Goal of the Analysis

\rightarrow Targeted decay chain: $\mathrm{X} \rightarrow \mathrm{ZZ} \rightarrow 212 v$
\uparrow Analyzed $2.3 \mathrm{fb}^{-1}$ of data collected by CMS

- HIG-16-001
\uparrow Analysis looking for any kind of resonance
- $\mathrm{M}_{\mathrm{H}} \in[200,1500] \mathrm{GeV}$
- $\Gamma \in[1 \%, 100 \%] \Gamma_{\text {Heary_SM_like }}$
- $\Gamma_{\text {Heavy_SM_like }}$ SM predicted width
- Arxiv: 1307.1347 [YR3]

Search model independent

- Limits set only as function of mass and width
- Interpretations
- Electroweak Singlet Model (EWS)
- Doublet Singlet Model (2HDM) (NEW!!)

Why $2 l 2 v ?$

Arxiv: 1504.00936
\uparrow Comparison between golden channels

- $\mathrm{ZZ}_{212 v} \mathrm{Vs}_{\mathrm{Z}} \mathrm{ZZ}_{41}$
- Bckg4il (High mass) < Bckg212v
- $\mathrm{BR}_{212 v}>\mathrm{BR}_{41}$
- $\mathrm{ZZ}_{212 v} \mathrm{Vs}_{\mathrm{s}} \mathrm{ZZ}_{212 \mathrm{q}}$
- $\mathrm{BR}_{212 v}<\mathrm{BR}_{212 \mathrm{q}}$
- Bckg ${ }_{212 \mathrm{q}}$ (High mass) < Bckg212v

For high mass $Z Z \rightarrow 212 v$ has the best sensitivity in di-boson channels

BSM Benchmark Models

Electroweak Singlet Model (EWS) [Arxiv: 1307.3948, 1306.2329, 1406.1043, 1409.0005, 1412.0258, 1501.02234]

- Two scalar fields predicted: h, h2
- Physical Parameters
- $\mathrm{M}_{\mathrm{h} 2} \in[200,1500] \mathrm{GeV}$

$$
C^{2}+C^{\prime 2}=1 \quad \Gamma^{\prime}=\Gamma_{S M} \frac{C^{\prime 2}}{1-\mathrm{B}_{\text {new }}}
$$

$\bullet \Gamma \in[1 \%, 100 \%] \Gamma_{\text {Heavy_SM_like }} \longrightarrow \mathrm{C}^{\prime} \in[0.1,1]$
$\mathrm{B}_{\text {new }}$: branching fraction of EWS to non-SM decay

- No interference contributions with light Higgs and background taken into account
- Small effects due to limited mass resolution in $2 \mathrm{l} 2 v$ final state

Doublet Singlet Model (2HDM) [Arxiv: 1106.0034, 1207.4835, 1507.04281]

- Five scalar fields predicted: h, H, A, H^{+}and H^{-}
- Scan performed in decoupling region
- $\operatorname{Cos}(\alpha-\beta)=0.1$
- $\mathrm{M}_{\mathrm{H}} \in[200,600] \mathrm{GeV}$

$$
h_{S M}=h \cdot \sin (\alpha-\beta)-H \cdot \cos (\alpha-\beta)
$$

- $\operatorname{tg}(\beta) \in[0,60]$
- Limits as function of mass and $\operatorname{tg}(\beta)$ in both type-I and type-II scenario
- ggH only
- $\Gamma_{2 \mathrm{HDM}}<\Gamma_{\mathrm{SM}}$
- Re-interpretation of EWS limits in 2HDM framework

Workflow of the Analysis

1. Trigger selection
2. Double e/ μ (P_{T} thrs: $23-17 \mathrm{e}_{1}-12 \mathrm{e}_{2} \mathrm{GeV}, 17 \mu_{1}-8 \mu_{2} \mathrm{GeV}$)
3. Single e / μ (P_{T} thrs: 23-22 GeV, 27-20 GeV)
4. Events categorization
5. 0-jet
6. $>=1$-jet
7. $\mathrm{Vbf}\left(\mathrm{P}_{\mathrm{T}}>30 \mathrm{GeV}, \Delta \eta_{\mathrm{jj}}>4.0, \mathrm{M}_{\mathrm{jj}}>500 \mathrm{GeV}, 0\right.$ central jets, central leptons)
8. Selection
9. Exactly two leptons (e / μ), Tight Id and Iso
10. $\mathrm{P}_{\mathrm{T}}{ }^{\text {lep }}>25 \mathrm{GeV},|\eta|<2.5(\mathrm{e}) / 2.4$ (μ)
11. Z mass window constrain, $\mathrm{P}_{\mathrm{T}}{ }^{Z}>55 \mathrm{GeV}$
12. Veto cuts (third lepton, b-jet)
13. $\Delta \phi($ jet, MET $)>0.5$
14. $\mathrm{MET}>125 \mathrm{GeV}$

