# Theory Higgs Production

Radja Boughezal



Higgs Hunting 2016, August 31, LPNHE Paris

### In the Last Four Years...

• 2012: LHC discovered a Higgs boson, it appears to be SM-like



### In the Last Four Years...

• 2012: LHC discovered a Higgs boson, it appears to be SM-like



 2015: LHC Run II starts. With an energy increase to 13 TeV and a luminosity goal of 300fb<sup>-1</sup>, the discovery potential is significantly enhanced.

# 2015



Easter morning excitement as the CERN accelerator team send beams around the LHC for the first time in many months - a major milestone on the way to even higher energy collisions!



Large Hadron Collider: World's biggest physics experiment restarts



#### Science & Environment

#### LHC restart: 'We want to break physics'



**Higgs Production** 

- In the absence of convincing evidence of new physics, precision searches for subtle deviations from the SM are vital. Possible with the high energy and luminosity of LHC Run II.
- Percent experimental precision requires a matching theory precision!

- In the absence of convincing evidence of new physics, precision searches for subtle deviations from the SM are vital. Possible with the high energy and luminosity of LHC Run II.
- Percent experimental precision requires a matching theory precision!

#### The Higgs is the likeliest place to look, as its properties are connected to the puzzles of the SM

*The flavor puzzle:* what explains the observed masses and mixing, which come from Higgs couplings?



R. Boughezal

*Hierarchy problem:* no symmetry prevents the Higgs mass from receiving quadratic divergences, unlike for other particles

$$\begin{split} M^{gauge, ferm} &\sim M^{bare} \left\{ I \ + \ a \ In \ \Lambda/M \right\} \\ (M^{Higgs})^2 &\sim (M^{bare})^2 \ + \Lambda^2 \end{split}$$

- In the absence of convincing evidence of new physics, precision searches for subtle deviations from the SM are vital. Possible with the high energy and luminosity of LHC Run II.
- Percent experimental precision requires a matching theory precision!

### Constructing a new theory of Nature is intimately connected to understanding the Higgs properties. Progress on the theory side is a major contributor to this!

observed masses and mixing, which come from Higgs couplings?



R. Boughezal

the Higgs mass from receiving quadratic divergence, unlike for other particles



#### **Higgs Production**



this is a limited selection of topics and is by no means complete. I apologize in advance for any omissions!

# Overview of Higgs Production in SM



 Major production processes at the LHC are gluon fusion and vector boson fusion.

R. Boughezal

# Overview of Higgs Production in SM



• Major production processes at the LHC are gluon fusion and vector boson fusion.

#### R. Boughezal

#### **Higgs Production**

# LHC Run 1 & Theory

#### **ATLAS**

|                                                         | X      |          |           | IY    |            |
|---------------------------------------------------------|--------|----------|-----------|-------|------------|
| ATLA                                                    | S      |          |           |       |            |
| Source of uncertainty                                   | $4\mu$ | $2e2\mu$ | $2\mu 2e$ | 4e    | combined   |
| Electron reconstruction and identification efficiencies | _      | 1.7%     | 3.3%      | 4.4%  | 1.6%       |
| Electron isolation and impact parameter selection       | _      | 0.07%    | 1.1%      | 1.2%  | 0.5%       |
| Electron trigger efficiency                             | _      | 0.21%    | 0.05%     | 0.21% | $<\!0.2\%$ |
| $\ell\ell + ee$ backgrounds                             | _      | _        | 3.4%      | 3.4%  | 1.3%       |
| Muon reconstruction and identification efficiencies     | 1.9%   | 1.1%     | 0.8%      | _     | 1.5%       |
| Muon trigger efficiency                                 | 0.6%   | 0.03%    | 0.6%      | _     | 0.2%       |
| $\ell\ell + \mu\mu$ backgrounds                         | 1.6%   | 1.6%     | _         | _     | 1.2%       |
| QCD scale uncertainty                                   |        |          |           |       | 6.5%       |
| PDF, $\alpha_s$ uncertainty                             |        |          |           |       | 6.0%       |
| $H \rightarrow ZZ^*$ branching ratio uncertainty        |        |          |           |       | 4.0%       |

