

Search for a heavy boson decaying into $ZZ \rightarrow 2l2V$

Alessio Magitteri

Higgs Hunting 2016, 01-09-2016

Goal of the Analysis

Search model independent

- Limits set only as function of mass and width
- Interpretations
 - Electroweak Singlet Model (EWS)
 - Doublet Singlet Model (2HDM) (NEW!!)

Why 2l2v ?

Arxiv: 1504.00936

- $BR_{2l2\nu} < BR_{2l2q}$
- $Bckg_{2l2q}$ (High mass) < $Bckg_{2l2v}$

For high mass $ZZ \rightarrow 2l2\nu$ has the best sensitivity in di-boson channels

BSM Benchmark Models

Electroweak Singlet Model (EWS) [Arxiv: 1307.3948, 1306.2329, 1406.1043, 1409.0005, 1412.0258, 1501.02234]

- \bullet Two scalar fields predicted: h, h_2
- Physical Parameters
 - $M_{h2} \in [200, 1500] \text{ GeV}$
 - $\Gamma \in [1\%, 100\%]\Gamma_{\text{Heavy}_SM_like} \longrightarrow C' \in [0.1, 1]$

$$C^{2} + C'^{2} = 1 \qquad \Gamma' = \Gamma_{SM} \frac{C'^{2}}{1 - B_{new}}$$

 B_{new} : branching fraction of EWS to non-SM decay

- No interference contributions with light Higgs and background taken into account
 - \bullet Small effects due to limited mass resolution in 2l2v final state

Doublet Singlet Model (2HDM) [Arxiv: 1106.0034, 1207.4835, 1507.04281]

- \bullet Five scalar fields predicted: h, H, A, H⁺ and H⁻
- Scan performed in decoupling region
 - $\cos(\alpha \beta) = 0.1$
 - $M_H \in [200,600] \text{ GeV}$

$$h_{SM} = h \cdot \sin(\alpha - \beta) - H \cdot \cos(\alpha - \beta)$$

- $tg(\beta) \in [0, 60]$
- Limits as function of mass and $tg(\beta)$ in both type-I and type-II scenario
- ggH only
- $\Gamma_{2\text{HDM}} < \Gamma_{SM}$
- Re-interpretation of EWS limits in 2HDM framework

Workflow of the Analysis

- 1. Trigger selection
 - 1. Double e/µ (PT thrs: 23-17 e1 12 e2 GeV, 17 µ1 8 µ2 GeV)
 - 2. Single e/µ (P_T thrs: 23-22 GeV, 27-20 GeV)
- 2. Events categorization
 - 1. 0-jet
 - 2. >= 1-jet
 - 3. Vbf ($P_T > 30$ GeV, $\Delta \eta_{jj} > 4.0$, $M_{jj} > 500$ GeV, 0 central jets, central leptons)
- 3. Selection
 - 1. Exactly two leptons (e/ μ), Tight Id and Iso
 - 2. P_T^{lep} > 25 GeV, $|\eta|$ < 2.5 (e)/ 2.4 (μ)
 - 3. Z mass window constrain, $P_T^Z > 55 \text{ GeV}$
 - 4. Veto cuts (third lepton, b-jet)
 - 5. $\Delta \phi$ (jet,MET) > 0.5
 - 6. MET > 125 GeV

4. Performed statistical analysis using Transverse Mass (M_T) shape distribution

Irreducible Background

✦ IRREDUCIBLE

- MC prediction
 - ZZ
 - qq \rightarrow ZZ \rightarrow 2l2 ν (l = e, μ , τ)
 - EWK_[NLO/LO] k-Factors function of quarks flavor and Mandelstam variables
 - $QCD_{[NNLO/NLO]}$ k-Factors function of M_{ZZ}
 - gg $\rightarrow ZZ \rightarrow 2l2\nu \ (l = e, \mu)$
 - $QCD_{[NNLO/LO]}$ k-Factors function of M_{ZZ}
 - WZ
 - No EWK corrections applied (added 3% uncertainties account for no corr.)
 - ZVV

Instrumental MET Background

♦ INSTRUMENTAL MET

- Data-Driven
- MET in Drell-Yan is an instrumental effect
 - $\bullet \gamma + j$ and Z+j affected similarly by detector features
 - γ and Z similar in SM (except for mass)
 - \bullet Reweight γ P_T to di-lepton P_T in data, faking Z mass
 - Reweighting done in analysis bins (ee/µµ and jet bins)
- Genuine MET subtracted from γ data using MC
 - W+ $\gamma \rightarrow l \nu \gamma$
 - W+j $\rightarrow l \nu j$
 - $Z + \gamma \rightarrow \nu \nu \gamma$
 - $Z+j \rightarrow \nu \nu \gamma j$

Non Resonant Background

- Top/W/WW Non Resonant Bckg
 - Data-Driven
 - α computed
 - Inclusive category (α independent from jet category)
 - b-jet tag events (Drell-Yan suppressed region)
 - MET > 50 GeV (independent from MET cut)

MET and Transverse Mass Shape

 \blacklozenge Transverse Mass (M_T) and MET shape before MET cut

• Distributions inclusive in flavor and category

Backgrounds Contamination

◆ Expected Yields obtained for 2.3 fb⁻¹

◆ After final MET Cut of 125 GeV (no M_T cut applied)

 \blacklozenge For precise numbers and errors check backup slides

10

Final Transverse Mass Shape

Signal Cross Section 1 pb for every mass point
No Evidence of excess in data -> proceed to set limits

11

Systematics on the Yield

Theoretical Uncertainties

- Factorization and Renormalization scale (<10%), Pdf (<13%) and α_S (<11%)
- QCD scale in jet bins: <64% for 0-jet cat., <10% in 1-jet cat., <10% in Vbf.
- Signal Shape: <1%