Irreducible Background

IRREDUCIBLE

- MC prediction
- ZZ
- $\mathrm{qq} \rightarrow \mathrm{ZZ} \rightarrow 2 \mathrm{l} 2 v(\mathrm{l}=\mathbf{e}, \boldsymbol{\mu}, \boldsymbol{\tau})$
- $\mathrm{EWK}_{[\mathrm{NLO} / \mathrm{LO}]} \mathrm{k}$-Factors function of quarks flavor and Mandelstam variables
- $\mathrm{QCD}_{[\mathrm{NNLO} / \mathrm{NLO}]} \mathrm{k}$-Factors function of $\mathrm{MZZ}_{\mathrm{ZZ}}$
- $\operatorname{gg} \rightarrow \mathrm{ZZ} \rightarrow 2 \mathrm{l} 2 \mathrm{v}(\mathrm{l}=\mathbf{e}, \boldsymbol{\mu})$
- $\mathrm{QCD}_{\text {[NNLO/LO] }} \mathrm{k}-$ Factors function of M_{ZZ}
- WZ
- No EWK corrections applied (added 3\% uncertainties account for no corr.)
- ZVV

Instrumental MET Background

INSTRUMENTAL MET

- Data-Driven
- MET in Drell-Yan is an instrumental effect
${ }^{\bullet} \gamma^{+} \mathrm{j}$ and Z_{+j} affected similarly by detector features
- γ and Z similar in SM (except for mass)
- Reweight $\gamma \mathrm{P}_{\mathrm{T}}$ to di-lepton P_{T} in data, faking Z mass
- Reweighting done in analysis bins (ee/ $\mu \mu$ and jet bins)
- Genuine MET subtracted from γ data using MC
- $\mathrm{W}+\gamma \rightarrow \mathrm{l} \nu_{\gamma}$
$-W+j \rightarrow l v j$
- $Z+\gamma \rightarrow v{ }^{+} \gamma$
- $Z_{+j} \rightarrow v v_{\gamma} j$

Non Resonant Background

\checkmark Top/W/WW - Non Resonant Bckg

- Data-Driven
- α computed
- Inclusive category (α independent from jet category)
- b-jet tag events (Drell-Yan suppressed region)
- MET > 50 GeV (independent from MET cut)

Signal Region, bVeto b Tag Region

$$
N_{l l_{i n}}=\alpha \cdot\left(N_{e \mu_{i n}}\right)
$$

$l l_{\text {out }}: M_{l l} \neq M_{Z}$
$e \mu_{\text {out }}: M_{l l} \neq M_{Z}$

$$
\frac{N_{l l_{o u t}}}{N_{e \mu_{o u t}}}=\alpha
$$

$$
\text { In } \rightarrow\left|M_{*}-91\right|<15
$$

$$
\text { Out } \rightarrow M_{\varepsilon} \in[40,70] \cup[110,120]
$$

MET and Transverse Mass Shape

\uparrow Transverse Mass (M_{T}) and MET shape before MET cut

- Distributions inclusive in flavor and category

$$
M_{T}^{2}=\left(\sqrt{p_{T}(l l)^{2}+M(l l)^{2}}+\sqrt{\left(E_{T}^{\text {miss }}\right)^{2}+M_{Z}^{2}}\right)^{2}-\left(\vec{p}_{T}(l l)+\left(\vec{E}_{T}^{\text {miss }}\right)\right)^{2}
$$

Backgrounds Contamination

\uparrow Expected Yields obtained for $2.3 \mathrm{fb}^{-1}$
\uparrow After final MET Cut of 125 GeV (no M_{T} cut applied)
\uparrow For precise numbers and errors check backup slides
… Irreducible Bckg Top/W/WW Instr. MET

$$
\text { O Jet Cat. } \quad 1 \text { Jet Cat. } \quad \text { Vbf Cat. } \times 10
$$

Final Transverse Mass Shape

\uparrow Signal Cross Section 1 pb for every mass point
\uparrow No Evidence of excess in data \rightarrow proceed to set limits

Systematics on the Yield

- Theoretical Uncertainties
- Factorization and Renormalization scale ($<10 \%$), $\operatorname{Pdf}(<13 \%)$ and $\alpha_{S}(<11 \%)$
- QCD scale in jet bins: $<64 \%$ for 0 -jet cat., $<10 \%$ in 1-jet cat., $<10 \%$ in Vbf.
- Signal Shape: <1\%
\uparrow Instrumental Systematics
- Luminosity: 2.7\%
- Lepton Eff. (Trigger+Id): 5\% Ele, $4.2 \% \mathrm{Mu}$
- Lep Veto: <4.5\%
- PileUp: <2\%
- Jet Resolution Energy Scale: <10\%
- Jet Energy Scale: < 10\%
\downarrow Data-Driven Method
- Non Resonant Bckg: Systematic (20\%), Stat. ($<20 \%$ or Garwood 1.8 events)
- Instrumental Met: Systematic (25\%), Stat. (<50\%)

Results

Limits on Heavy Scalar Boson in EWS Model

\uparrow SM ratio between ggH and VBF production rates assumed
\uparrow Small dependence of cross-section limit with width (M_{T} and MET resolution)