### LHC Run 1 & Theory ATLAS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | S    |        |                  |    |       |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------|--------|------------------|----|-------|----------|
| Source of uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $H \rightarrow WW^*$                       | En   | Observ | wed $\mu = 1.09$ | е  | 4e    | combined |
| Electron reconstruction and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Source                                     | +    | -      | (scaled by 100)  | 6  | 4.4%  | 1.6%     |
| Electron isolation and impac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Data statistics                            | 0.16 | 0.15   |                  | 1  | 1 90% | 0.50%    |
| Electron isolation and impac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Data statistics                            | 0.10 | 0.15   |                  | 0  | 1.270 | 0.070    |
| Electron trigger efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Profiled control regions                   | 0.12 | 0.12   |                  | 10 | 0.21% | <0.2%    |
| $\ell\ell + ee$ backgrounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Profiled signal regions                    | -    | -      | -                | 6  | 3.4%  | 1.3%     |
| Muon reconstruction and ide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MC statistics                              | 0.04 | 0.04   | +                | 6  | -     | 1.5%     |
| Muon trigger efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Theoretical systematics                    | 0.15 | 0.12   |                  | 1  |       | 0.9%     |
| and the second s | Signal $H \to W W^* B$                     | 0.05 | 0.04   | +                | 0  |       | 1.007    |
| $\ell\ell + \mu\mu$ backgrounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signal ggF cross section                   | 0.09 | 0.07   |                  |    |       | 1.2%     |
| OCD scale uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Signal ggF acceptance                      | 0.05 | 0.04   | +                |    |       | 6.5%     |
| DDE a un containty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Signal VBF cross section                   | 0.01 | 0.01   | <u>+</u>         |    |       | 6.007    |
| FDF, $\alpha_s$ uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Signal VBF acceptance                      | 0.02 | 0.01   | •                |    |       | 0.0%     |
| $H \rightarrow ZZ^*$ branching ratio un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Background W W                             | 0.06 | 0.06   | Ŧ                |    |       | 4.0%     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Background misid factor                    | 0.05 | 0.05   |                  | _  |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Others                                     | 0.02 | 0.02   | ÷                |    |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Experimental systematics                   | 0.07 | 0.06   | +                | -  |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Background misid. factor                   | 0.03 | 0.03   | +                |    |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bkg. $Z/\gamma^* \rightarrow ee, \ \mu\mu$ | 0.02 | 0.02   | +                |    |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Muons and electrons                        | 0.04 | 0.04   | +                |    |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Missing transv. momentum                   | 0.02 | 0.02   | •                |    |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jets                                       | 0.03 | 0.02   | I                |    |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Integrated luminosity                      | 0.03 | 0.02   |                  | -  |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Integrated luminosity                      | 0.05 | 0.05   |                  | -  |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total                                      | 0.23 | 0.21   |                  |    |       |          |

## LHC Run 1 & Theory ATLAS

|    | · · · · · · · · · · · · · · · · · · ·                                  |                                                                                                                                                                                     | neory                                                  |                         |
|----|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------|
| _  | JI.                                                                    | ATLAS                                                                                                                                                                               | -                                                      |                         |
| H- | Source of uncer<br>Electron recons<br>Electron isolati<br>Electron tri | $\begin{array}{c} \begin{array}{c} \text{H} \longrightarrow WW^{*} & \text{Observed } \mu = \\ \hline \text{Error} & \text{Plot} \\ + & - & (\text{scaled} \end{array} \end{array}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | bined<br>6%<br>5%<br>2% |
|    | $\frac{\ell\ell + ee \text{ back}}{\text{Muon recon}}$                 | Uncertainty group                                                                                                                                                                   | $\sigma_{\mu}^{\rm syst.}$                             | 3%<br>5%                |
|    | $\frac{\ell\ell + \mu\mu \text{ bac}}{\text{QCD scale t}}$             | Theory (yield)<br>Experimental (yield)                                                                                                                                              | 0.09                                                   | 2%<br>2%<br>5%          |
|    | PDF, $\alpha_s$ un<br>$H \rightarrow ZZ^*$ b                           | Luminosity<br>MC statistics                                                                                                                                                         | $\frac{0.03}{< 0.01}$                                  | 0%<br>0%                |
|    |                                                                        | Theory (migrations)                                                                                                                                                                 | 0.03                                                   |                         |
|    |                                                                        | Resolution                                                                                                                                                                          | 0.02                                                   |                         |
|    |                                                                        | Mass scale<br>Background change                                                                                                                                                     | 0.02                                                   |                         |
|    |                                                                        | Dackground snape                                                                                                                                                                    | 0.02                                                   |                         |



