# Double Higgs production at the LHC and Beyond

Giuliano Panico IFAE Barcelona

'Higgs Hunting 2016' Paris – 1/9/2016

## HH production processes

Several production channels but tiny cross section in the SM

- ◆ leading: gluon fusion
   $\sigma_{14\text{TeV}}^{\text{GF}} \simeq 40 \text{ fb}$
- potentially interesting:
  - vector boson fusion (VBF)  $\sigma_{14\text{TeV}}^{\text{VBF}} = 1.94^{+2.3\%}_{-2.6\%}(scale) \text{ fb}$
  - ttHH production

 $\sigma_{14\text{TeV}}^{\text{ttHH}} = 0.949^{+1.7\%}_{-4.5\%}(scale) \text{ fb}$ 



# Why double Higgs?

**Obvious answer**: directly accessing the **Higgs potential!** 

$$\mathcal{L} = -\frac{1}{2}m_h^2 h^2 - \sqrt{3}\frac{m_h^2}{2v}h^3 - \lambda_4 \frac{m_h^2}{8v^2}h^4$$

Significant dependence in the production rates

 in gluon fusion destructive interference

 $g \mod$ 

- h

9 0000

9 0000



# Why double Higgs?

#### Less obvious answers:

- extract non-linear couplings not accessible in single Higgs
- alternative measurement of single-Higgs vertices
- + probe the strength of EWSB dynamics at high energy  $E \gg m_h$

explore extended Higgs sectors



### **Non-resonant processes** The Gluon Fusion channel

## The Higgs effective Lagrangian

Several vertices contribute to double Higgs production in GF

$$\mathcal{L} \supset -m_t \bar{t} t \left( c_t \frac{h}{v} + c_{2t} \frac{h^2}{2v^2} \right) - \lambda_3 \frac{m_h^2}{2v} h^3 + \frac{g_s^2}{4\pi^2} \left( c_g \frac{h}{v} + c_{2g} \frac{h^2}{2v^2} \right) G_{\mu\nu} G^{\mu\nu}$$



# Modified single Higgs couplings

Several vertices contribute to double Higgs production in GF

$$\mathcal{L} \supset -m_t \bar{t} t \left( c_t \frac{h}{v} + c_{2t} \frac{h^2}{2v^2} \right) - \lambda_3 \frac{m_h^2}{2v} h^3 + \frac{g_s^2}{4\pi^2} \left( c_g \frac{h}{v} + c_{2g} \frac{h^2}{2v^2} \right) G_{\mu\nu} G^{\mu\nu}$$



+ modifications of the single Higgs couplings can affect HH production (eg.  $\bar{t}th$ )

# Non-linear Higgs couplings

Several vertices contribute to double Higgs production in GF

$$\mathcal{L} \supset -m_t \bar{t}t \left( c_t \frac{h}{v} + \underbrace{c_{2t}}_{2v^2}^{h^2} \right) - \lambda_3 \frac{m_h^2}{2v} h^3 + \frac{g_s^2}{4\pi^2} \left( c_g \frac{h}{v} + \underbrace{c_{2g}}_{2v^2}^{h^2} \right) G_{\mu\nu} G^{\mu\nu}$$



- + modifications of the single Higgs couplings can affect HH production (eg.  $\bar{t}th$ )
- ★ some vertices can be probed independently only in HH processes (eg.  $\bar{t}thh$ ,  $h^2G_{\mu\nu}G^{\mu\nu}$ )

## Parametrization for a doublet Higgs

If the Higgs is part of an SU(2) doublet the number of independent operators is reduced

Buchmuller and Wyler; ... Giudice et al.; Grzadkowski et al.

$$\mathcal{L} \supset \frac{\overline{c}_H}{2v^2} [\partial_\mu (H^\dagger H)]^2 + \frac{\overline{c}_u}{v^2} y_u H^\dagger H \overline{q}_L H^c u_R - \frac{\overline{c}_6}{v^2} \frac{m_h^2}{2v^2} (H^\dagger H)^3 + \frac{\overline{c}_g}{m_w^2} g_s^2 H^\dagger H G_{\mu\nu} G^{\mu\nu}$$



requires an additional expansion in Higgs powers

# Dependence on Higgs couplings

- + mild dependence on  $\lambda_3$ 
  - effects mostly at threshold
- + strong dependence on top couplings  $c_t$  and  $c_{2t}$ 
  - affect peak and tail of  $m_{hh}$



Shape analysis could disentangle the various interactions

In many BSM scenarios modifications to all Higgs couplings arise simultaneously and have comparable size

