

Francesco Riva (CERN)

In collaboration with Pomarol 1308.2803 Gupta, Pomarol 1405.0181 Biekotter, Knochel, Kramer, Liu 1406.7320 Falkowski 1411.0669 Liu, Pomarol, Rattazzi 1603.03064, Contino,Falkowski,Goertz,Grojean, 1604.06444 Azatov, Contino, Machado 1607.05236

Two modes of exploration at LHC:

A) **Direct Searches**:

Two modes of exploration at LHC:

A) **Direct Searches**:

B) Indirect Searches:

1) On SM resonance

E=Mh,Z

Why can we call these "searches"?

We miss the resonance, but get its tail

1) On (SM) resonance E=Mh,Z

2) Off (SM) resonance $E >> m_{h,Z}$

Effective Field Theories

Why can we call these "searches"?

Effective Field Theories provide the correct framework for

Effective Field Theories

Why can we call these "searches"?

Effective Field Theories provide the correct framework for

Alonso, Brivio, Gavela, Merlo, Rigolin, Yepes'14, Buchalla, Cata, Krause'14-15

Indirect Searches

1) On (SM) resonance E=mh,Z

- Exploits resonant enhancement of SM process to measure it precisely
- Fests departures from SM couplings

$$\frac{\delta g}{g} \sim \frac{g_* v}{M}$$

Indirect Searches

1) On (SM) resonance E=mh,Z

Exploits resonant enhancement of SM process to measure it precisely

Fests departures from SM couplings

$$\frac{\delta g}{g} \sim \frac{g_* v}{M}$$

2) Off (SM) resonance E>>mh,Z

- Less precise
- Fests new coupling structures

1) On-shell processes and implications for h-physics

(assume CP-preserving, flavour universal new physics)

Measures deviations from SM Z-couplings to fermions

How Many parameters? 7

 $Z\bar{\nu}\nu \ Z\bar{e}_{L}e_{L} \ Z\bar{e}_{R}e_{R}$ $Z\bar{u}_{L}u_{L} \ Z\bar{u}_{R}u_{R} \ Z\bar{d}_{L}d_{L} \ Z\bar{d}_{R}d_{R}$

What precision? $\approx 1/1000$

Measures deviations from SM Z-couplings to fermions

How Many parameters? 7

 $Z\bar{\nu}\nu \ Z\bar{e}_L e_L \ Z\bar{e}_R e_R$ $Z \overline{u}_L u_L \ \overline{Z} \overline{u}_R u_R \ \overline{Z} \overline{d}_L d_L \ \overline{Z} \overline{d}_R \overline{d}_R$

What precision? **≈1/1000**

Theory
$\mathcal{O}_R^u = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{u}_R \gamma^{\mu} u_R)$
$\mathcal{O}_{R}^{d} = (iH^{\dagger}\overset{\leftrightarrow}{D_{\mu}}H)(\bar{d}_{R}\gamma^{\mu}d_{R})$
$\mathcal{O}^e_R = (i H^\dagger \stackrel{\leftrightarrow}{D_\mu} H) (\bar{e}_R \gamma^\mu e_R)$
$\mathcal{O}_L^q = (i H^\dagger \overset{\leftrightarrow}{D_\mu} H) (ar{Q}_L \gamma^\mu Q_L)$
$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_L\sigma^a\gamma^{\mu}Q_L)$
${\cal O}_L = (i H^\dagger \stackrel{\leftrightarrow}{D_\mu} H) (ar{L}_L \gamma^\mu L_L)$
${\cal O}_L^{(3)} = (i H^\dagger \sigma^a {\stackrel{\leftrightarrow}{D}}_\mu H) (ar{L}_L \sigma^a \gamma^\mu L_L)$

At given order in 1/M, combinations of operators proportional to EoM redundant → Different equivalent bases

> (translator: Falkowski, Fuks, Mawatari, Mimasu, FR, Sanz '14)

Measures deviations from SM Z-couplings to fermions

Implications of EFT perspective:*

Relation with new physics scale:

$$\frac{M}{g_*} \ge 2.5 \text{ TeV}$$

(testing $\frac{\delta g}{g} \sim \frac{g_* v}{M}$ expansion)

Relation with h-physics and W-physics

*=since here the #experimental parameters is finite, EFT expansion not necessarily needed (see parametrization mz, AFB,....)

Implications of EFT perspective:*

Relation with new physics scale:

$$\frac{M}{g_*} \ge 2.5 \text{ TeV}$$

(testing $\frac{\delta g}{g} \sim \frac{g_* v}{M}$ expansion)

Relation with h-physics and W-physics

*=since here the #experimental parameters is finite, EFT expansion not necessarily needed (see parametrization mz, AFB,....)