# For all three Higgs 'precision' channels, theory uncertainty is the dominant source of systematic uncertainty !

# LHC Run II Prospects



- The dominant component of the systematic error on the signal strength is theory (~10-15%).
- The statistical error from LHC Run I is the largest (~20%), this however will improve during LHC Run II.

#### **Run II prospects:**

- x2.5 increase in cross section
- x15 increase in luminosity (300 fb<sup>-1</sup>)
- $\sim 40$  times more events
- Stat. error in 3-4% range

Theory error becoming a limiting factor in interpreting Run II data. <sup>7</sup> Higgs Production

#### **Inclusive Cross Sections**

• Remarkable recent progress: the inclusive cross section for Higgs production in gluon fusion is now known at N<sup>3</sup>LO in QCD.

(Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger, 2016)



- Important input for Higgs couplings analysis
- Much smaller scale dependence at N<sup>3</sup>LO: ~1.9% vs 9% @ NNLO for  $\mu \in [m_H/4, m_H]$
- Perturbative expansion stabilized at N<sup>3</sup>LO: ~+3% shift from NNLO
- Impact of threshold resummation is invisible for  $\mu=m_{H}/2$

#### **13 TeV**

 $\sigma = 48.58 \,\mathrm{pb}_{-3.27 \,\mathrm{pb} \,(-6.72\%)}^{+2.22 \,\mathrm{pb} \,(+4.56\%)} \,(\mathrm{theory}) \pm 1.56 \,\mathrm{pb} \,(3.20\%) \,(\mathrm{PDF} + \alpha_s)$ 

• Should we worry about missing higher order corrections beyond N<sup>3</sup>LO? A possible way of estimating them is to look at the dominant soft-gluon contributions around the threshold, which are resummable to all orders.



• Different resummation schemes show that missing higher order corrections are included in the N<sup>3</sup>LO error band for  $\mu \in [m_H/4, m_H]$ .

**Higgs Production** 

#### **13 TeV**

 $\sigma = 48.58 \,\mathrm{pb}_{-3.27 \,\mathrm{pb} \,(-6.72\%)}^{+2.22 \,\mathrm{pb} \,(+4.56\%)} \,(\mathrm{theory}) \pm 1.56 \,\mathrm{pb} \,(3.20\%) \,(\mathrm{PDF} + \alpha_s)$ 

- The result includes various effects besides N<sup>3</sup>LO QCD corrections in the heavy top mass limit, rescaled by  $\frac{\sigma_{\text{excat}}^{\text{LO}}}{\sigma_{\text{EFT}}^{\text{LO}}}$ , and accounts for various sources of uncertainties:
  - m<sub>t</sub> and m<sub>b</sub> mass effects are included exactly at NLO.
  - NNLO top mass effects accounted for in the 1/mt limit (Harlander, Mantler, Marzani, Ozeren, 2009).
  - Exact NLO EW corrections (Actis, Passarino, Sturm, Uccirati, 2008).
  - Mixed QCD-EW effects in an EFT approach (Anastasiou, R.B., Petriello, 2008).
  - The theory error accounts for an estimate of the missing N<sup>3</sup>LO PDFs and the truncation error associated with the calculation approach at N<sup>3</sup>LO.
  - PDF and  $\alpha_s$  errors combined quadratically.

