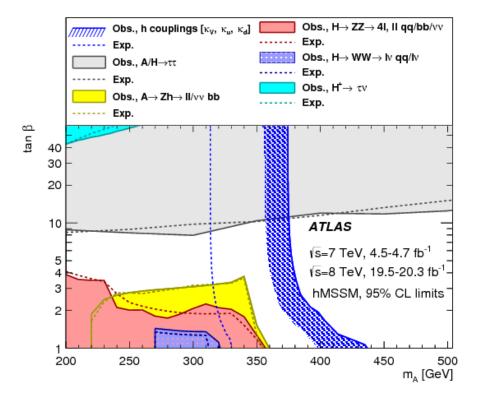
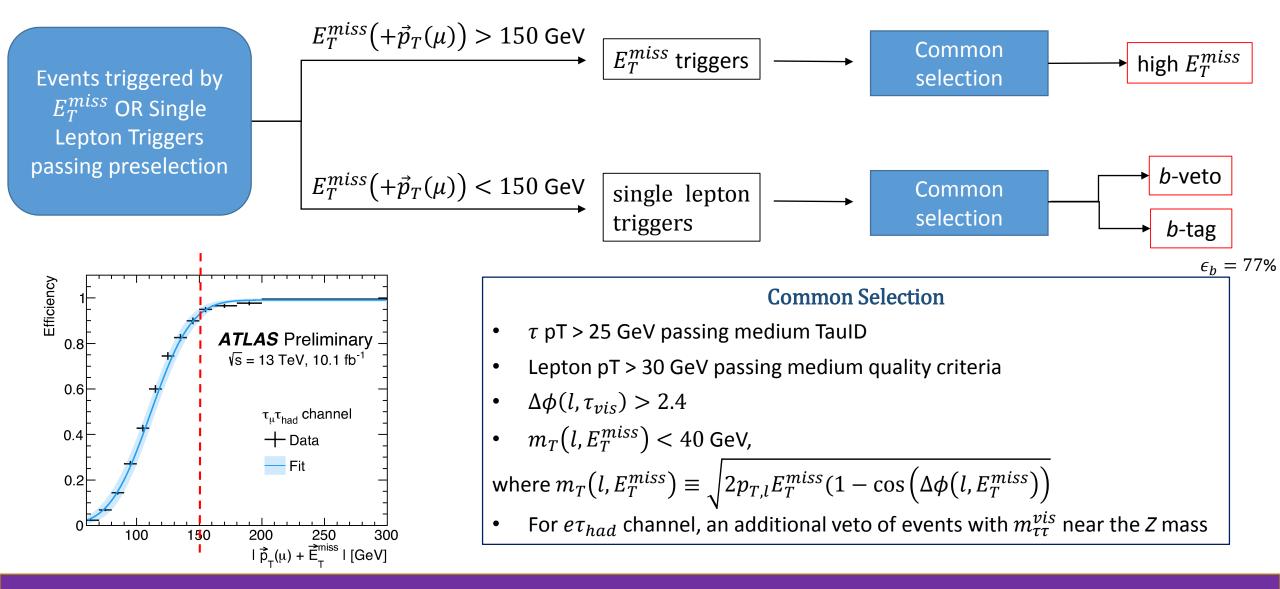

