

CMS Higgs(125) diboson results

Alicia Calderon Instituto de Física de Cantabria (CSIC – UC) on behalf of the CMS collaboration

Outline

- Focus on the most recent 13 TeV results:
 - Most analysis with 2016 dataset of $\sim 13 \text{ fb}^{-1}$
 - Some results using only 2015 data (~3 fb⁻¹)
 - Included also some recent results using Run I data
- Production modes and decay channels included in this talk:
 - Production modes: ggH, VBF, VH and ttH
 - Decay modes: HWW, Hyy and HZZ
- Recent measurements on fiducial and differential cross section and higgs width

Higgs boson in Run II

- LHC restarted in 2015 with a collision energy of 13 TeV and 25 ns bunch spacing
 - Increased sensitivity to tails of differential distributions and BSM
 - Increased sensitivity to large partonic center-of-mass (e.g. ttH production)
- RunII dataset ~20 fb⁻¹
 - Already produced more Higgs bosons than in Run I
- Most analyses follow closely methods and strategies developed during Run I

$H \rightarrow \gamma \gamma$ HIG-16-020

- Clean signature under a huge background (S/B < 1)
- Signature: 2 isolated photons
 - production modes included ggH, VBF and ttH event
- Large QCD backgrounds (vv, vj, jj)
- Analysis strategy:
 - Events categorized into classes (S/B, mass resolution, additional particles, BDT) to improve the analysis sensitivity.
 - Extraction of signal through fit of diphoton invariant mass spectrum in each category
- Dominant systematic uncertainty: photon energy resolution and background fit choice bias

$H \rightarrow \gamma \gamma$ results hig-16-020

- Significance @ 125.09 GeV: 5.6σ observed (6.2σ expected)
- Maximum observed significance is 6.1σ at 126.0 GeV
- Best-fit signal strength @ 125.09 GeV:

$$\sigma_{obs} / \sigma_{SM} = 0.91 \pm 0.20 = 0.91 \pm 0.17$$
 (stat.)
+0.09
-0.07 (syst.) +0.08
-0.05 (theo.)

$H \rightarrow \gamma \gamma$ fiducial cross-section HIG-16-020

×10³ CMS Preliminary

12.9 fb⁻¹ (13TeV)

Events/0.0005 160 $\max(|\eta^1|, |\eta^2|) < 1.44$ Data Different event categorization: 3 mass 140 resolution categories. $Z \rightarrow e^+e^-$ (MC) 120 Event yields corrected for detector 100 MC syst. uncert. inefficiency and resolution 80 Minimal dependence on theoretical 60 modeling 40 م^{fid.} (fb) 20 19.7 fb⁻¹ (8 TeV) + 12.9 fb⁻¹ (13 TeV) CMS Preliminarv 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 $\sigma_{\rm m}/m_{_{\gamma\gamma}} l_{\rm decorr}$ Η→γγ Fiducial cross section measured 80 Data (best-fit m_u) syst. uncertainty profiling m_H SM (m_µ=125.09 GeV) 70 norm. LHC Higgs XSWG YR4 - acc. AMC@NLO $\hat{\sigma}_{fid} = 69^{+18}_{-22}$ fb = 69^{+16}_{-22} (stat.)⁺⁸₋₆(syst.)fb 60 50 Theoretical prediction for m_{H} =125.09 40 GeV 30 Δσ/σ ~30% $\hat{\sigma}_{fid} = 73.8 \pm 3.8 \text{ fb}$ 20 7 8 9 13 10 12 ۱s (TeV) 6

$H \rightarrow ZZ$ HIG-16-033

- Λ
- Clean signature under a small background, but tiny signal yield (S/B>>1)
- Signature: two pairs of same flavor, opposite sign, isolated leptons: 4e, 2e2µ, 2µ2e, 4µ
- All production modes included ggH, VBF,VH and ttH events
- Very small background from irreducible ZZ and reducible Z+X
- Analysis strategy:
 - Kinematic discriminant: Mz1, Mz2, 5 angles from decay chain, matrix element, used to enhance the signal purity of different production modes
 - Extraction of signal through 2D fit of m4l and the discriminant gg/qq (D^{kin}_{bkg})
- Dominant systematic uncertainty: luminosity and lepton SF