- The N<sup>3</sup>LO result assumes PDF4LHC  $\alpha_s(M_Z)$  recommendation: 0.1180±0.0015
- There is a strong parametric dependence of ggH cross section on α<sub>s</sub>: LO~α<sub>s</sub><sup>2</sup>
  DIS and some e+e- fits prefer lower value of α<sub>s</sub>(M<sub>Z</sub>)



R. Boughezal

- The N<sup>3</sup>LO result assumes PDF4LHC  $\alpha_s(M_Z)$  recommendation: 0.1180±0.0015
- There is a strong parametric dependence of ggH cross section on α<sub>s</sub>: LO~α<sub>s</sub><sup>2</sup>
  DIS fits prefer lower value of α<sub>s</sub>(M<sub>Z</sub>)



### Inclusive Higgs Production in VBF

- Calculated first at NNLO in QCD in the structure function approach. Small correction  $\sim 1\%$  and uncertainty  $\sim 1-2\%$  (Bolzoni, Maltoni, Moch, Zaro, 2011)
- Now also known at N<sup>3</sup>LO in QCD. Correction tiny, 0.1-0.2% and the uncertainty is lower than 0.2% (Dreyer, Karlsberg, 2016)
- Can help perform accurate Higgs couplings measurements.



#### **Exclusive Higgs Cross Section**

## Why go exclusive?

- Kinematic distributions are used to extract or constrain particles properties such as their couplings.
- How different can the differential distributions be from the inclusive case? take VBF as an example:

|      | $\sigma^{(no cuts)}$ [pb] | $\sigma^{(\text{VBF cuts})}$ [pb] |
|------|---------------------------|-----------------------------------|
| LO   | $4.032^{+0.057}_{-0.069}$ | $0.957^{+0.066}_{-0.059}$         |
| NLO  | $3.929^{+0.024}_{-0.023}$ | $0.876^{+0.008}_{-0.018}$         |
| NNLO | $3.888^{+0.016}_{-0.012}$ | $0.826^{+0.013}_{-0.014}$         |
|      | ~ -1%                     | ~ -5%                             |

13TeV, anti-KT, R=0.4, NNPDF

Cacciari, Dreyer, Karlberg, Salam, Zanderighi 2015

• The NNLO corrections for the cross section with VBF cuts are 5 times larger than the inclusive case, and large enough to influence precision studies. 26

R. Boughezal

# Differential VBF@NNLO

• Can now study kinematic observables with realistic cuts



- Non trivial Kinematic dependence of the K-factors.
- NNLO Corrections can be as large as 10% for some distributions.
- NLO+parton shower agrees well with NNLO for  $P_{TH}$  but not for  $\Delta y_{j1,j2}$ .
- Recently NNLO QCD and NLO EW corrections were merged within the HXSWG activities.

**Higgs Production** 

## The Higgs P<sub>T</sub> spectrum

• The Higgs transverse momentum is an important observable that probes Higgs properties. It can be used to disentangle the ggH and its possible BSM contributions from ttH couplings for example:



**Higgs Production** 

# Higgs+jet @ NNLO in QCD

• An accurate understanding of this cross section helps improve the signal significance when jet binning is used.

• Need improvement on two fronts:

 $O(\alpha_s^2)$  correction in the  $m_t \rightarrow \infty$  limit

Three independent NNLO results are now available for this process

R.B., Caola, Melnikov, Petriello, Schulze, 2015R.B., Focke, Giele, Liu, Petriello, 2015Chen, Gehrmann, Glover, Jacquier, 2016



#### R. Boughezal

# Higgs+jet @ NNLO in QCD



Chen, Gehrmann, Glover, Jacquier, 2016

#### R. Boughezal

**Higgs Production** 

# Higgs+jet @ NNLO in QCD

#### • Including the decay of Higgs to photons:

Caola, Melnikov, Schulze 2015; Chen, Cruz-Martinez, Gehrmann, Glover, Jacquier, 2016 Initial indications show harder  $p_{Tj}$  spectrum and more jets than predicted by theory, although data uncertainties are large. Awaiting more precise Run II data!



Caola, Melnikov, Schulze, 2015

# The Higgs P<sub>T</sub> resummation



# Finite Mass effects for Higgs P<sub>T</sub>



• Interesting agreement between two different approaches to model high- $P_T$  Higgs production. Would be nice to confirm with an exact NLO calculation.