MSSM H/A $\rightarrow \tau \tau$ in ATLAS


Pedro Sales de Bruin on behalf of the ATLAS collaboration

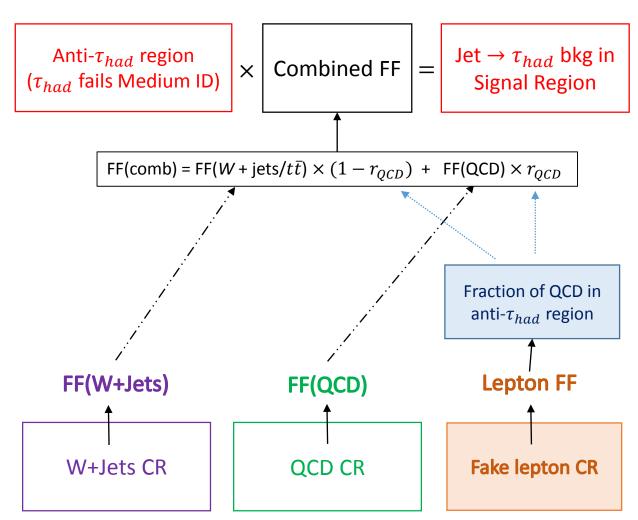
$H/A \rightarrow \tau \tau$ – overview

- The $H/A \rightarrow \tau \tau$ channel is the most powerful channel to search for MSSM Higgs bosons at high tan β
- Will show latest search using 13.3 fb⁻¹ of 13 TeV Run-2 data (ATLAS-CONF-2016-085)
- The analysis is split into $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$ channels
- Each channel is sub-divided into b-veto and b-tagged categories. Additional high- E_T^{miss} category for $\tau_{lep}\tau_{had}$ channel

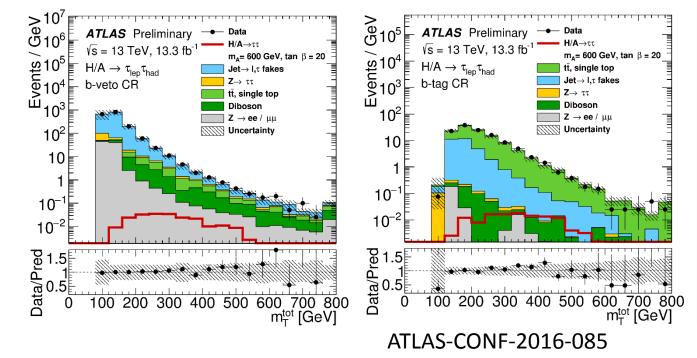


JHEP 1511 (2015) 206

 $\tau_{lep}\tau_{had}$ selection


3

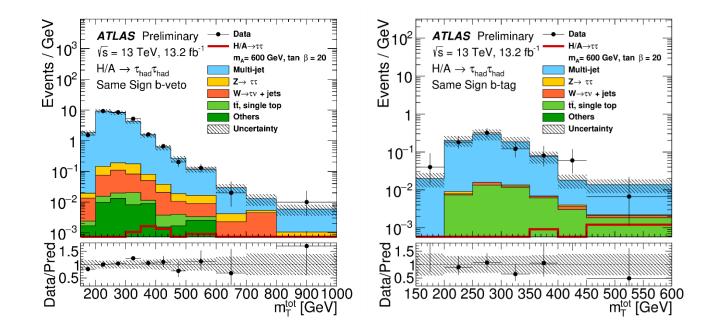
$\tau_{lep}\tau_{had}$ backgrounds overview



Fake background treatment

- Events with truth-matched leptons, taus and lepton faking τ_{had} taken from simulation. Mostly from $Z \rightarrow \ell \ell$ and $Z \rightarrow \tau \tau$. Scale factors in $e \rightarrow \tau_{had}$ events
- Background with jets faking taus estimated with a datadriven method
- Fake-τ_{had} background is mostly W+Jets (where the lepton is true), or multi-jet (where both lepton and tau are faked by QCD jets). Top background also important for *b*-tag region
- Fake factors (**FF**) computed as ratio of pass/fail Medium TauID and applied in anti-tau control region (**CR**)
- Fraction of QCD in anti-tau region (r_{QCD}) computed using fake factors from a fake lepton control region

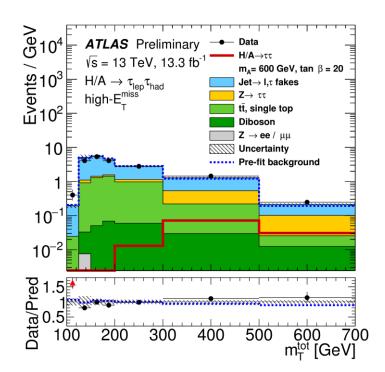
- W+jets/top CR definition is identical to signal region but with an inverted transverse mass cut:
 - $e\tau_{had}$: $m_T(l, E_T^{miss}) > 70 \text{ GeV}$
 - $\mu \tau_{had}$: $m_T(l, E_T^{miss}) > 60 \text{ GeV}$
- The FF(QCD) are computed in a control region where the lepton is anti-isolated
- The r_{QCD} is obtained using lepton fake factors derived in a fake lepton control region with no loose τ_{had} and leptons without isolation requirement. They are defined as the pass/fail ratio of the lepton isolation

