

Higgs interference effects at NLO

Raoul Röntsch

KARLSRUHE INSTITUTE OF TECHNOLOGY

Higgs Hunting 2016

Narrow width approximation

NWA: Factorize production and decay

Accuracy : $\Gamma_H/m_H \sim 10^{-5}$

BUT: 10% of events in $H \rightarrow VV$ above $2m_V$ threshold (Kauer, Passarino '12)

\longrightarrow NWA not sufficient to describe behavior of $H \rightarrow VV$

Higgs Hunting 2016 Paris, 31/08/2016

Beyond the NWA

Consistent treatment requires both signal and background amplitudes

 $|A_{ZZ}|^{2} = |A_{H}|^{2} + |A_{b}|^{2} + 2\operatorname{Re}[A_{H}A_{b}^{*}]$

 $\rightarrow \sigma_{\rm full} = \sigma_{\rm sigl} + \sigma_{\rm bkgd} + \sigma_{\rm intf}$

Higgs Hunting 2016 Paris, 31/08/2016

Interference effect and line shape

Campbell, Ellis, Williams '13

Higgs Hunting 2016 Paris, 31/08/2016 Raoul Röntsch (KIT) Higgs interference effects at NLO Interference is strong and destructive, especially at high invariant mass

Understanding high energy behavior

Cut open top loop – have $t\bar{t} \rightarrow VV$

- Signal and background amplitudes-squared grow like E^2
- Interference grows like -E² → cancels E² terms of signal and background
- **Higgs unitarizing massive scattering amplitude** connected to its role in EWSB and mass generation

Using off-shell Higgs

Off-shell Higgs events provide a new tool for studying Higgs physics

- High mass behavior probes unitarization properties of Higgs
 - As important as measuring Higgs couplings for understanding EWSB
 - Cross sections small \rightarrow HL-LHC
- Higgs couplings more sensitive to NP at high energies

Campbell, Ellis, Williams '13

Using off-shell Higgs: indirect width constraints

- Observation of Caola & Melnikov: $\sigma_{on} \propto g_i^2 g_f^2 / \Gamma_H \qquad \sigma_{off} \propto g_i^2 g_f^2$ $\Rightarrow \Gamma_H \propto \frac{\sigma_{off}}{\sigma_{on}} \longrightarrow \text{ indirect constraint on width}$
- CMS: $\Gamma_H < 13 \text{ MeV}$ ATLAS: $\Gamma_H < 23 \text{ MeV}$
- Direct constraints ~ 1 GeV
- Compare with SM value: $\Gamma_H \approx 4 \text{ MeV}$

Indirect Higgs width constraint: caveat emptor

Indirect constraints not model-independent:

- Assume same couplings on- & off-shell
- Can construct models with $\Gamma_H > \Gamma_H^{SM}$ but no sensitivity from off-shell measurements (Englert, Spannowksy '14)
- Possible option:
 - Introduce energy-dependent couplings in κ-framework / EFT (Englert, Soreq, Spannowsky '14)
 - Constrain couplings and width simultaneously
 - Highly non-trivial dependence of signal, background and interference on these couplings! (see e.g. Azatov, Grojean, Paul, Salvioni '16)

Impact of higher order corrections

- Signal (incl. top mass effects) known at NLO
 - NLO corrections large, k-factor ~ 1.7
- Experimental analyses use background and interference at LO only
 - NLO corrections approximated by corrections from signal
 adds uncertainties to analysis
- Recent work has extended background and interference to NLO

Campbell, Czakon, Ellis, Kirchner, hep-ph/1605.01380 Caola, Dowling, Melnikov, R.R., Tancredi, hep-ph.1605.04610

Higgs Interference Effects at NLO

Spira, Djouadi, Graudenz, Zerwas '95; Harlander, Kant '05; Aglietti, Bonciani, Degrassi, Vicini '07; Ellis, Hinchliffe, Soldate, v.d. Bij '88; Caola et al '15, v. Manteuffel, Tancredi '15 Hagiwara, Kuruma, Yamada '91; Campbell, Ellis, Zanderighi '07; v.d. Bij, Glover '89;