### Finite Mass effects for Higgs Production



- Also important to have finite mass effects for other kinematic distributions for Higgs production with multiple jets Greiner, Hoeche, Luisoni, Schoenherr, Winter 2016
- New understanding of bottom-quark Higgs effects on Higgs p<sub>T</sub>

Melnikov, Penin 2016

Hadronic cross section (abelian terms only)

$$\begin{aligned} \frac{d\sigma_{pp \to H+j}}{dp_{\perp}^2} = & \frac{d\sigma_{pp \to H+j}^{(0)}}{dp_{\perp}^2} \left\{ 1 - \frac{3m_b^2}{m_H^2} L^2 \left[ 1 - \frac{x}{12} \left( 1 - \tau^3 + \tau^4 \right) \right. \right. \\ & \left. + \frac{x^2}{48} \left( \frac{4}{15} - \tau^3 + 2\tau^4 - \frac{7\tau^5}{5} + \frac{2\tau^6}{5} \right) + \mathcal{O}(x^3) \right] + \mathcal{O}(m_b^4) \right\} \end{aligned}$$

$$\tau = \ln(m_b^2/p_{\perp}^2)/L, \qquad \zeta = \ln(u/t)/L, \qquad x = \frac{C_F \alpha_s}{2\pi} L^2$$
$$L = \ln(m_b^2/s), \qquad 0 < \tau, |\zeta| < 1, \qquad x \sim 1$$

# **Di-Higgs Production**

 The Higgs that we know so far is consistent with the SM in its couplings to the observed modes (within 15-40% uncertainty), its mass is known to 0.2% precision, and its spin and parity have good experimental handles. What about the Higgs self coupling?



- In the SM the Higgs potential is completely predicted in terms of m<sub>H</sub>. Not necessarily true in BSM theories. Need to measure triple and quartic Higgs couplings to check.
- A measurement of di-Higgs production would give a handle on  $\lambda_3$ , any deviation from the SM value could indicate new physics effects.

# **Di-Higgs Production**

• An example of a detailed EFT analysis of HH production from 1502.00539:



R. Boughezal

# **Di-Higgs Production in EFT**

• The leading order diagrams are already one-loop. Use EFT approach to get higher order corrections (normalized to the exact Born similar to single Higgs).



#### • Several results were obtained in the infinite top mass limit and its extension:

- LO cross section Plehn et al, 96; Glover, van der Bij '88
- NLO cross section in EFT Dawson, Dittmaier, Spira, '98
- NNLO cross section in EFT De Florian, Mazzitelli '13; Grigo et al '14
- Expansion in 1/mt @ NLO and NNLO Grigo et al '13-'15; Maltoni et al '14
- Exact mass dependence at NLO real radiation and matching to a parton shower Frederix et al '14; Maltoni et al '14
- Resumation of threshold logs De Florian, Mazzitelli '15

# **Di-Higgs Production in EFT**

• The leading order diagrams are already one-loop. Use EFT approach to get higher order corrections (normalized to the exact Born similar to single Higgs).



- LO cross section Plehn et al, 96; Glover, van der Bij '88
- NLO cross section in EFT Dawson, Dittmaier, Spira, '98
- NNLO cross section in EFT De Florian, Mazzitelli '13; Grigo et al '14
- Expansion in 1/mt @ NLO and NNLO Grigo et al '13-'15; Maltoni et al '14
- Exact mass dependence at NLO real radiation and matching to a parton shower Frederix et al '14; Maltoni et al '14
- Resumation of threshold logs De Florian, Mazzitelli '15

#### R. Boughezal

#### **Higgs Production**

#### Di-Higgs Production @ NLO with full mt dependence

• Large corrections not captured by heavy-m<sub>t</sub> approximation! In particular, a strong dependence of the NLO corrections on m<sub>hh</sub> is missed in the approximation approach



R. Boughezal

## ttH Production

• Allows a probe of the ttH coupling directly at tree level.





- LHC Run II offers a large increase in the ttH cross section, but backgrounds increase at a comparative rate in the signal region.
- How well are we doing in modeling the signal and backgrounds?