$H \rightarrow ZZ$ results HIG-16-033

- Extract p-values and signal strength from simultaneous fit of the 2D likelihood in 3 final states x 6 categories.
- Significance @ 125.09 GeV (Run I LHC comb.): 6.2σ observed (6.5σ expected)
- Maximum observed significance is 6.4σ at 124.3 GeV
- Best-fit signal strength @ 125.09 GeV:

CMS Preliminary

 $H \rightarrow ZZ^* \rightarrow 4l$

····· Expected

120

Observed 4e Observed 4µ

Observed 2e2µ

Observed combined

122

124

126

 10^{-2}

10

 10^{-6}

 10^{-8}

10⁻¹⁰

 10^{-12}

 10^{-14}

118

12.9 fb⁻¹ (13 TeV

128

130

$H \rightarrow ZZ$ fiducial cross-section HIG-16-033

CMS Preliminary

- Minimal dependence on theoretical modeling
- Maximum likelihood fit to the uncategorized m_{4l} distribution, assuming $m_{H} = 125.0$ GeV

 $\sigma_{\rm fid.} = 2.29^{+0.74}_{-0.64}(\text{stat.})^{+0.30}_{-0.23}(\text{sys.})^{+0.01}_{-0.05}(\text{model dep.})$ fb

SM prediction: $\sigma^{\rm SM}_{\rm fid.} = 2.53 \pm 0.13~{\rm fb}$

Model dependence

2

 ≥ 3

N(jets)

12.9 fb⁻¹ (13 TeV)

H→WW HIG-15-003

- Large BR and a reasonable clean final state (S/B<1)
- Signature: two high pT isolated leptons and moderate MET (only eµ channel considered)
- No mass peak is the main drawback
- Controlling the background is the key
- Analysis strategy:
 - Using 0-jet and 1-jet categories only for now (2.3/fb 2015 dataset)
 - Perform a 2D fit: mll vs. mT

Results with 2015 data:

- Significance @ 125 GeV: 0.7σ observed (2.0σ expected)
- Best-fit signal strength @ 125 GeV: 0.3 ± 0.5
- Working on including 2016 dataset

$H \rightarrow WW$ differencial cross-section arXiv:1606.01522

- Differential measurement of Higgs transverse momentum
 - $-\,$ with MET resolution, but still $p_{T}{}^{H}$ good observable

 $\vec{p}_{\mathrm{T}}^{\mathrm{H}} = \vec{p}_{\mathrm{T}}^{\ell\ell} + \vec{p}_{\mathrm{T}}^{\mathrm{miss}}$

- Inclusive in jet multiplicity
- Inputs: measure the Higgs cross section in bins of p_T^{IIMET}
- Result unfolded at generation level in fiducial phase space
- Fiducial cross section for ggH+XH:

 $\sigma_{\rm fid} = 39 \pm 8 \,({
m stat}) \pm 9 \,({
m syst}) \,{
m fb}$ SM prediction: $\sigma_{
m fid}^{SM} = 48 \pm 8 \,{
m fb}$

8 TeV

ttH production нід-16-022, нід-16-020

- Cross-section at 13 TeV ~4 times that at 8 TeV
- Sensitivity approaching Run 1: challenging due to the presence of additional jets and leptons from top decays
- ttH($\gamma\gamma$), through H $\rightarrow\gamma\gamma$ event categorisation
 - small branching ratio, but very clean final state (small systematic uncertainty)
 - tagged H→yy categories selecting hadronic and leptonic top decays

ttH production нід-16-022, нід-16-020

- ttH(multileptons) targeting Higgs decays to WW*, ZZ*, $\tau\tau$
 - lower rate, low background multilepton final state
- Further categorization based on lepton flavor, presence of b-jets, hadronicallydecaying τ, lepton charge:
- The signal is extracted via a 2-D fit to the BDT discriminators.
- **Dominant systematic uncertainty:** nonprompt background estimates in some channels.