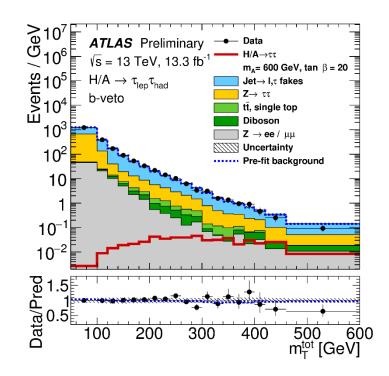


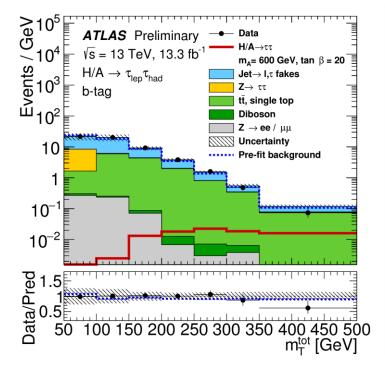
- Single tau trigger with threshold 80 GeV (125 GeV for later run periods)
- 2 OS τ_{had} with p_{T,τ_1} > 110 (140) GeV and p_{T,τ_2} > 55 (65) GeV
- No light leptons
- Leading tau passes medium ID. Subleading tau passes loose ID
- $\Delta \phi \left(\tau_{had,1}^{vis}, \tau_{had,2}^{vis} \right) > 2.7$
- b-tag ($N_{bjets} > 0$) and b-veto ($N_{bjets} = 0$) categories; $\epsilon_b = 70\%$

$\tau_{had} \tau_{had}$ backgrounds

- QCD background estimated with data-driven fake factors. All other backgrounds estimated from simulation
- QCD fake factors are defined as pass/fail TauID ratio of subleading tau. Parameterized in tau pT and N_{tracks}, and done separately for b-tag/b-veto. Computed in QCD control region obtained by inverting TauID requirement of leading tau. Uses jet triggers and no charge requirement for improved statistics
- MC events with fake taus weighted with datadriven fake rates computed in $W \rightarrow \mu v$ + jets and top control regions and applied to all MC events with fake taus
- Definitions of fake rate control regions are: Single muon trigger, $p_T(\mu) > 55 \text{ GeV}$, $p_T(\tau_{had}) > 50 \text{ GeV}$, $\Delta \phi(\mu, \tau) > 2.4$, $m_T(\mu, E_T^{miss}) > 40 \text{ GeV}$
 - *b*-veto: $\Sigma_{l=\mu,\tau} \cos\left(\Delta\phi(l, E_T^{miss})\right) < 0, N_{bjet} = 0$
 - b-tag: $N_{bjet} > 0$

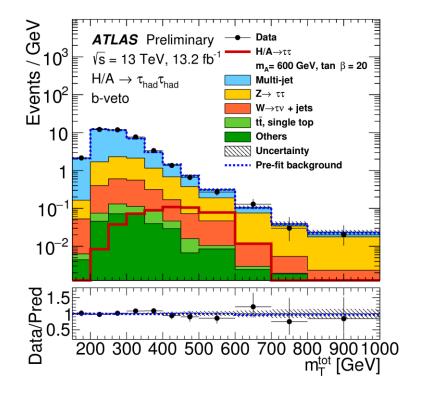

ATLAS-CONF-2016-085

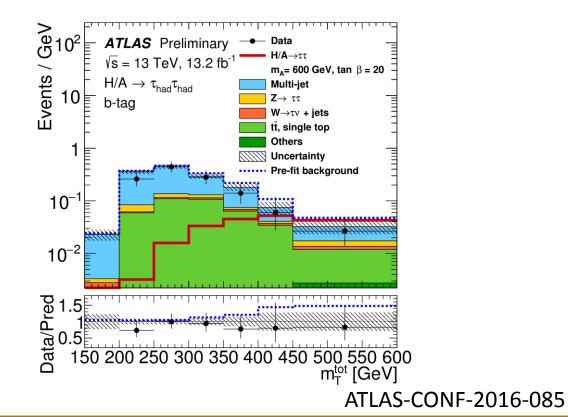

 $\tau_{lep}\tau_{had}$ results



• $m_T^{tot} = \sqrt{\left(m_T(l, E_T^{miss})\right)^2 + \left(m_T(\tau_{had}, E_T^{miss})\right)^2 + \left(m_T(l, \tau_{had})\right)^2}$