## ttH Production

#### • Large modeling uncertainty for the ttbb mode

| J. Keller, ICHEP 2016                          |       |       |
|------------------------------------------------|-------|-------|
| Uncertainty source                             | Δ     | μ     |
| $t\bar{t} + \ge 1b$ modelling                  | +0.53 | -0.53 |
| Jet flavour tagging                            | +0.26 | -0.26 |
| $t\bar{t}H$ modelling                          | +0.32 | -0.20 |
| Background model statistics                    | +0.25 | -0.25 |
| $t\bar{t} + \geq 1c \text{ modelling}$         | +0.24 | -0.23 |
| Jet energy scale and resolution                | +0.19 | -0.19 |
| $t\bar{t}$ +light modelling                    | +0.19 | -0.18 |
| Other background modelling                     | +0.18 | -0.18 |
| Jet-vertex association, pileup modelling       | +0.12 | -0.12 |
| Luminosity                                     | +0.12 | -0.12 |
| tīZ modelling                                  | +0.06 | -0.06 |
| Light lepton $(e, \mu)$ ID, isolation, trigger | +0.05 | -0.05 |
| Total systematic uncertainty                   | +0.90 | -0.75 |
| $t\bar{t} + \ge 1b$ normalisation              | +0.34 | -0.34 |
| $t\bar{t} + \geq 1c$ normalisation             | +0.14 | -0.14 |
| Statistical uncertainty                        | +0.49 | -0.49 |
| Total uncertainty                              | +1.02 | -0.89 |
|                                                |       |       |

R. Boughezal

пıggs Production

## ttH Production

| J. Keller, | ICHEP | 2016 |  |
|------------|-------|------|--|
|------------|-------|------|--|

| Uncertainty source                                                                                                                                                                                                                             | Δ                                                    | μ                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------|
| $t\bar{t} + \ge 1b$ modelling                                                                                                                                                                                                                  | +0.53                                                | -0.53                              |
| Jet flavour tagging                                                                                                                                                                                                                            | +0.26                                                | -0.26                              |
| t <i>t</i> H modelling                                                                                                                                                                                                                         | +0.32                                                | -0.20                              |
| Background model statistics J.                                                                                                                                                                                                                 | Ketler,4EH                                           | EP2048                             |
| <b>Theory errors for the</b>                                                                                                                                                                                                                   | signa                                                | l and                              |
| background are larger the<br>uncertainties affecting the                                                                                                                                                                                       | an ma<br>signal                                      | strength!                          |
| background are larger the<br>uncertainties affecting the<br>Light lepton (e, µ) ID, isolation, trigger                                                                                                                                         | an ma<br>signal                                      | strength!                          |
| background are larger the uncertainties affecting the sector $L$ ight lepton ( $e, \mu$ ) ID, isolation, trigger Total systematic uncertainty                                                                                                  | an ma<br>signal<br>+0.05<br>+0.90                    | <u>strength!</u><br>-0.05<br>-0.75 |
| background are larger the<br>uncertainties affecting the<br>Light lepton $(e, \mu)$ ID, isolation, trigger<br>Total systematic uncertainty<br>$t\bar{t}+ \ge 1b$ normalisation                                                                 | an ma<br>signal<br>+0.05<br>+0.90<br>+0.34           | -0.05<br>-0.75<br>-0.34            |
| background are larger the<br>uncertainties affecting the<br>Light lepton $(e, \mu)$ ID, isolation, trigger<br>Total systematic uncertainty<br>$t\bar{t}+ \ge 1b$ normalisation<br>$t\bar{t}+ \ge 1c$ normalisation                             | $an_0 masignal+0.05+0.05+0.90+0.34+0.14$             | -0.05<br>-0.75<br>-0.14            |
| background are larger that<br>uncertainties affecting the<br>Light lepton $(e, \mu)$ ID, isolation, trigger<br>Total systematic uncertainty<br>$t\bar{t}+ \ge 1b$ normalisation<br>$t\bar{t}+ \ge 1c$ normalisation<br>Statistical uncertainty | $an_0 ma signal +0.06 +0.05 +0.90 +0.34 +0.14 +0.49$ | -0.05<br>-0.34<br>-0.14<br>-0.49   |

## ttH Production: Current Status

• NLO corrections to the signal  $pp \rightarrow ttH$  with on shell final-state particles