Implications of EFT perspective:*

Relation with new physics scale:

$$\frac{M}{g_*} \ge 2.5 \text{ TeV}$$

(testing $\frac{\delta g}{g} \sim \frac{g_* v}{M}$ expansion)

Relation with h-physics and W-physics

*=since here the #experimental parameters is finite, EFT expansion not necessarily needed (see parametrization mz, AFB,....)

h-resonance (LHC)

Measures deviations from SM h-couplings

Experiment

h-resonance (LHC)

Measures deviations from SM h-couplings

In vacuum <h>=v, operators $|H|^2 \times \mathcal{L}_{SM}$ only redefine SM parameters! •Observable only in Higgs physics! $\frac{1}{g_s^2}G_{\mu\nu}G^{\mu\nu} + \frac{|H|^2}{\Lambda^2}G_{\mu\nu}G^{\mu\nu} = \left(\frac{1}{g_s^2} + \frac{v^2}{\Lambda^2}\right)G_{\mu\nu}G^{\mu\nu} + h\frac{2v}{\Lambda^2}G_{\mu\nu}G^{\mu\nu}$

Elias-Miro, Espinosa, Masso, Pomarol'13; Gupta, Pomarol, FR'14

h-resonance (LHC)

Implications of EFT perspective:*
Relation between 1h-2h processes

Custodial symmetry persists at d=6

 \sim (accidental in the SM d=4)

h-resonance (LHC)

Implications of EFT perspective:* Relation between 1h-2h processes

Custodial symmetry persists at d=6

(accidental in the SM d=4)

2 In A(À

$$\kappa_Z = \kappa_W \left| \begin{array}{c} \kappa_z \\ \kappa_w \\ \end{array} \right| = \left| \begin{array}{c} \kappa_z \\ \kappa_w \\ \end{array} \right| = \left| \begin{array}{c} \kappa_z \\ \kappa_w \\ \end{array} \right|$$

More precisely: since h->ZZ* , h->WW* are off-shell, custodial preserving, E-dependent, d=6 operators (see next) introduce effects sensitives to SM custodial breaking

$$\begin{array}{rcl} \lambda_{WZ}^2 - 1 &\simeq& s_{\theta_W}^2 \left[0.9c_W - 2.6c_B + 3\kappa_{HW} - 3.9\kappa_{HB} \right] \\ &\simeq& 0.6\delta g_1^Z - 0.5\delta\kappa_\gamma - 1.6\kappa_{Z\gamma} \in [-6,8] \times 10^{-2} \end{array}$$

=since here the #experimental parameters is unite, rus integration inviation of 14-15) can also be used to parametrize the on-shell decays, however (see later) for the off-shell h->ZZ an EFT perspective is necessary

Is there an more info related with Higgs-physics?

2) ... off-shell E>> mh, mz

Exemple 2->2 Processes (LEP2, LHC) $\bar{\psi}\psi \rightarrow \bar{\psi}\psi$ $\bar{\psi}\psi \rightarrow W^+W^-$ > Important for Run2, FCC,... (LHC) VBF, VH

Exemple 2->2 Processes (LEP2, LHC) $\psi \psi \to \psi \psi$ $\psi \psi \to W^+ W^-$ Important for Run2, FCC,... (LHC) VBF, VH

• Observables=distributions: in principle ∞ information
• Theory guidance (EFT expansion) necessary

Exemple 2->2 Processes (LEP2, LHC) $\psi \psi \to \psi \psi$ $\psi \psi \to W^+ W^-$ Important for Run2, FCC,... (LHC) VBF, VH

Observables=distributions: in principle ∞ information
 Theory guidance (EFT expansion) necessary

Testing new (non-SM-like) interactions

Exemple 2->2 Processes $\bar{\psi}\psi \rightarrow \bar{\psi}\psi$ $\bar{\psi}\psi \rightarrow W^+W^-$ > Important for Run2, FCC,... (LEP2, LHC) **VBF** VH (LHC)

Observables=distributions: in principle ∞ information Theory guidance (EFT expansion) necessary

Testing new (non-SM-like) interactions

Find the still unconstrained by on-shell measurements:

 $\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu} \qquad \mathcal{O}_{W} = \frac{ig}{2}\left(H^{\dagger}\sigma^{a}\overset{\leftrightarrow}{D^{\mu}}H\right)D^{\nu}W^{a}_{\mu\nu}$

(more precisely, see Pomarol, FR'16; Gupta, Pomarol, FR'14)