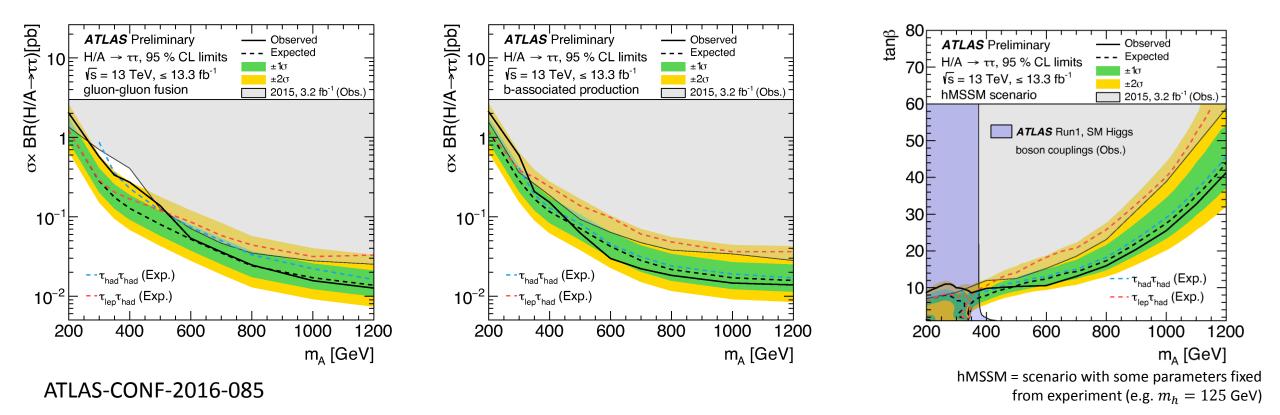
Good agreement between prediction and observed data


ATLAS-CONF-2016-085



•
$$m_T^{tot} = \sqrt{\left(m_T(\tau_{had,1}, E_T^{miss})\right)^2 + \left(m_T(\tau_{had,2}, E_T^{miss})\right)^2 + \left(m_T(\tau_{had,1}, \tau_{had,2})\right)^2}$$

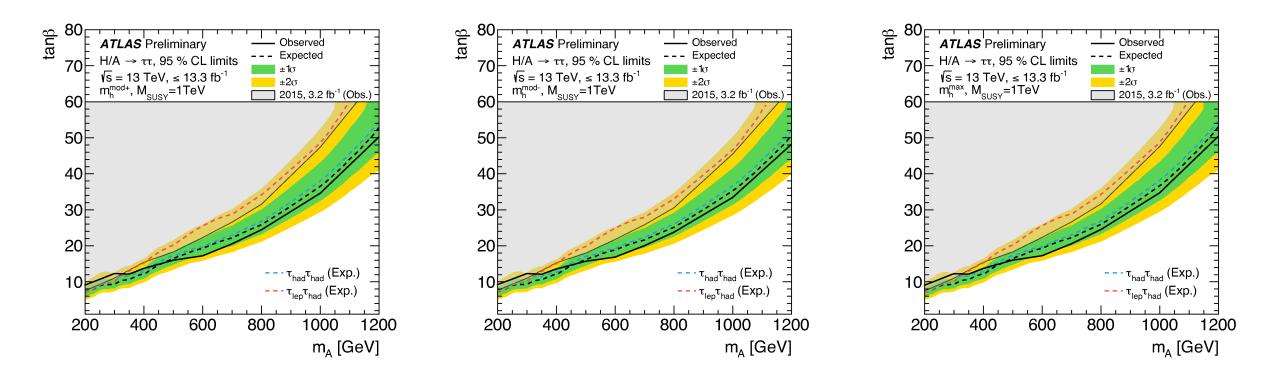
• Good agreement between prediction and observed data



- Derived 95% CL upper limits on cross section X BR for gluon-fusion and *b*-associated production. Exclusions range from \sim 2.0 pb to 13 fb depending on m_A and production mode
- Noticeable increase of parameter space exclusion at high mass compared to 3.2 fb⁻¹ Run-2 result (shown in grey)

Higgs Hunting 2016

- The latest status of the search for heavy neutral MSSM Higgs bosons decaying to $\tau\tau$ using 13.3/fb of 13 TeV Run-2 data has been shown.
- No significant excess is observed, signal production upper limits are set and results are interpreted for a variety of MSSM benchmark scenarios.
- Exciting prospects for even stronger results as more data is gathered!