- QCD corrections with on shell final-state particles Beenakker et al '01,'02; Dawson et al '01-'03
- Parton-shower matching Frederix et al '11; Garzelli et al '11
- EW corrections with on shell final-state particles Frixione et al '14, '15 (stable top/Higgs); Zhang et al '14 (NWA)
- QCD corrections with off shell tops Denner et al '15
- NLO corrections to the dominant background process  $pp \rightarrow ttbb$ 
  - QCD corrections Bredenstein et al '08-'10; Bevilacqua et al '09
  - Parton-shower matching Kardos et al '13
  - QCD corrections for massive bottom quarks and parton-shower matching Cascioli et al '13
  - QCD corrections with off shell final-state particles Denner et al '15
- NLO corrections to the ttjj background
  - QCD corrections Bevilacqua et al '10
  - Parton-shower matching Hoeche et al '14

## $ttH(\rightarrow bb)$ in the Boosted Region

• Matching the fixed order NLO result to a parton shower for ttbb showed a significant difference in the cross section compared to pure NLO in the Higgs-signal region.

|                                      | ttb                                        | ttbb                                      | $ttbb\left(m_{bb} > 100\right)$             |
|--------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------------------|
| $\sigma_{ m LO}[{ m fb}]$            | $2644^{+71\%}_{-38\%}{}^{+14\%}_{-11\%}$   | $463.3^{+66\%}_{-36\%}{}^{+15\%}_{-12\%}$ | $123.4^{+63\%}_{-35\%}{}^{+17\%}_{-13\%}$   |
| $\sigma_{\rm NLO}[{\rm fb}]$         | $3296^{+34\%}_{-25\%}{}^{+5.6\%}_{-4.2\%}$ | $560^{+29\%}_{-24\%}{}^{+5.4\%}_{-4.8\%}$ | $141.8^{+26\%}_{-22\%}{}^{+6.5\%}_{-4.6\%}$ |
| $\sigma_{ m NLO}/\sigma_{ m LO}$     | 1.25                                       | 1.21                                      | 1.15                                        |
| $\sigma_{ m MC@NLO}[ m fb]$          | $3313^{+32\%}_{-25\%}{}^{+3.9\%}_{-2.9\%}$ | $600^{+24\%}_{-22\%}{}^{+2.0\%}_{-2.1\%}$ | $181^{+20\%}_{-20\%}{}^{+8.1\%}_{-6.0\%}$   |
| $\sigma_{ m MC@NLO}/\sigma_{ m NLO}$ | 1.01                                       | 1.07                                      | 1.28                                        |
|                                      |                                            | MS                                        | STW2008 NLO(LO) 4F PDF                      |

Cascioli, Maierhoefer, Moretti, Pozzorini, Siegert, 2013

#### $\sigma_{MC@NLO}/\sigma_{NLO} \sim 30\%$ for m<sub>bb</sub> > 100GeV!

# $ttH(\rightarrow bb)$ in the Boosted Region

Cascioli, Maierhoefer, Moretti, Pozzorini, Siegert, 2013



- MC@NLO enhancement at large  $m_{b1b2} \sim 125$ GeV, small  $p_{T,b1}$  and  $\Delta R_{b1b2} \sim \pi$
- Enhancement disappears almost completely when g→bb splitting is switched off in shower (MC@NLO<sub>2b</sub>) ⇒ large correction from double g→bb splitting
- Important new effect beyond NLO that affects the prediction

R. Boughezal



# $ttH(\rightarrow bb)$ in the Boosted Region



- MC@NLO enhancement at large  $m_{b1b2} \sim 125 GeV$ , small  $p_{T,b1}$  and  $\Delta R_{b1b2} \sim \Pi$
- Enhancement disappears almost completely when g→bb splitting is switched off in MC@NLO parton shower ➡ MC@NLO<sub>2b</sub>



#### R. Boughezal

#### **Higgs Production**



ASK NOT WHAT BIG CIRCULAR COLLDE CAN DO FOR YOU, ASK WHAT YOU CAN DO FOR BIG CIRCULAR COLLIDERS

- Níma Arkaní Hamed, Pheno conference 2016