Observed and expected asymptotic 95% CL upper limits on and best value of the signal strength (2015+2016 datasets)

Category	Obs. limit	Exp. limit $\pm 1\sigma$	Best fit $\mu \pm 1\sigma$
Same-sign dileptons	4.6	$1.7^{+0.9}_{-0.5}$	$2.7^{+1.1}_{-1.0}$
Trileptons	3.7	$2.3^{+1.2}_{-0.7}$	$1.3^{+1.2}_{-1.0}$
Combined categories	3.9	$1.4^{+0.7}_{-0.4}$	$2.3^{+0.9}_{-0.8}$
Combined with 2015 data	3.4	$1.3^{+0.6}{}_{-0.4}$	$2.0^{+0.8}$ -0.7

Higgs width in Run I arXiv:1605.02329

- Ratio of on-shell to off-shell cross section is very sensitive to the width; modest model-dependence. $\sigma_{gg \rightarrow H \rightarrow VV}^{off-peak}$
- Signal parameterization includes interference.
- First measurement of the Higgs width in the HWW channel (mll<70 & mll>70)

 Γ_H

 $\sigma_{\mathrm{gg} \to H \to VV}^{\mathrm{on-peak}}$

• Final combination of WW and ZZ final states: **obs.** $\Gamma_{\rm H}$ < **13 MeV**

Run II H \rightarrow ZZ combined mass-width HIG-16-033

Summary

- Exploration of the new energy regime of 13 TeV has just started
- New era in Higgs re-discovered, Higgs precision physics, ttH
- So far...
 - Higgs re-discovery: $\gamma\gamma$ (obs. 5.5 σ); ZZ (6.2 σ);
 - Direct study of production mechanisms: measurements of $\mu_{ggH},\,\mu_{VBF},\,\mu_{VH},\,and\,\mu_{ttH}$
 - Precision reaching Run I results. Everything compatible with SM predictions.
 - Increase sensitivity in the ttH production mode channel.
 - Combination of 2015 results is in agreement with the SM expectation.
 - Fiducial and differential cross sections still statistically limited
- 10x more data to come by end of 2018. It will allow to reach precision measurements on Higgs properties: cross sections, width, couplings... observe any deviation?

Summary of Run-I Higgs Results

• Run-1: Discovery!

- Its mass has been measured with high precision (±0.2%)
 Phys. Rev. Lett. 114, 191803
- Its spin-parity: a scalar, beyond "reasonable" doubts
- Production via gluon-fusion, vector-boson fusion, and associated with a W or Z, arXiv: 1606.02266
- decays to γγ, WW, ZZ, and the fermionic decay to ττ
- Higgs signal strength ~1, determined to 10%
- Couplings consistent with Standard Model (SM) Higgs boson
- No additional Higgs bosons found so far

The Higgs Boson width

- It is impossible to extract he coupling and the Higgs width separately from the on-shell cross section measurement. $\sigma_{i \to H \to f}^{on-shell}(SM) \sim \frac{g_i^2 g_f^2}{\Gamma_{\mu}}$
- LHC is insensitive to the direct Higgs width measurement ($\Gamma_{\rm SM}$ ~ 4.2 MeV, which is too small for the detector resolution.

• We can perform indirect Higgs width measurement with the combination between on-shell and off-shell analysis under the following assumptions:

$$-\mu_{\text{off-shell}} = \mu_{\text{on-shell}}$$

 No BSM particle or interactions affect the Higgs coupling and SM background expectation.

$H{\rightarrow}\gamma\gamma$ signal and background models

Fully parametric signal model from simulation

- continuous model in m_H
- physical nuisances allowed to float
- corrections and data/MC efficiency scale factors applied

• Background model data driven:

- background functional form treated as discrete nuisance parameter
- for each category, use different functional forms (sums of exponentials, sums of power law terms, Laurent series and polynomials)

$H \rightarrow \gamma \gamma$ event yields

ttH tags

- (sub)lead pT/m_{xx} > 1/2(1/4)
- at least one lepton ($\ell = e, \mu$), away from Z peak
- ≥ 2 jets
- ≥ 1 b-jet

 $(sub) lead pT/m\chi\chi > 1/2(1/4)$

Z/W

Η

0 leptons

р

VBF tags

- · Identify events with 2 jets through a MVA
 - inputs: pT/m_{xx} of both photons, pT of both jets, m_{ii}, Δη_{ii}, Zeppenfeld variable, $\Delta \phi_{yyii}$
- 2 jets with $p_{T1} > 30 \text{GeV}$, $p_{T2} > 20 \text{ GeV}$, |n| < 4.7, m_{ii} >250 GeV
- VBF Classification BDT combines di-jet and • diphoton BDT: 2 data categories (VBF tag 0-1)