Thanks!

BACKUP

MSSM exclusion – more benchmarks

• Results were interpreted also for m_h^{max} , $m_h^{mod\pm}$ benchmark scenarios

 m_h^{max} = scenario with maximal stop mixing, gives maximal light h mass for fixed tan β , m_A

 m_h^{mod} = modified m_h^{max} , X_t/M_s reduced to give $m_h = 125$ GeV for larger region of parameter space. Two scenarios according to sign of X_t/M_s term

ATLAS-CONF-2016-085

Selection Summary

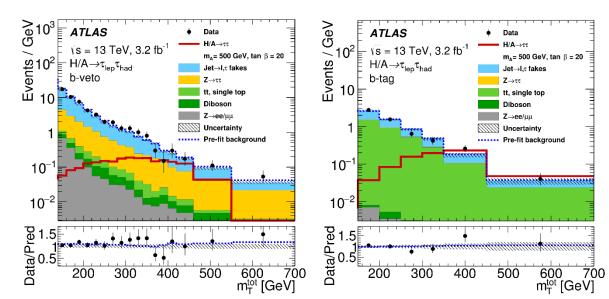
cignal nogion	$\Delta \phi(z, \ell) > 0.4 \text{ mm} (\ell, E^{\text{miss}}) < 40.0 \text{ eV}$				
$\tau_{\rm lep} \tau_{\rm had}$ signal region	$\Delta\phi(\tau_{\text{had-vis}}, \ell) > 2.4, \ m_{\text{T}}(\ell, E_{\text{T}}^{\text{miss}}) < 40 \ GeV,$				
1.1 Timice	Veto $80 < m_{e,\tau} < 110 \ GeV$ for $\tau_e \tau_{had}$,				
high- $E_{\rm T}^{\rm miss}$ category:	$E_{\mathrm{T}}^{\mathrm{miss}}\left(\vec{p_{\mathrm{T}}}(\mu) + \vec{E}_{\mathrm{T}}^{\mathrm{miss}} \right) > 150 \ GeV \ \text{for} \ \tau_e \tau_{\mathrm{had}} \ (\ \tau_\mu \tau_{\mathrm{had}}),$				
b-tag/ b -veto categories:	fail high- $E_{\rm T}^{\rm miss}$ category requirements,				
	$N_{b-\text{tag}} \ge 1$ (b-tag category), $N_{b-\text{tag}} = 0$ (b-veto category)				
b -veto/ $t\bar{t}$ fake-factor control region	$m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) > 70 \ (60) \ { m GeV} \ { m for} \ \tau_e \tau_{\rm had} \ (\tau_\mu \tau_{\rm had}), \ N_{b-{ m tag}} = 0$				
	different $\tau_{had-vis}$ identification for the anti- τ_{had} region				
<i>b</i> -tag control region	$N_{b-\text{tag}} \ge 1, \ m_{\text{T}}(\ell, E_{\text{T}}^{\text{miss}}) > 100 \ GeV$				
Multi-jet fake-factor control region	invert e, μ isolation requirement,				
	$N_{b-\text{tag}} \geq 1$ (b-tag category), $N_{b-\text{tag}} = 0$ (b-veto and high- $E_{\text{T}}^{\text{miss}}$ categories)				
	different $\tau_{had-vis}$ identification for the anti- τ_{had} multi-jet control region				
Multi-jet control region for	$m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) < 30 {\rm ~GeV}, {\rm no} \ e, \mu {\rm ~isolation} {\rm ~requirement},$				
$r_{\rm MJ}$ estimation	no $\tau_{\text{had-vis}}$ passing loose identification,				
	$N_{\text{jet}} \ge 1 \text{ and } N_{b-\text{tag}} = 0 \text{ (b-veto category)}, N_{\text{jet}} \ge 2 \text{ and } N_{b-\text{tag}} \ge 1 \text{ (b-tag category)},$				
	$N_{\rm jet} \geq 1, N_{b-\rm tag} = 0$ and $E_{\rm T}^{\rm miss}$ $(\vec{p}_{\rm T}(\mu) + \vec{E}_{\rm T}^{\rm miss}) > 150 \ GeV$ for				
	$\tau_e \tau_{had} (\tau_\mu \tau_{had}) (high-E_T^{miss} category)$				
$\tau_{\rm had} \tau_{\rm had}$ signal region	$\Delta \phi(\tau_{\text{had-vis},1}, \tau_{\text{had-vis},2}) > 2.7,$				
	$N_{b-\text{tag}} \geq 1$ and $p_{\text{T}} > 65 \text{ GeV}$ for the sub-leading $\tau_{\text{had-vis}}$ (b-tag category),				
	$N_{b-\text{tag}} = 0$ (b-veto category)				
Multi-jet fake-factor control region	pass single-jet trigger,				
	leading $\tau_{\text{had-vis}}$ with $p_{\text{T}} > 100 \text{ GeV}$ that fails medium identification,				
	no charge requirements and for leading $\tau_{\text{had-vis}}$ $n_{\text{tracks}} \leq 7$ (b-tag category), $\tau_{\text{had-vis},2}$				
	$n_{\rm tracks} = 1,3 \; (b$ -veto category), $rac{p_{\rm T}}{p_{\rm T}}^{ m had-vis,2} > 0.3$				
Fake rate control region	pass single-muon trigger, isolated muon with $p_{\rm T} > 55~GeV$,				
	$\tau_{\rm had-vis}$ with $p_{\rm T} > 50 \ GeV$, $\Delta \phi(\mu, \tau_{\rm had-vis}) > 2.4$,				
	$m_{\rm T}(\mu, E_{\rm T}^{\rm miss}) > 40 \ GeV \ \% \sum_{L=\mu,\tau} \cos \Delta \phi(L, E_{\rm T}^{\rm miss}) < 0 \ (\text{for b-veto category only})$				
	$N_{b-\text{tag}} \ge 1$ (b-tag category), $N_{b-\text{tag}} = 0$ (b-veto category)				
Same-sign validation region	The two $\tau_{had-vis}$ objects are required				
5 5	to have the same electric charge				