✦ Instrumental Systematics

- Luminosity: 2.7%
- Lepton Eff. (Trigger+Id): 5% Ele, 4.2% Mu
- Lep Veto: <4.5%
- PileUp: <2%
- Jet Resolution Energy Scale: <10%
- Jet Energy Scale: <10%

✦ Data-Driven Method

- Non Resonant Bckg: Systematic (20%), Stat. (<20% or Garwood 1.8 events)
- Instrumental Met: Systematic (25%), Stat. (<50%)

Results

Limits on Heavy Scalar Boson in EWS Model

◆ SM ratio between ggH and VBF production rates assumed

• Small dependence of cross-section limit with width (M_T and MET resolution)

Limits on Heavy Scalar Boson in EWS Model

 \bullet 2D results model independent

Limits on Heavy Scalar Boson in EWS Model

♦ ggH+VBF combined limit on Signal Strength-µ

◆ SM ratio between ggH and VBF production rates assumed

Phase Space excluded bigger then Run I

Limits on Heavy Scalar Boson in 2HDM Model

EWK singlet model results reinterpreted for 2HDM model
 Limits set only for gluon fusion

- ♦ Results for $ZZ \rightarrow 2l2\nu$ using 2.3 fb⁻¹ of data were presented
 - HIG-16-001
- Results model independent
 - •Limits set only as function of mass and width
 - Extended exclusion region for EWS
 - •New results for 2HDM model
- ✦ These and more results can be found here
 - •<u>http://cms-results.web.cern.ch/cms-results/public-results/</u>

preliminary-results/HIG-16-001/index.html

Stay tuned with the latest 2016 data!!!

Thanks!

✦ Results from the di-boson combinations of Run I

Arxiv: 1504.00936

BSM Benchmark models

◆ Definition of the phase space in 2HDM

Parameter	Value		
m_h	125.09 GeV		
m_A	$m_H + 100 \text{ GeV}$		
m_{H^+}	$m_H + 100 \text{ GeV}$		
$\cos(\beta - \alpha)$	0.1		
m_{12}^2	$\max(1 - \tan \beta^{-2}, 0) \cdot \frac{1}{2} \sin(2\beta)(m_A^2 + \lambda_5 v^2)$		
m_H	scanned		
tan β	scanned		

Backgrounds Contamination

◆ Expected Yields obtained for 2.3 fb⁻¹

◆ After final MET Cut of 125 GeV (no M_T cuts applied)

channel	Inc.	= 0 jets	$\geq 1 jets$	vbf
ZZ	21.88 ± 0.10	11.69 ± 0.07	10.06 ± 0.07	0.133 ± 0.009
WZ	12.4 ± 0.4	3.9 ± 0.2	8.3 ± 0.3	0.17 ± 0.05
ZVV	0.47 ± 0.05	0.038 ± 0.008	0.42 ± 0.05	0.005 ± 0.004
Instr. MET	$27.5 \pm 2.6 \pm 3.5$	$13.7 \pm 1.4 \pm 2.6$	$13.3 \pm 2.2 \pm 2.4$	$0.43 \pm 0.16 \pm 0.08$
Top/W/WW	$27.1 \pm 4.4 \pm 3.8$	< 0.74	$27.1\pm4.2\pm4.1$	< 1.132
total	$89.3 \pm 5.1 \pm 5.4$	$29.3 \pm 1.6 \pm 2.6$	$59.2 \pm 4.7 \pm 4.7$	$0.74 \pm 1.14 \pm 0.08$
data	65	21	43	1
ggH(400)	17.83 ± 0.08	10.54 ± 0.06	7.09 ± 0.05	0.209 ± 0.009
qqH(400)	1.548 ± 0.010	0.161 ± 0.003	0.877 ± 0.007	0.510 ± 0.005
ggH(750)	25.4 ± 0.1	12.36 ± 0.08	12.60 ± 0.08	0.46 ± 0.01
qqH(750)	16.95 ± 0.10	2.06 ± 0.03	9.12 ± 0.07	5.76 ± 0.06
ggH(800)	25.6 ± 0.1	12.14 ± 0.07	12.96 ± 0.08	0.49 ± 0.01
qqH(800)	23.8 ± 0.1	2.94 ± 0.05	12.8 ± 0.1	8.09 ± 0.08
ggH(1000)	26.25 ± 0.10	11.26 ± 0.07	14.41 ± 0.07	0.58 ± 0.01
qqH(1000)	73.8 ± 0.4	9.4 ± 0.1	39.4 ± 0.3	25.0 ± 0.2
ggH(1500)	15.4 ± 0.2	5.8 ± 0.1	9.2 ± 0.1	0.34 ± 0.03
qqH(1500)	45.5 ± 1.1	6.7 ± 0.4	24.5 ± 0.8	14.3 ± 0.6

Systematics on the Yield

Source	Uncertainty [%]			
Luminosity	2.7			
Simulations				
PDF, gluon-gluon initial state	4			
PDF, quark-quark initial state	10			
QCD scale, gluon-gluon initial state (ggH)	10			
QCD scale, quark-quark initial state (VBF)	10			
QCD scale, gluon-gluon initial state (ggZZ)	20			
QCD scale, quark-quark initial state (qqVV)	5.8-8.5			
Higgs boson line shape	10–30			
Signal cross-section	4.5			
Data-driven corrections				
Anti b-tagging	1–3			
Lepton identification and isolation	4-5			
Jet energy scale	4-10			
Pile-up effects, $E_{\rm T}^{\rm miss}$	1-2			
Background estimation				
Non-resonant background	20			
Z+jets	$25 (\text{syst.}) \pm 10-50 (\text{stat.})$			