## Behaviour of amplitudes



- Different behaviour at high energy  $\sqrt{\hat{s}} = m_{hh} \gg 2m_h$
- Dependence on Higgs trilinear suppressed in the tail
  - events at threshold more sensitive to Higgs trilinear, events at large  $m_{hh}$  more important to determine the other operators

## Final states

#### GF is the hh production channel with highest cross section

 $\sigma_{14\mathrm{TeV}}^{\mathrm{SM}} \simeq 39.5 \text{ fb}$ 

Full LO: Glover, van der Bij '88 Full NLO: Borowka, Greiner et al. '16 Approximate NNLO + NNLL: De Florian, Mazzitelli '13, '15; Grigo, Melnikov, Steinauser '14; Grigo, Hoff, Steinauser '15; Shao, Li, Wang '13

Many final states with reasonable number of events at HL-LHC

- + golden channel:  $b\bar{b}\gamma\gamma$ 
  - small number of events
  - clean final state (small bkg)
  - can access total cross section
- other modes:

 $b\bar{b}\tau^+\tau^-$ ,  $b\bar{b}WW^*$ ,  $b\bar{b}b\bar{b}$ 

- larger cross section
- large bkg
- may be useful to probe tail of distribution (boosted jet techniques)

| decay channel                   | BR    | events $(3 \text{ ab}^{-1})$ |
|---------------------------------|-------|------------------------------|
| $b \overline{b} b \overline{b}$ | 33%   | 40000                        |
| $b\overline{b}WW^*$             | 25%   | 31000                        |
| $b\overline{b}\tau^+\tau^-$     | 7.3%  | 8900                         |
| $ZZb\overline{b}$               | 3.1%  | 3800                         |
| $WW^*\tau^+\tau^-$              | 2.7%  | 3300                         |
| $ZZWW^*$                        | 1.1%  | 1300                         |
| $b\overline{b}\gamma\gamma$     | 0.26% | 320                          |
|                                 |       |                              |

## Gluon Fusion at 100 TeV

- + huge increase in cross section (~40 times I4TeV)  $\sigma^{\rm SM}_{100{\rm TeV}} \simeq 1400~{\rm fb}$
- similar shape at threshold and around the peak
- significant increase in the high  $m_{hh}$  tail



# (Partial) List of theoretical analyses

#### • $hh \to b\bar{b}\gamma\gamma$

Baur, Plehn, Rainwater hep-ph/0310056 Baglio, Djouadi, Grober, Mullheitner, Quevillon et al. 1212.5581 Yao 1308.6302 Barger, Everett, Jackson, Shaughnessy 1311.2931 Azatov, Contino, Panico, Son 1502.00539 Kling, Plehn, Schichtel 1607.07441

#### • $hh \to b\bar{b}\tau^+\tau^-$

Baur, Plehn, Rainwater hep-ph/0304015 Dolan, Englert, Spannowsky 1206.5001 Baglio, Djouadi, Grober, Mullheitner, Quevillon et al. 1212.5581 Barr, Dolan, Englert, Spannowsky 1309.6318 Goertz, Papaefstathiou, Yang, Zurita 1410.3471

#### • $hh \to b\bar{b}WW^*$

Dolan, Englert, Spannowsky 1206.5001 Baglio, Djouadi, Grober, Mullheitner, Quevillon et al. 1212.5581 Papaefstathiou, Yang, Zurita 1209.1489

•  $hh \to b\bar{b}b\bar{b}$ 

de Lima, Papaefstathiou, Spannowsky 1404.7139

• comprehensive study at 100 TeV:

Contino et al., "Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies", 1606.09408

#### The Golden Channel $b\bar{b}\gamma\gamma$

# The Higgs trilinear at HL-LHC

Tiny cross section:  $\sigma_{\rm SM}(HH \to b\bar{b}\gamma\gamma) \simeq 0.1 \text{ fb}$ 

Main backgrounds:

|                  |                                                     | even  | ts after se | election | (CMS analysis FTR-15-002)                           |  |  |
|------------------|-----------------------------------------------------|-------|-------------|----------|-----------------------------------------------------|--|--|
|                  |                                                     | 3.4   |             |          | see also ATLAS: PHYS-PUB-2014-019, PHYS-PUB-2015-46 |  |  |
| 0U               | $t\bar{t}H$                                         |       | 1.6         |          |                                                     |  |  |
| Jes              | $b\overline{b}H$                                    |       | 0.8         |          |                                                     |  |  |
| ے<br>ب           | $\Box \ b\overline{b}$                              |       | 10 /        |          | signal events: $9.0$                                |  |  |
| lan <sup>-</sup> | $1\overline{1}$                                     |       | 10.4        |          | Only $\mathcal{O}(1)$ determination                 |  |  |
| U<br>U<br>U      | $\begin{bmatrix} \Box \\ O \end{bmatrix} bbj\gamma$ |       | 0.3         |          | of $\lambda_3$ is possible                          |  |  |
| le o             | $jj\gamma\gamma$                                    |       | 2.1         |          |                                                     |  |  |
| ЧС               | $b \overline{b} j j$                                |       | 1.1         |          |                                                     |  |  |
| ũ                | $t\bar{t}\gamma$                                    |       | 1.2         |          |                                                     |  |  |
|                  |                                                     | total | 24.8        |          |                                                     |  |  |