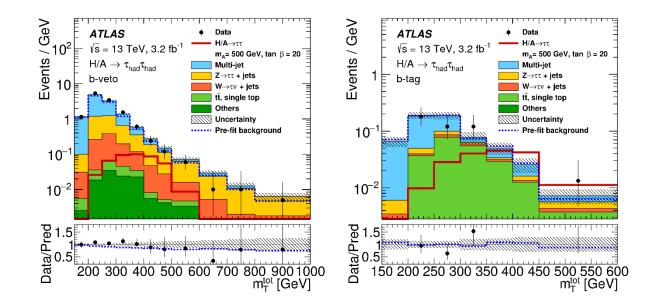
Event Yields

$ au_e au_{ m had}$ channel									
	b-tag	; cate	egory	<i>b</i> -veto	cate	egory	high-	$E_{\rm T}^{\rm mis}$	^s category
$Z \to \tau \tau + \text{jets}$	150	±	40	14200	±	900	13	±	2
$\text{Jet} \to \ell, \tau_{\text{had-vis}} \text{ fakes}$	770	\pm	260	20000	\pm	3900	72	\pm	9
$Z \to \ell \ell + \text{jets}$	20	\pm	4	1370	\pm	180	-	\pm	-
$t\bar{t}$ and single top quark	370	\pm	30	90	\pm	14	29	\pm	3
Diboson	3.0	\pm	0.6	141	\pm	13	2.6	\pm	0.6
Total prediction	1320	±	270	35800	\pm	4000	117	±	11
Data	1304			35841			123		
$m_A = 600 GeV, \tan\beta = 20 \ (m_h^{\text{mod}+})$									
ggH	0.019	±	0.007	1.02	\pm	0.17	0.32	\pm	0.06
bbH	4.5	\pm	0.9	7.2	\pm	1.5	3.9	\pm	0.9