Higgs Hunting 2016 Paris, 31/08/2016

$gg \rightarrow (H) \rightarrow ZZ$: Top Mass Expansion

Expand in s/m_t^2

- Keep terms to $\left(s/m_t^2\right)^4$
- Expect to be valid for partonic energies $s \leq 4m_t^2$

Dowling, Melnikov '15

Validity of top mass expansion

Can check validity at LO:

Good approximation below $2m_t$ threshold Restricted to $m_{4\ell} \leq 2m_t$ $p_{T,j} < 150 \text{ GeV}$

- Cannot probe unitarization effects :(
- Large window 150 GeV $\lesssim m_{4\ell} \leq 2m_t$ where Higgs is off-shell and we can study interference effects at NLO

Parameters

- $gg \rightarrow ZZ \rightarrow e^+e^-\mu^+\mu^-$ at 13 TeV LHC
- Dynamical scale $\mu_F = \mu_R = \{m_{4\ell}/4, m_{4\ell}/2, m_{4\ell}\}$
- Minimal cuts:
 - 150 GeV $\leq m_{4\ell} \leq 340$ GeV
 - $p_{T,j} < 150 \text{ GeV}$
 - 60 GeV $\leq m_{\ell\ell} \leq 120$ GeV

$gg \rightarrow (H) \rightarrow ZZ$ Results: Cross Sections

- $$\begin{split} \sigma_{\rm LO}^{\rm signal} &= 0.043^{+0.012}_{-0.009}~{\rm fb}, & \sigma_{\rm NLO}^{\rm signal} &= 0.074^{+0.008}_{-0.008}~{\rm fb} \\ \sigma_{\rm LO}^{\rm bkgd} &= 2.90^{+0.77}_{-0.58}~{\rm fb}, & \sigma_{\rm NLO}^{\rm bkgd} &= 4.49^{+0.34}_{-0.38}~{\rm fb} \\ \sigma_{\rm LO}^{\rm intf} &= -0.154^{+0.031}_{-0.04}~{\rm fb}, & \sigma_{\rm NLO}^{\rm intf} &= -0.287^{+0.031}_{-0.037}~{\rm fb} \\ \sigma_{\rm LO}^{\rm full} &= 2.79^{+0.74}_{-0.56}~{\rm fb}, & \sigma_{\rm NLO}^{\rm full} &= 4.27^{+0.32}_{-0.35}~{\rm fb}, \end{split}$$
- Destructive interference ~ 5%
 - $\sim 4 \times larger$ than signal, order of magnitude smaller than background
 - Can use specialized cuts needed to enhance relative to signal and background
- Scale uncertainty: 20%-30% at LO, 10% at NLO
- $K_{\text{sigl}} = 1.72$ $K_{\text{bkgd}} = 1.55$ $K_{\text{intf}} = 1.65 \simeq \sqrt{K_{\text{sigl}} K_{\text{bkgd}}}$

$gg \rightarrow (H) \rightarrow ZZ$ Results: Mass distributions

- Differential k-factors relatively flat...
- Except for interference near $2m_z$ threshold

Higgs Hunting 2016 Paris, 31/08/2016

$gg \rightarrow (H) \rightarrow ZZ$ Results: Differential k-factor

 Massless loop dominates near 2m_z threshold, drives k-factor behavior

Higgs Hunting 2016 Paris, 31/08/2016

Comparison with similar work

Campbell, Czakon, Ellis, Kirchner, hep-ph/1605.01380

- Only interference contribution considered
- On-shell Z bosons, so $m_{ZZ} > 2m_Z$
- Massive two-loop amplitudes computed in mass expansion to $\left(s/m_t^2\right)^6$
- Massive real emission amplitudes computed exactly no need for jet cut
- Results extended beyond 2m, threshold using Padé approximations look at high-mass tail