Amplitude for 2->2 has dimension of coupling $A_{SM} \sim g_{SM}^2$

We can think of these measurements as testing the E-growth of couplings

$$A_{BSM} \sim g_{SM}^2 \left(1 + \frac{g_*^2}{g_{SM}^2} \frac{E^2}{M^2} \right) + \cdots$$

Amplitude for 2->2 has dimension of coupling $A_{SM} \sim g_{SM}^2$

We can think of these measurements as testing the E-growth of couplings

$$A_{BSM} \sim g_{SM}^2 \left(1 + \frac{g_*^2}{g_{SM}^2} \frac{E^2}{M^2}\right) + \cdots$$
Can be >>1 for gsm<

Amplitude for 2->2 has dimension of coupling $A_{SM} \sim g_{SM}^2$

We can think of these measurements as testing the E-growth of couplings

$$A_{BSM} \sim g_{SM}^2 \left(1 + \frac{g_*^2}{g_{SM}^2} \frac{E^2}{M^2}\right) + \cdots$$
Can be >>1 for gsm<

 \blacktriangleright For strongly coupled new physics there can be effects larger than SM, $\delta\sigma/\sigma_{SM}\gtrsim 1$

compatibly with EFT expansion E/M<<1 & with non observation at low-E

Precision Searches at high-E In Practice

Measurements of $u\bar{d} \to W^+h$

(fake data for illustration)

$M_{Wh}[\text{TeV}]$	0.5	1	1.5	2	2.5	3
$\sigma/\sigma_{ m SM}$	1 ± 1.2	1 ± 1.0	1 ± 0.8	1 ± 1.2	1 ± 1.6	1 ± 3.0

Contino,Falkowski,Grojean,Goertz,FR'16

 $\begin{array}{c} \psi\psi\to WV\\ \bar\psi\psi\to hV \end{array}$

Give E-growing effects in

 $\begin{array}{c} \psi\psi\to WV\\ \bar\psi\psi\to hV \end{array}$

Give E-growing effects in

 $\begin{pmatrix} h^+ \\ h+ih^0 \end{pmatrix}$ In the SM, all scalars belong to the Higgs doublet

Biekötter,Knochel,Krämer,Liu,FR '14; Liu,Pomarol,Rattazzi,FR'to appear

For large g* LHC constraints strongest

Biekötter,Knochel,Krämer,Liu,FR '14; Liu,Pomarol,Rattazzi,FR'to appear Corbett,Eboli,Gonzalez-Garcia,Fraile'12-13; Ellis,Sanz,You'14; Beneke,Boito,Wang'14 Butter, Eboli, Gonzalez-Fraile, GonzalezGarcia, Plehn,Rauch'16

For large g* LHC constraints strongest

This is all very nice, but...

what is being tested? what are these theories with a new strong coupling g_* ?

Biekötter,Knochel,Krämer,Liu,FR '14; Liu,Pomarol,Rattazzi,FR'to appear Corbett,Eboli,Gonzalez-Garcia,Fraile'12–13; Ellis,Sanz,You'14; Beneke,Boito,Wang'14 Butter, Eboli, Gonzalez-Fraile, GonzalezGarcia, Plehn,Rauch'16

Strongly Coupled BSM?

How can SM be light and weakly coupled at E<mw and strongly coupled at E>>mw?

Strongly Coupled BSM?

How many examples of such approximate symmetries exist?

(situations where a New strong sector delivers naturally weakly coupled light states)

Scalars:

1) Composite Higgs

Georgi,Kaplan'84; Agashe,Contino,Nomura,Pomarol'04 Giudice,Grojean,Pomarol,Rattazzi'07;...

Higgs is a Pseudo Goldstone boson of a spontaneously broken global symmetry, e.g. SO(5)/SO(4)

Fermions:

2) Composite fermions

Eichten, Lane, Peskin'83

Chiral symmetry is broken by SM Yukawas

3) SM fermions as Goldstinos (non-linear SUSY)

Bardeen, Visnjić 82, Bellazzini, FR'soon

Vectors: 4) Strong dipoles

Liu, Pomaral, Rattazzi, FR'16

(Arguments based on unitarity/analicity show that no other approximate symmetries are possible) Adams, Arkani-Hamed, Pubovsky, Nicolis, Rattazzi'06; Bellazzini,Martucci,Torre'14; Bellazzini'16

Example 1: (Composite) Higgs

Higgs himself a (pseudo) Goldstone from New strongly interacting sector: Georgi, Kaplan'84; Agashe, Contino, Nomura, Pomarol'04 (e.g. SO(5)/SO(4))

Shift symmetry: $H \rightarrow H + c$

 $g_*\partial_\mu \overline{H}$ +n.l.