$ au_{\mu} au_{ m had}$ channel									
	<i>b</i> -tag	; cate	egory	<i>b</i> -veto	o cate	egory	high-	$E_{\mathrm{T}}^{\mathrm{miss}}$	$^{\circ}$ category
$Z \to \tau \tau + \text{jets}$	210	±	50	19800	±	1100	91	±	11
$\text{Jet} \to \ell, \tau_{\text{had-vis}} \text{ fakes}$	960	\pm	340	18800	\pm	1900	540	\pm	60
$Z \to \ell \ell + \text{jets}$	10	\pm	3	1700	\pm	130	0.22	\pm	0.08
$t\bar{t}$ and single top quark	350	\pm	30	85	\pm	13	187	\pm	17
Diboson	1.3	\pm	0.5	190	\pm	16	14.9	\pm	2.0
Total prediction	1530	\pm	350	40600	\pm	2100	830	\pm	70
Data	1539			40556			839		
$m_A = 600 GeV, \tan\beta = 20 \ (m_h^{\text{mod}+})$									
ggH	0.010	±	0.004	0.4	\pm	0.06	1.3	\pm	0.2
bbH	1.6	±	0.4	3.0	±	0.7	16	±	3

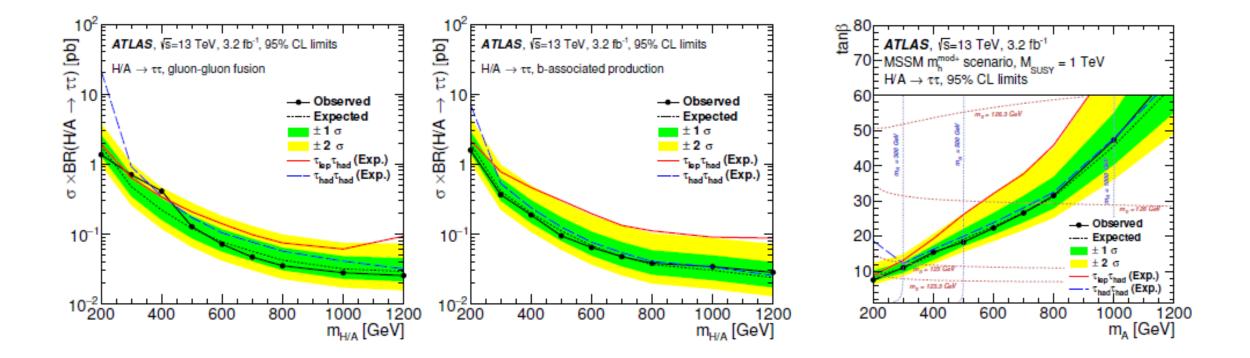
	$ au_{ m had} au_{ m had}$ channel								
		<i>b</i> -tag	cate	egory	<i>b</i> -veto category				
	$Z \to \tau \tau + \text{jets}$	4.0	±	0.9	340	\pm	40		
	Multi-jet	47	\pm	4	1500	\pm	60		
	$W \to \tau \nu + \text{jets}$	1.50	\pm	0.21	91	\pm	9		
	$t\bar{t}$ and single top quark	20	\pm	6	10	\pm	6		
	Others	0.51	\pm	0.21	14.8	\pm	2.0		
	Total prediction	73	±	6	1980	\pm	40		
y	Data	63			2006				
	$m_A = 600 GeV, \tan\beta = 2$	$0 \ (m_h^{\text{mod}})$	$^{1+})$						
	ggH	0.042	\pm	0.014	3.2	\pm	0.7		
	bbH	14	\pm	4	27	\pm	8		




Shown as fractional impact on total signal strength with $m_A = 600$ GeV, $\tan \beta = 20$

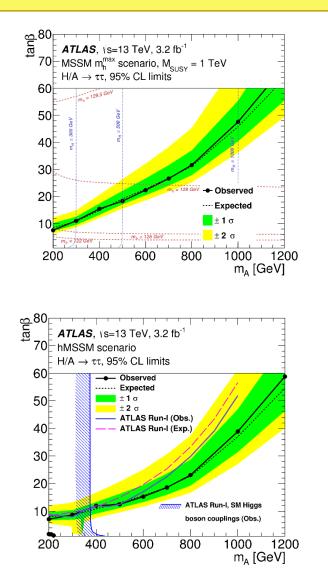
Source of uncertainty	F_{-} (%)	F_{+} (%)
$t\bar{t}$ background parton shower model	-21	+39
$\tau_{\rm had-vis}$ energy scale, detector modelling	-10	+12
$r_{\rm MJ}$ estimation b-veto region $(\tau_{\mu}\tau_{\rm had})$	- 5	+ 6
$r_{\rm MJ}$ estimation b-veto region $(\tau_e \tau_{\rm had})$	-2.3	+ 3.0
bbH signal cross-section uncertainty	- 3.8	+ 1.6
Multi-jet background $(\tau_{had}\tau_{had})$	-2.2	+ 2.6
Jet-to- $\tau_{\rm had-vis}$ fake rate b-veto region $(\tau_{\rm lep}\tau_{\rm had})$	- 1.3	+ 2.9
$\tau_{\rm had-vis}$ energy scale, in-situ calibration	- 1.4	+ 1.1
$r_{\rm MJ}$ estimation high- $E_{\rm T}^{\rm miss}$ region $(\tau_{\mu}\tau_{\rm had})$	- 1.4	+ 1.0
au trigger (2016)	- 0.5	+ 1.3
Statistics (data and simulation)	-48	+25