Event Categories	SM 125GeV Higgs boson expected signal							Bkg	
Event Categories	Total	ggh	vbf	wh	zh	tth	σ_{eff}	σ_{HM}	$ (GeV^{-1}) $
Untagged Tag 0	11.92	79.10 %	7.60 %	7.11 %	3.59 %	2.60 %	1.18	1.03	4.98
Untagged Tag 1	128.78	85.98 %	7.38 %	3.70 %	2.12 %	0.82 %	1.35	1.20	199.14
Untagged Tag 2	220.12	91.11 %	5.01 %	2.18 %	1.23 %	0.47 %	1.70	1.47	670.44
Untagged Tag 3	258.50	92.35 %	4.23 %	1.89 %	1.06 %	0.47 %	2.44	2.17	1861.23
VBF Tag 0	9.35	29.47 %	69.97 %	0.29 %	0.07 %	0.20 %	1.60	1.33	3.09
VBF Tag 1	15.55	44.91 %	53.50 %	0.86 %	0.38 %	0.35 %	1.71	1.40	22.22
TTH Hadronic Tag	2.42	16.78 %	1.28 %	2.52 %	2.39 %	77.02 %	1.39	1.21	1.12
TTH Leptonic Tag	1.12	1.09 %	0.08~%	2.43 %	1.06 %	95.34 %	1.61	1.35	0.42
Total	647.77	87.93 %	7.29 %	2.40 %	1.35 %	1.03 %	1.88	1.52	2762.65

21

$H \rightarrow \gamma \gamma$ fiducial region

- The fiducial region is defined at generator-level with the following requirements:
- $\frac{p_{T,gen}^{\gamma_{1,(2)}}}{m_{\gamma\gamma}} > \frac{1}{3}(\frac{1}{4})$ for the generator-level transverse momentum of the leading (sublead-ing) photon,
- $|\eta_{gen}^{\gamma}| < 2.5$ for the generator-level pseudorapidities of both photon
- the generator-level isolation of the photons, calculated as the sum of the transverse momenta of all stable particles inside a cone of aperture *R* = 0.3 around the photon, is required to be smaller than 10 GeV.

$H \rightarrow ZZ$ analysis strategy

- Theoretical cross section: ggH N³LO computation (arXiv:1602.00695)
- Analysis relies on (efficiency)⁴ of selecting leptons!
 - electron (muons) reconstructed down to 7 (5) GeV
 - reoptimized isolation, electron MVA ID & FSR recovery algorithm
 - thorough corrections for efficiencies in data, measured by Tag&Probe.
- Time-dependent lepton momentum calibrations
- Improved ZZ candidate arbitration
 - choose best value of kinematic discriminant.
- Background estimation:
 - Main background = non-resonant qq→ZZ and gg→ZZ. Apply NNLO/ NLO (resp. NNLO/LO) QCD k-factors as a function of m_{ZZ}.
 - Reducible background (Z+X): datadriven estimation from control regions, 2 independent methods

$H \rightarrow ZZ$ observables

- To further reduce background: encode angular information in matrix-element based discriminants (calculated with MELA, based on JHUGen and MCFM)
 - Discriminant sensitive to qq/gg → 4l kinematics:

• New discriminants for production mode topology: $D_{2jet} \& D_{1jet}$ (for VBF), D_{WH} , DZH

$$\mathcal{D}_{2jet} = \left[1 + \frac{\mathcal{P}_{HJJ}(\vec{\Omega}^{H+JJ}|m_{4\ell})}{\mathcal{P}_{VBF}(\vec{\Omega}^{H+JJ}|m_{4\ell})}\right]^{-1}$$
$$\mathcal{D}_{1jet} = \left[1 + \frac{\mathcal{P}_{HJ}(\vec{\Omega}^{H+J}|m_{4\ell})}{\int d\eta_J \mathcal{P}_{VBF}(\vec{\Omega}^{H+JJ}|m_{4\ell})}\right]^{-1}$$