Callan,Coleman,Wess,Zumino 69

 $\epsilon H \times$

 $\quad \frac{g_*^2}{M^2} (\partial_\mu |H|^2)^2 \text{ big } \quad \triangleright \ \lambda (H^\dagger H)^2 \quad \text{small}$

Implications:

Small mass, but large effects in W_LW_L scattering (which is why the LHC was built) $A \simeq \lambda \left(1 + \frac{g_*^2}{\lambda} \frac{E^2}{M^2} \right)$

e.g. Contino,Grojean,Moretti,Piccinini,Rattazzi'10

2. Composite Fermions

SM fermion interactions small because of chiral symmetry

(and because gauge bosons elementary)

 $\mathcal{L}_4 = y_{\psi} H \psi_L \psi_R$

_____ small since violates chiral symm

2. Composite Fermions

SM fermion interactions small because of chiral symmetry

(and because gauge bosons elementary)

 $\mathcal{L}_4 = y_\psi H \psi_L \psi_R$ small since violates chiral symm

 ${\cal L}_6 = {g_*^2\over M^2} ar\psi \gamma_\mu \psi ar\psi \gamma^\mu \psi + \cdots$

Large effects in, e.g. dijets at LHC

$$\bigwedge A \simeq g^2 \left(1 + \frac{g_*^2}{g^2} \frac{E^2}{M^2} \right)$$

Problem: Gauge bosons associated with weak SM coupling ($\partial_{\mu} + igA_{\mu}$) how can they couple with a different coupling g*>>g?

3. Strong transverse vectors? $\psi \qquad W_T \qquad W_T \qquad \frac{g_*}{M^2} \epsilon_{abc} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\,\rho\mu}$

Problem: Gauge bosons associated with weak SM coupling ($\partial_{\mu} + igA_{\mu}$) how can they couple with a different coupling g*>>g?

Two ways a particle can couple to gauge boson: $g\bar{\psi}_{new}A_{\mu}\gamma^{\mu}\psi_{new}$ monopole/dipole $g_*\bar{\psi}\sigma^{\mu\nu}\psi_{new}F_{\mu\nu}$

Problem: Gauge bosons associated with weak SM coupling ($\partial_{\mu} + igA_{\mu}$) how can they couple with a different coupling g*>>g?

Two ways a particle can couple to gauge boson: $g\bar{\psi}_{new}A_{\mu}\gamma^{\mu}\psi_{new}$ monopole/dipole $g_*\bar{\psi}\sigma^{\mu\nu}\psi_{new}F_{\mu\nu}$

Large dipoles $\frac{g_*}{a} \gg 1$ possible, even with small monopole

Problem: Gauge bosons associated with weak SM coupling ($\partial_{\mu} + igA_{\mu}$) how can they couple with a different coupling g*>>g?

Two ways a particle can couple to gauge boson: $g\bar{\psi}_{new}A_{\mu}\gamma^{\mu}\psi_{new}$ monopole/dipole $g_*\bar{\psi}\sigma^{\mu\nu}\psi_{new}F_{\mu\nu}$

Large dipoles $\frac{g_*}{a} \gg 1$ possible, even with small monopole

Problem: Gauge bosons associated with weak SM coupling ($\partial_{\mu} + igA_{\mu}$) how can they couple with a different coupling g*>>g?

Two ways a particle can couple to gauge boson: $g\bar{\psi}A_{\mu}\gamma^{\mu}\psi_{\mu\nu}$ monopole/dipole $g_*\bar{\psi}\sigma^{\mu\nu}\psi_{\mu\nu}F_{\mu\nu}$

Large dipoles $\frac{g_*}{g} \gg 1$ possible, even with small monopole

Possible for operators involving $F^{\mu\nu}$ to be sizable, despite weak "covariant-derivative" interactions

3. Strong transverse vectors

 $\frac{\delta \mathcal{A}_{BSM}}{\mathcal{A}_{SM}} \lesssim 1$

dimension-6 analysis ok

3. Strong transverse vectors

Strong transverse vectors: Implications

 $\frac{\delta A_{BSM}}{A_{SM}} \gtrsim 1 \qquad \textbf{Some dimension-8 necessary due to coupling enhancement} \\ \textbf{A}_{SM} \qquad \textbf{A rationale for neutral TGC studies (that already exploit d=8)} \\ \textbf{(EFT E/M expansion still valid: dimension-10 small)}$

Conclusions

Consistent situations where dim-10<<dim-8>>dim-6

Conclusions