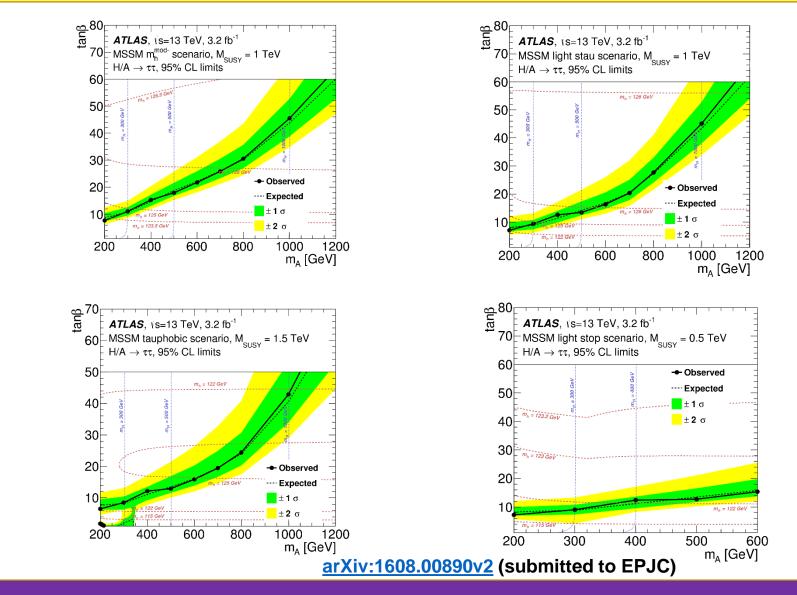
• Good agreement between prediction and observed data



arXiv:1608.00890v2 (submitted to EPJC)

 $H/A \rightarrow \tau \tau$: results


• The results were interpreted in several MSSM benchmark scenarios



arXiv:1608.00890v2 (submitted to EPJC)

$H/A \rightarrow \tau \tau$ – more benchmarks

- The ehad channel also has a significant background of $Z \rightarrow ee$ events
- An additional problem is that there is a strong mismodelling in the forward region associated with this background
- The problem is solved by 3 measures:
 - Vetoing events with $\eta_{\tau_{had}} > 2.3$
 - Vetoing ehad events with $80(90) < m_{\tau_{lep}\tau_{had}}^{\nu is} < 110(100)$ GeV for 1p (3p), the so-called Z-mass control region
 - Using $e \rightarrow \tau_{had}$ scale factors computed in the Z-mass control region

- To quantify the fraction of QCD and W+jets, lepton fake factors are computed in a fake lepton control region (CR)
- The selection for this CR is:
 - Single lepton trigger and exactly one lepton, no isolation required because the fake factors are the ratio of pass/fail isolation
 - No loose au_{had}
 - $N_{jet} \ge 1, N_{b-tag} = 0$ (b-veto); $N_{jet} \ge 2, N_{b-tag} = 1$ (b-tag); $N_{jet} \ge 1, N_{b-tag} = 0, E_T^{miss} > 150$ GeV (high MET);
 - $m_T(l, E_T^{miss}) < 30 \text{ GeV}$
- Parameterized as a function of lepton η , they are defined as the pass/fail ratio of the isolation criteria of the lepton
- FF are applied to an anti-isolated anti- τ region to estimate the dijet background fraction in the isolated anti- τ region
- The r_{QCD} is then defined as:

$$r_{QCD} = \frac{QCD}{data - true \ MC}$$

• r_{QCD} is parameterized as a function of tau p_T