

✦ Some improvement possible with multivariate techniques Kling, Plehn, Schichten ‘16
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Prospects at 100 TeV
Sizeable cross section: 
Main backgrounds:
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events after selection with                     (Contino et al. 1606.09408)
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signal events:

see also Kling, Plehn, Schichten ‘16

�SM(HH ! bb��) ' 3.6 fb

✦ Good precision on SM cross section:            at 68% CL
✦ Good determination of Higgs trilinear:               at 68% CL
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Fit to non-linear Higgs couplings
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Exclusive vs inclusive analysis
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Operators in the Higgs doublet basis
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Non-resonant processes 
The Vector Boson Fusion channel

results from   Contino, Rojo,   work in progress        (courtesy of R. Contino)



Testing the strength of EWSB

   VBF can test perturbative unitarization q
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Higgs couplings from VBF
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Resonant processes 
Scalar Singlet production
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Additional scalar singlet

Extensions of the Higgs sector are quite common in BSM 
scenarios

✦ Couplings controlled by the mixing with the Higgs

✦ Main decay channels

BR(� ! hh) = BR(� ! ZZ) =

1

2

BR(� ! WW ) =

1

4

, for m� � mW

Additional singlet     is often present   (eg.  NMSSM,  Twin Higgs, …)
results taken from  Buttazzo, Sala, Tesi, 1505.05488
see also references therein

g�hh
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Direct searches

Direct searches can exploit the VV and hh channels
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Current experimental analyses in the                    channel

8 TeV         ATLAS CONF-2014-005  
                 CMS        1503.04114

13 TeV     ATLAS    CONF-2016-049

� ! hh(4b)

Buttazzo, Sala, Tesi, ‘15 Buttazzo, Sala, Tesi, ‘15



Reach of direct searches
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Higgs couplings

Higgs trilinear

✦ Direct searches can be competitive with indirect constraints 
from Higgs couplings deviations

✦ Sizeable deviations in the Higgs trilinear coupling expected



Conclusions



Conclusions
Double Higgs production can give access to a rich landscape of 
phenomena both in the SM and Beyond

✦ Non-resonant processes
• probe Higgs potential (in particular Higgs trilinear)
• access non-linear Higgs couplings
• test the strength of EWSB at high energy
• small cross section: 

    limited precision at LHC 
    good prospects at future high energy colliders (eg. FCC100)

✦ Resonant processes
• test extended Higgs sectors
• good reach possible at HL-LHC
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Non-resonant processes 
Double Higgs at e+e– Colliders



Main production channels
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Measurement of Higgs couplings and self-coupling at the ILC Junping TIAN
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Figure 8: Cross sections of e+e� ⇥ ZHH (left) and e+e� ⇥ ⇤⇤̄HH (right) as a function of Higgs self-
coupling.

calculable factor corresponding to the search mode. In addition, the recoil mass measurements
provide absolute cross section measurements of the e+e� ⇥ ZH, process, which can be predicted
as Y ⇤

j = Fj · g2
HZZ . To combine all of these measurements to exact the 9 couplings, HZZ, HWW ,

Hbb, Hcc, Hgg, H⌅⌅ , Hµµ , Htt, and H⇥⇥ , and the Higgs total width, GH , a method of model
independent global fit is applied by constructing a �2 which is defined as following:

�2 =
i=N

Â
i=1

(
Yi �Y ⇤

i
DYi

)2,

where Yi is the measured value, DYi is the error on Yi, N is the total number of measurements and Y ⇤
i

is the predicted value which can always be parameterized by couplings and Higgs total width. Next
step is to minimize this �2 and get the fitted values of the 10 parameters and their errors. Here we
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     Expected precision on     andc3 c2V
COM energy           Precision           Process                  Reference

Expected precision on c3 and c2V

COM Energy Precision Process Reference

ILC

500 GeV
[L = 500 fb�1]

�c3 ⇠ 104% DHS ILC TDR, Volume 2, arXiv:1306.6352

1 TeV
[L = 1 ab�1]

�c3 ⇠ 28% VBF ILC TDR, Volume 2, arXiv:1306.6352

�c2V ⇠ 20% DHS Contino et al., JHEP 1402 (2014) 006

CLIC

1.4 TeV
[L = 1.5 ab�1]

�c3 ⇠ 24%

VBF Rolo↵ (CLICdp Coll.), talk at LCWS14

�c2V ⇠ 7%

3 TeV
[L = 2 ab�1]

�c3 ⇠ 12%

�c2V ⇠ 3%

Precision on Higgs trilinear

slightly better than FCC100

(e↵ects at threshold)

Precision on c2V worse

than FCC100

(e↵ects grow with energy)

FCC100 allows for better precision
✦ higher energy reach (useful for         )
✦ higher luminosity at threshold (useful for Higgs trilinear)

�c2V



Gluon Fusion channel 
Angular dependence



The angular distribution
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The angular distribution
The signal is also characterised by the 
angle between the Higgs pair and the 

beam axis in the c.o.m. frame
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✦ in the SM the              amplitude comes only from the box 
diagram and is quite suppressed

Jz = ±2

✦ the BSM diagrams coming from dim. 6 operators only generate 
contributions with Jz = 0

➡ angular analysis not useful to disentangle NP effects
(possible exception dim. 8 operators, extremely hard at LHC)
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