$H \rightarrow ZZ$ event yields

118 < m4l < 130 GeV

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{4\ell}{6^{+0.81}_{-0.79}}_{7^{+0.12}_{-0.12}}$
$\begin{array}{c cccc} q\bar{q} \rightarrow ZZ & 1.37^{+0.16}_{-0.15} & 3.09^{+0.27}_{-0.27} & 3.90^{+0.46}_{-0.43} & 8.33\\ gg \rightarrow ZZ & 0.16^{+0.03}_{-0.03} & 0.32^{+0.05}_{-0.05} & 0.30^{+0.05}_{-0.05} & 0.7\\ Z + X & 0.90^{+0.38}_{-0.37} & 1.40^{+0.52}_{-0.51} & 2.34^{+0.91}_{-0.89} & 4.6\\ \hline\\ Sum of backgrounds & 2.42^{+0.42}_{-0.42} & 4.81^{+0.59}_{-0.59} & 6.54^{+1.03}_{-1.00} & 13.5\\ \hline\\ Signal (m_{\rm H} = 125{\rm GeV}) & 3.90^{+0.53}_{-0.54} & 7.92^{+0.88}_{-0.89} & 9.80^{+1.34}_{-1.36} & 21.6\\ \hline\\ Total expected & 6.32^{+0.78}_{-0.76} & 12.73^{+1.21}_{-1.24} & 16.34^{+1.92}_{-1.90} & 35.5\\ \hline\\ Observed & 5 & 12 & 16 \end{array}$	$6^{+0.81}_{-0.79}$ $7^{+0.12}_{-0.12}$
$\begin{array}{c cccc} gg \rightarrow ZZ & 0.16 \substack{+0.03 \\ -0.03} & 0.32 \substack{+0.05 \\ -0.05} & 0.30 \substack{+0.05 \\ -0.05} & 0.7 \\ 0.90 \substack{+0.38 \\ -0.51} & 1.40 \substack{+0.52 \\ -0.52} & 2.34 \substack{+0.91 \\ -0.89} & 4.6 \\ \hline Sum \ of \ backgrounds & 2.42 \substack{+0.42 \\ -0.40} & 4.81 \substack{+0.59 \\ -0.59} & 6.54 \substack{+1.03 \\ -1.00} & 13.8 \\ \hline Signal \ (m_{\rm H} = 125 \ {\rm GeV}) & 3.90 \substack{+0.53 \\ -0.54} & 7.92 \substack{+0.88 \\ -0.93} & 9.80 \substack{+1.34 \\ -1.90} & 35.8 \\ \hline Observed & 5 & 12 & 16 \\ \hline Observed & 5 & 12 & 16 \\ \hline & 4\mu & 0 \\ & 2e2\mu & 4 & 40 \\ \hline & 4\mu & 0 \\ & 2e2\mu & 4 & 40 \\ \hline & 4\mu & 0 \\ & 4\mu & 0 \\ \hline & 4\mu & 0 \\ & 4\mu & 0 \\ \hline & & 118 < m_{4l} < 130 \ {\rm GeV} \\ \hline & & 4\mu & 0 \\ & & 2e2\mu \\ \hline & & 40 \\ \hline & & & & & \\ \hline & & & & & \\ \hline \end{array}$	$7^{+0.12}_{-0.12}$
$\sum_{N=1}^{2} \frac{Z + X}{2} = 0.90^{+0.38}_{-0.37} = 1.40^{+0.52}_{-0.51} = 2.34^{+0.91}_{-0.89} = 4.6$ Sum of backgrounds $2.42^{+0.42}_{-0.40} = 4.81^{+0.59}_{-0.59} = 6.54^{+1.03}_{-1.00} = 13.$ Signal $(m_{\rm H} = 125 {\rm GeV}) = 3.90^{+0.53}_{-0.54} = 7.92^{+0.88}_{-0.93} = 9.80^{+1.34}_{-1.36} = 21.4$ Total expected $6.32^{+0.78}_{-0.76} = 12.73^{+1.21}_{-1.24} = 16.34^{+1.92}_{-1.90} = 35.4$ Observed $5 = 12 = 16$ $\sum_{N=1}^{2} \frac{200}{118 < m_{4/} < 130 {\rm GeV}} = 44\mu = 3645$	1117
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$4^{+1.11}_{-1.09}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$77^{+1.41}_{-1.38}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\overline{51^{+2.63}_{-2.71}}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{2.71}{38^{+3.43}_{-3.45}}$
$120 \begin{array}{c} \text{CMS } \textit{Preliminary} \\ 120 \end{array} \begin{array}{c} 12.9 \text{ fb}^{-1} (13 \text{ TeV}) \\ \hline & 4e \\ \hline & 2e2\mu \end{array} \begin{array}{c} \text{CMS } \textit{Preliminary} \\ 45 \end{array} \begin{array}{c} 118 \\ \hline & 4e \\ \hline & 4\mu \\ \hline & 6 \\ \hline & 7 \\ \hline \hline & 7 \\ \hline & 7 \\ \hline \hline \hline & 7 \\ \hline \hline & 7 \\ \hline \hline & 7 \\ \hline \hline \hline & 7 \\ \hline \hline \hline \hline & 7 \\ \hline \hline \hline \hline \hline \hline & 7 \\ \hline \hline$	33
$ \begin{array}{c} 100 \\ - \\ 80 \\ - \\ 60 \\ - \\ 40 \\ - \\ 40 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	<i>→L</i> , <i>L</i> γ →ZZ, Zγ* ζ
	Ţ