 Some improvement possible with multivariate techniques  $\frac{\lambda}{\lambda_{\rm SM}} \in [0.4, 1.7] \qquad \text{at} \ 68\% \ {\rm CL}$ 

Kling, Plehn, Schichten '16

## Prospects at 100 TeV

```
Sizeable cross section: \sigma_{\rm SM}(HH \rightarrow b\bar{b}\gamma\gamma) \simeq 3.6 \ {\rm fb}
```

Main backgrounds:



- + Good precision on SM cross section:  $\sim 2\%\,$  at 68% CL
- + Good determination of Higgs trilinear:  $\sim 4.5\%$  at 68% CL

## Fit to non-linear Higgs couplings

#### Determination of $c_3$ , $c_{2t}$ and $c_{2g}$



Correlation between Higgs trilinear and top couplings

+ Good precision on contact interactions to top and gluons

benchmark scenarios: LHC<sub>14</sub>  $\sqrt{s} = 14 \text{ TeV}$ , L = 300 fb<sup>-1</sup> HL-LHC  $\sqrt{s} = 14 \text{ TeV}$ , L = 3 ab<sup>-1</sup> FCC<sub>100</sub>  $\sqrt{s} = 100 \text{ TeV}$ , L = 3 ab<sup>-1</sup>

### Exclusive vs inclusive analysis



#### **Exclusive analysis** is crucial at FCC100

| category                 |           | 2         | 3         | 4         | 5          | 6      |
|--------------------------|-----------|-----------|-----------|-----------|------------|--------|
| $m_{hh} \; [\text{GeV}]$ | 250 - 400 | 400 - 550 | 550 - 700 | 700 - 850 | 850 - 1000 | 1000 - |

# Operators in the Higgs doublet basis



+ Double Higgs measurement can resolve the degeneracy in  $c_g$ 

+ At FCC<sub>100</sub> can be competitive with  $t\bar{t}h$  for the determination of the top Yukawa  $\bar{c}_u$  (if precision from single Higgs similar to the LHC one)

orange region: single Higgs incl.  $t\bar{t}h$ blue region: single + double Higgs

#### **Non-resonant processes** The Vector Boson Fusion channel

results from Contino, Rojo, work in progress (courtesy of R. Contino)

## Testing the strength of EWSB

VBF can test perturbative unitarization

$$\mathcal{L} \supset \left( m_W^2 W_\mu^2 + \frac{m_Z^2}{2} Z_\mu^2 \right) \left( 1 + 2c_V \frac{h}{v} + c_{2V} \frac{h^2}{v^2} \right)$$



+ Cross section grows at high  $m_{hh}$  if the couplings are modified (in the SM  $c_V = c_{2V} = 1$  )



1000467672220+10000010000+2222002222200-32220003222000+3220000 >>500000

### Higgs and couptings from BF



Best channel:  $hh \to 4b$   $\Delta \Delta g_{V} = c_{g_{V}} + 1$  LHOG<sub>44</sub> HILLHOC FECG<sub>000</sub>  $\bullet$  by go background consitive only if developed multiple multiple problem to the problem of the problem

- huge background, sensitive only if deviations much larger than SM<sup>3</sup>
- poor precision on Higgs trilinear (not competitive with GF)
- + FCC<sub>100</sub> can provide good bounds on  $\Delta c_{2V} \equiv c_{2V} 1$

| 68% probability intervals | LHC14         | HL-LHC        | FCC100        |
|---------------------------|---------------|---------------|---------------|
| on $\Delta c_{2V}$        | [-0.18, 0.22] | [-0.08, 0.12] | [-0.01, 0.03] |

#### **Resonant processes**

Scalar Singlet production

## Additional scalar singlet

Extensions of the Higgs sector are quite common in BSM scenarios

Additional **singlet**  $\phi$  is often present (eg. NMSSM, Twin Higgs, ...)