Limits on Heavy Scalar Boson in EWS Model

\uparrow 2D results model independent

Limits on Heavy Scalar Boson in EWS Model

\uparrow ggH+VBF combined limit on Signal Strength- μ
\uparrow SM ratio between ggH and VBF production rates assumed
\uparrow Phase Space excluded bigger then Run I

Limits on Heavy Scalar Boson in 2HDM Model

\uparrow EWK singlet model results reinterpreted for 2HDM model
\leftrightarrow Limits set only for gluon fusion

Conclusions

\leftrightarrow Results for $\mathrm{ZZ} \rightarrow 2 \mathrm{l} 2 \mathrm{v}$ using $2.3 \mathrm{fb}^{-1}$ of data were presented

- HIG-16-001
\uparrow Results model independent
- Limits set only as function of mass and width
- Extended exclusion region for EWS
- New results for 2 HDM model
- These and more results can be found here
- http://cms-results.web.cern.ch/cms-results/public-results/ preliminary-results/HIG-16-001/index.html
\uparrow Stay tuned with the latest 2016 data!!!

Why $2 l 2 v$

\star Results from the di-boson combinations of Run I

BSM Benchmark models

\uparrow Definition of the phase space in 2 HDM

Parameter	Value
m_{h}	125.09 GeV
m_{A}	$m_{H}+100 \mathrm{GeV}$
$m_{H^{+}}$	$m_{H}+100 \mathrm{GeV}$
$\cos (\beta-\alpha)$	0.1
m_{12}^{2}	$\max \left(1-\tan \beta^{-2}, 0\right) \cdot \frac{1}{2} \sin (2 \beta)\left(m_{A}^{2}+\lambda_{5} v^{2}\right)$
m_{H}	scanned
$\tan \beta$	scanned

Backgrounds Contamination

\uparrow Expected Yields obtained for $2.3 \mathrm{fb}^{-1}$
\uparrow After final MET Cut of 125 GeV (no M_{T} cuts applied)

channel	Inc.	$=$ 0jets	≥ 1 jets	vbf
ZZ	21.88 ± 0.10	11.69 ± 0.07	10.06 ± 0.07	0.133 ± 0.009
WZ	12.4 ± 0.4	3.9 ± 0.2	8.3 ± 0.3	0.17 ± 0.05
ZVV	0.47 ± 0.05	0.038 ± 0.008	0.42 ± 0.05	0.005 ± 0.004
Instr. MET	$27.5 \pm 2.6 \pm 3.5$	$13.7 \pm 1.4 \pm 2.6$	$13.3 \pm 2.2 \pm 2.4$	$0.43 \pm 0.16 \pm 0.08$
Top/W/WW	$27.1 \pm 4.4 \pm 3.8$	<0.74	$27.1 \pm 4.2 \pm 4.1$	<1.132
total	$89.3 \pm 5.1 \pm 5.4$	$29.3 \pm 1.6 \pm 2.6$	$59.2 \pm 4.7 \pm 4.7$	$0.74 \pm 1.14 \pm 0.08$
data	65	21	43	1
ggH(400)	17.83 ± 0.08	10.54 ± 0.06	7.09 ± 0.05	0.209 ± 0.009
qqH(400)	1.548 ± 0.010	0.161 ± 0.003	0.877 ± 0.007	0.510 ± 0.005
ggH(750)	25.4 ± 0.1	12.36 ± 0.08	12.60 ± 0.08	0.46 ± 0.01
qqH(750)	16.95 ± 0.10	2.06 ± 0.03	9.12 ± 0.07	5.76 ± 0.06
ggH(800)	25.6 ± 0.1	12.14 ± 0.07	12.96 ± 0.08	0.49 ± 0.01
qqH(800)	23.8 ± 0.1	2.94 ± 0.05	12.8 ± 0.1	8.09 ± 0.08
ggH(1000)	26.25 ± 0.10	11.26 ± 0.07	14.41 ± 0.07	0.58 ± 0.01
qqH(1000)	73.8 ± 0.4	9.4 ± 0.1	39.4 ± 0.3	25.0 ± 0.2
ggH(1500)	15.4 ± 0.2	5.8 ± 0.1	9.2 ± 0.1	0.34 ± 0.03
qqH(1500)	45.5 ± 1.1	6.7 ± 0.4	24.5 ± 0.8	14.3 ± 0.6

Systematics on the Yield

Source	Uncertainty [\%]
Luminosity	2.7
Simulations	
PDF, gluon-gluon initial state	4
PDF, quark-quark initial state	10
QCD scale, gluon-gluon initial state (ggH)	10
QCD scale, quark-quark initial state (VBF)	10
QCD scale, gluon-gluon initial state (ggZZ)	20
QCD scale, quark-quark initial state (qqVV)	$5.8-8.5$
Higgs boson line shape	$10-30$
Signal cross-section	4.5
Data-driven corrections	
Anti b-tagging	$1-3$
Lepton identification and isolation	$4-5$
Jet energy scale	$4-10$
Pile-up effects, $E_{\mathrm{T}}^{\text {miss }}$	$1-2$
Background estimation	
Non-resonant background	20
Z+jets	25 (syst.) $\pm 10-50$ (stat.)