25

$H \rightarrow ZZ$ mass measurement

- Exploit event-by-event mass resolution:
 - Defined by propagating per-lepton momentum error to the 4-lepton candidate; corrected in data and MC using Z events
- 3D fit based on $\mathcal{L}(m_{4\ell}, \mathcal{D}_{mass}, \mathcal{D}_{bkg}^{kin})$ brings 8% exp. improvement

$H \rightarrow ZZ$ fiducial region

"dressed" leptons are used \rightarrow 4-momenta of photons in a cone of radius $\Delta R < 0.4$ are summed to the bare lepton momentum

Requirements for the $\mathrm{H} ightarrow 4\ell$ fiducial phase space			
Lepton kinematics and isolation			
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20 \ \mathrm{GeV}$		
Next-to-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10 \mathrm{GeV}$		
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m ~GeV}$		
Pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$		
Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.4$ from lepton	$< 0.4 \cdot p_{\mathrm{T}}$		
Event topology			
Existence of at least two same-flavor OS lepton pairs, where leptons	s satisfy criteria above		
Inv. mass of the Z_1 candidate	$40 { m GeV} < m_{Z_1} < 120 { m GeV}$		
Inv. mass of the Z_2 candidate	$12 \text{GeV} < m_{Z_2} < 120 \text{GeV}$		
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$		
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-}>4{ m GeV}$		
Inv. mass of the selected four leptons	$105{ m GeV} < m_{4\ell} < 140{ m GeV}$		

- Performing a maximum likelihood fit of the signal and background parameterizations to the observed 41 mass distribution.
- The fiducial cross section is directly extracted from the fit.
- Keep the model dependence minimal, the fit is done inclusively (i.e. without any event categorization)

Summary of different SM signal models

[Signal process	$\mathcal{A}_{ ext{fid}}$	e	f_{nonfid}	$(1+f_{\text{nonfid}})\epsilon$
[In	dividua	l Higgs boson pi	roduction modes	5
	gg→H	0.371	0.608 ± 0.001	0.121 ± 0.001	0.682 ± 0.002
	VBF	0.422	0.614 ± 0.002	0.089 ± 0.001	0.669 ± 0.002
	WH	0.283	0.587 ± 0.002	0.241 ± 0.003	0.729 ± 0.003
,	ZH	0.307	0.611 ± 0.003	0.207 ± 0.004	0.738 ± 0.005
t	ttH	0.238	0.573 ± 0.004	0.593 ± 0.011	0.914 ± 0.009

$H \rightarrow ZZ$ anomalous couplings

- Anomalous contributions to the tensor structure of HZZ interactions characterized by coef. a2, a3, & Λ1.
- Described with effective on-shell fractional cross sections & phases (f_{a3} cos(ϕ_{a3}), f_{a2} cos(ϕ_{a2}), $f_{\Lambda 1}$ cos($\phi_{\Lambda 1}$))

 $f_{\Lambda 1} \cos(\phi_{\Lambda 1}) \quad -0.93^{+0.90}_{-0.16} \left[-1.00, 0.10\right] \cup \left[0.77, 1.00\right] \quad 0.00^{+0.13}_{-0.69} \left[-1.00, 0.24\right] \cup \left[0.98, 1.00\right]$