results taken from Buttazzo, Sala, Tesi, 1505.05488 see also references therein

Couplings controlled by the mixing with the Higgs

couplings to SM 
$$\frac{g_{\phi ff}}{g_{hff}^{\rm SM}} = \frac{g_{\phi VV}}{g_{hVV}^{\rm SM}} = \sin\gamma = \left(\frac{M_{hh}^2 - m_h^2}{m_\phi^2 - m_h^2}\right)^{1/2}$$

coupling to the Higgs

- $g_{\phi hh}$
- Main decay channels

$$BR(\phi \to hh) = BR(\phi \to ZZ) = \frac{1}{2}BR(\phi \to WW) = \frac{1}{4}, \quad \text{for} \quad m_{\phi} \gg m_W$$

#### Direct searches

Direct searches can exploit the VV and hh channels



Current experimental analyses in the  $\phi \rightarrow hh(4b)$  channel

| 8 TeV  | atlas<br>CMS | CONF-2014-005<br>1503.04114 |
|--------|--------------|-----------------------------|
| 13 TeV | ATLAS        | CONF-2016-049               |

### Reach of direct searches

In some regions of the parameter space, the  $\phi \to hh(4b)$  channel give the best reach



# Deviations in the Higgs couplings



- Direct searches can be competitive with indirect constraints from Higgs couplings deviations
- Sizeable deviations in the Higgs trilinear coupling expected

#### Conclusions

## Conclusions

Double Higgs production can give access to a rich landscape of phenomena both in the SM and Beyond

#### + Non-resonant processes

- probe Higgs potential (in particular Higgs trilinear)
- access non-linear Higgs couplings
- test the strength of EWSB at high energy
- small cross section:

limited precision at LHC

good prospects at future high energy colliders (eg. FCC100)

#### Resonant processes

- test extended Higgs sectors
- good reach possible at HL-LHC

#### Backup

### **Non-resonant processes** Double Higgs at e<sup>+</sup>e<sup>-</sup> Colliders

### Main production channels



## Main production channels



## Main production channels



## Expected precision on $c_3$ and $c_{2V}$

|                 | COM energy                              | Precision                 | Process | Reference                            |
|-----------------|-----------------------------------------|---------------------------|---------|--------------------------------------|
|                 | 500  GeV<br>[L = 500 fb <sup>-1</sup> ] | $\Delta c_3 \sim 104\%$   | DHS     | ILC TDR, Volume 2, arXiv:1306.6352   |
| ILC $1'$ $[L =$ | 1 TeV                                   | $\Delta c_3 \sim 28\%$    | VBF     | ILC TDR, Volume 2, arXiv:1306.6352   |
|                 | $[L = 1 \text{ ab}^{-1}]$               | $\Delta c_{2V} \sim 20\%$ | DHS     | Contino et al., JHEP 1402 (2014) 006 |



FCC<sub>100</sub> allows for better precision

- + higher energy reach (useful for  $\Delta c_{2V}$ )
- higher luminosity at threshold (useful for Higgs trilinear)

#### **Gluon Fusion channel**

Angular dependence

## The angular distribution

The signal is also characterised by the angle between the Higgs pair and the beam axis in the c.o.m. frame



Scattering due to two partial waves  $J_z = 0$  and  $J_z = \pm 2$ 

 $\frac{d\sigma}{d\cos\theta} \sim const. \quad (J_z = 0)$ 

$$\frac{d\sigma}{d\cos\theta} \sim \sin^2\theta \quad (J_z = \pm 2)$$

## The angular distribution

The signal is also characterised by the angle between the Higgs pair and the beam axis in the c.o.m. frame



Scattering due to two partial waves  $J_z = 0$  and  $J_z = \pm 2$  $\frac{d\sigma}{d\cos\theta} \sim const.$   $(J_z = 0)$   $\frac{d\sigma}{d\cos\theta} \sim \sin^2\theta$   $(J_z = \pm 2)$ 

+ in the SM the  $J_z = \pm 2$  amplitude comes only from the box diagram and is quite suppressed



## The angular distribution

The signal is also characterised by the angle between the Higgs pair and the beam axis in the c.o.m. frame



Scattering due to two partial waves  $J_z = 0$  and  $J_z = \pm 2$ 

 $\frac{d\sigma}{d\cos\theta} \sim const.$   $(J_z = 0)$   $\frac{d\sigma}{d\cos\theta} \sim \sin^2\theta$   $(J_z = \pm 2)$ 

- + in the SM the  $J_z = \pm 2$  amplitude comes only from the box diagram and is quite suppressed
- + the BSM diagrams coming from dim. 6 operators only generate contributions with  $J_z = 0$ 
  - ⇒ angular analysis not useful to disentangle NP effects (possible exception dim. 8 operators, extremely hard at LHC)