Comparison with similar work

$gg \rightarrow (H) \rightarrow WW$

- Analogous to $gg \rightarrow (H) \rightarrow ZZ$
- Mass expansion more complicated since top and bottom quarks mix in loop
- \rightarrow neglect 3rd generation altogether
 - Comparable to massless contribution at low-intermediate $m_{\tau,WW}$
 - Dominate at high $m_{\tau,WW}$
- Partial results only

- $gg \to W^+W^- \to \nu_e e^+ \mu^- \bar{\nu}_\mu$
- No kinematic cuts imposed
- Scales as for *ZZ*

Higgs Hunting 2016 Paris, 31/08/2016

$gg \rightarrow (H) \rightarrow WW$ Results: Cross Sections

$$\begin{split} \sigma_{\rm LO}^{\rm signal} &= 48.3^{+10.4}_{-8.4} ~{\rm fb}, & \sigma_{\rm NLO}^{\rm signal} &= 81.0^{+10.5}_{-8.2} ~{\rm fb} \\ \sigma_{\rm LO}^{\rm bkgd} &= 49.0^{+12.8}_{-9.7} ~{\rm fb}, & \sigma_{\rm NLO}^{\rm bkgd} &= 74.7^{+5.5}_{-6.2} ~{\rm fb} \\ \sigma_{\rm LO}^{\rm intf} &= -2.24^{+0.44}_{-0.59} ~{\rm fb}, & \sigma_{\rm NLO}^{\rm intf} &= -4.15^{+0.47}_{-0.54} ~{\rm fb} \\ \sigma_{\rm LO}^{\rm full} &= 95.0^{+22.6}_{-17.6} ~{\rm fb}, & \sigma_{\rm NLO}^{\rm full} &= 151.6^{+15.4}_{-13.9} ~{\rm fb}. \end{split}$$

- Destructive interference ~ 2%
 - Higgs peak present \rightarrow interference smaller than signal and background
- Scale uncertainty reduced by factor ~ 2
- $K_{\text{sigl}} = 1.68$ $K_{\text{bkgd}} = 1.53$ $K_{\text{intf}} = 1.85$
 - \rightarrow slightly above geometric mean

$gg \rightarrow (H) \rightarrow WW$ Results: Mass distributions

- Differential k-factors relatively flat...
- ... except for interference near $2m_w$ threshold as in ZZ case

SKIT

Solution $gg \rightarrow (H) \rightarrow WW$ Results: Estimating effect of 3rd generation

- As in *ZZ* case, enhancement from massless loops
- 3rd generation loops give relatively flat differential kfactor
- \rightarrow estimate by using LO results scaled by approximate k-factor

 $K_{\rm sigl}K_{\rm bkgd}$

Higgs Hunting 2016 Paris, 31/08/2016

Conclusions

- Higgs off-shell behavior provides a rich environment to study Higgs physics:
 - Probe unitaritizing behavior of the Higgs
 - Indirect constraints on Higgs width
 - Test couplings at high energies
- NLO corrections to interference in $gg \rightarrow ZZ$ and $gg \rightarrow WW$, are now known, at least below $2m_t$ threshold
- Difficulty of computing two-loop massive corrections
 - \rightarrow top mass expansion for ZZ
 - → neglect 3rd generation for WW
- ZZ in window 150 GeV $\leq m_{4\ell} \leq 340$ GeV
 - Moderate k-factors ~ 1.6-1.7
 - $-K_{intf} \simeq \sqrt{K_{sigl}K_{bkgd}}$ except near $2m_z$ threshold driven by massless amplitudes
- *WW*:
 - Interference k-factor slightly larger than signal and background k-factors
 - Effect of 3rd generation at NLO approximated assuming uniform contribution to k-factor

THANK YOU!

Higgs Hunting 2016 Paris, 31/08/2016