H→WW analysis strategy

- Neutrinos → impossible reconstruct an invariant mass spectrum
- In transverse plane momentum conservation
 - Build a transverse mass variable:
 - 2 neutrinos \rightarrow more complicated than in simple W \rightarrow lv decay
 - Di-lepton and MET system considered

$$m_{\mathrm{T}}^{\ell\ell E_{\mathrm{T}}^{\mathrm{miss}}} = \sqrt{2 \cdot p_{T}^{\ell\ell} \cdot E_{\mathrm{T}}^{\mathrm{miss}} \left(1 - \cos\Delta\phi_{\ell\ell, E_{\mathrm{T}}^{\mathrm{miss}}}\right)}$$

- $\Delta \phi$ (ll,MET) = angle between di-lepton system and MET
- $p_T^{\ II} =$ momentum of di-lepton system
- 2D template fit based on $m_{\parallel}/m_{T}^{\parallel MET}$ as in Run 1
 - 0 jet and 1 jet to have different background contamination
 - eµ and µe p_T ordered leptons, to exploit different fake rate for electrons

H→WW fiducial definition

- Born-level leptons (effect of using "dressed" leptons is negligible, 5%)
- use regularized unfolding techniques: singular value decomposition with Tikkhonov regularization

Physics quantity	Requirement
Leading lepton p_T	$p_{\rm T} > 20 {\rm GeV}$
Subleading lepton p_T	$p_{\rm T} > 10 {\rm GeV}$
Pseudorapidity of electrons and muons	$ \eta < 2.5$
Invariant mass of the two charged leptons	$m_{\ell\ell} > 12{ m GeV}$
Charged lepton pair p_T	$p_{\mathrm{T}}^{\ell\ell} > 30\mathrm{GeV}$
Invariant mass of the leptonic system in the transverse plane	$m_{\mathrm{T}}^{\ell\ell\nu\nu} > 50\mathrm{GeV}$
E ^{miss}	$E_{\rm T}^{\rm miss} > 0$

ttH (multileptons) categories ніс-16-022

- Target multi-lepton final states from Higgs decays to WW*, ZZ*, $\tau\tau$
- Channels:
 - two same-sign leptons + 4 jets
 - at least three leptons (with Z veto) + 2 jets
- At least 2 loose or 1 medium b-tagged jets

ttH (multileptons) yields нIG-16-022

12.9 fb⁻¹, stat. unc. only 3l ee μμ eμ tŦW 12.2 ± 0.7 18.3 ± 0.9 6.8 ± 0.6 24.5 ± 1.1 $t\bar{t}Z/\gamma^*$ 5.8 ± 0.6 7.4 ± 0.6 15.3 ± 1.3 22.6 ± 1.0 Di-boson 1.4 ± 0.2 1.1 ± 0.2 2.6 ± 0.3 5.7 ± 0.4 0.8 ± 0.2 0.4 ± 0.1 1.5 ± 0.2 1.2 ± 0.1 tttt tqZ 0.2 ± 0.3 0.4 ± 0.4 0.6 ± 0.6 2.7 ± 0.8 Rare SM bkg. 1.6 ± 0.3 0.5 ± 0.1 1.8 ± 0.1 0.3 ± 0.1 Charge mis-meas. 10.0 ± 0.1 6.7 ± 0.1 23.1 ± 1.1 61.9 ± 1.7 51.0 ± 1.8 Non-prompt leptons 33.4 ± 1.2 All backgrounds 61.5 ± 1.7 46.4 ± 1.5 118.0 ± 2.5 95.7 ± 2.3 $t\bar{t}H (H \rightarrow WW^*)$ 6.3 ± 0.2 2.6 ± 0.1 8.5 ± 0.2 8.0 ± 0.2 $t\bar{t}H (H \rightarrow \tau \tau)$ 0.7 ± 0.1 2.5 ± 0.1 2.1 ± 0.1 1.6 ± 0.1 0.2 ± 0.0 $t\bar{t}H (H \rightarrow ZZ^*)$ 0.1 ± 0.0 0.3 ± 0.0 0.5 ± 0.0 105 Data 74 45 154