MC Tools and NLO Monte Carlos

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

"Higgs Hunting 2016", Paris, 1.9.2016

- what the talk is about
- the cutting edge in theory inputs
- matching & merging with parton showers
- where we are and where we (should/could/would) go

motivation & introduction

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ めのの

F. Krauss MC Tools and NLO Monte Carlos

motivation: the need for (more) accurate tools

- to date no survivors in searches for new physics & phenomena

(a pity, but that's what Nature hands to us)

- push into precision tests of the Standard Model

(find it or constrain it!)

- statistical uncertainties approach zero

(because of the fantastic work of accelerator, DAQ, etc.)

- systematic experimental uncertainties decrease

(because of ingenious experimental work)

- theoretical uncertainties are or become dominant

(it would be good to change this to fully exploit LHC's potential)

\Longrightarrow more accurate tools for more precise physics needed!

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへの

motivation: aim of the exercise

• review the state of the art in precision simulations

(celebrate success)

highlight missing or ambiguous theoretical ingredients

(acknowledge failure)

イロト イヨト イヨト イヨト

suggest some further studies – experiment and theory

reminder: fixed-order and its limits

▲日▼▲園▼▲園▼▲園▼ 園 めんの

F. Krauss MC Tools and NLO Monte Carlos

the aftermath of the NLO (QCD) revolution

establishing a wide variety of automated tools for NLO calculations

BLACKHAT, GOSAM, MADGRAPH, NJET, OPENLOOPS, RECOLA + automated IR subtraction methods (MADGRAPH, SHERPA)

- first full NLO (EW) results with such tools
- technical improvements still mandatory

(higher multis, higher speed, higher efficiency, easier handling, . . .)

イロト イヨト イヨト イヨト

start discussing scale setting prescriptions

(simple central scales for complicated multi-scale processes? test smarter prescriptions?)

• steep learning curve still ahead: "NLO phenomenology"

(example: methods for uncertainty estimates beyond variation around central scale)

the looming revolution: going beyond NLO

- *H* in ggF at N³LO (Anastasiou, Duhr and others)
- $\bullet\,$ explosive growth in NNLO (QCD) 2 \rightarrow 2 results

(apologies for any unintended omissions)

<ロ> (日) (日) (日) (日) (日)

- tt

 (1303.6254; 1508.03585;1511.00549)
- single-t (1404.7116)
- VV (1507.06257; 1605.02716;1604.08576; 1605.02716)
- HH (1606.09519)
- VH (1407.4747; 1601.00658)
- Vγ (1504.01330)
- $\gamma\gamma$ (1110.2375; 1603.02663)
- Vj (1507.02850; 1512.01291; 1602.06965)
- Hj (1408.5325; 1504.07922; 1505.03893; 1508.02684)
- *jj* (1310.3993)
- WBF at NNLO and N^3LO (1506.02660 and N^3LO 1606.00840)
- different IR subtraction schemes:
 - N-jettiness slicing, antenna subtraction, sector decomposition,

challenging the revolution

• some technical issues at NNLO (and beyond)

(stability of automated NLO, robustness under integration, subtraction vs. slicing)

- more scales (internal or external) complicated need integrals
- going to higher power of N often driven by need to include larger FS multiplicity – maybe not the most efficient method
- structural questions concerning convergence/importance
- limitations of perturbative expansion:
 - breakdown of factorisation at HO (Seymour et al.)
 - higher-twist: compare $(\alpha_S/\pi)^n$ with $\Lambda_{
 m QCD}/M_Z$

(see Melnikov's talk last week)

イロト イポト イヨト イヨト

matching @ (N)NLO merging @ (N)LO

F. Krauss MC Tools and NLO Monte Carlos prequel: parton showers vs. resummation calculations

- various schemes for various logs in analytic resummation
- concentrate on parton shower instead \longleftrightarrow compare with $\mathcal{Q}_{\mathcal{T}}$ resummation

(transverse momentum of Higgs boson etc.)

< ロ > < 同 > < 三 > < 三 :

• parametric accuracy by comparing Sudakov form factors:

$$\Delta = \exp\left\{-\int rac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \,\left[A\lograc{k_{\perp}^2}{Q^2} + B
ight]
ight\}\,,$$

where A and B can be expanded in $\alpha_{S}(k_{\perp}^{2})$

- showers usually include terms $A_{1,2}$ and B_1 (NLL)
- A_2 often realised by pre-factor multiplying scale $\mu_R \simeq k_\perp$

some parton shower fun with DY

(example of accuracy in description of standard precision observable)

- ◆ ロ ▶ ◆ 昼 ▶ ◆ 臣 ▶ ◆ 臣 ● のへで

matching at NLO and NNLO

- avoid double-counting of emissions
- two schemes at NLO: MC@NLO and POWHEG
 - mismatches of K factors in transition to hard jet region
 - MC@NLO: \longrightarrow visible structures, especially in $gg \rightarrow H$
 - POWHEG: \longrightarrow : high tails, cured by *h* dampening factor
 - well-established and well-known methods

(no need to discuss them any further)

イロト イヨト イヨト イヨト

- two schemes at NNLO: MINLO & UN²LOPS (singlets S only)
 - different basic ideas
 - MINLO: S + j at NLO with p^(S)_T → 0 and capture divergences by reweighting internal line with analytic Sudakov, NNLO accuracy ensured by reweighting with full NNLO calculation for S production
 - UN²LOPS identifies and subtracts and adds parton shower terms at FO from S + j contributions, maintaining unitarity
 - ullet available for two simple processes only: DY and gg
 ightarrow H

NNLOPS for *H* production: MINLO

K. Hamilton, P. Nason, E. Re & G. Zanderighi, JHEP 1310

< D > < B >

• also available for Z production

-

NNLOPS for Z production: UN^2LOPS

S. Hoche, Y. Li, & S. Prestel, Phys.Rev.D90 & D91

<ロト <問ト < 注ト < 注

• also available for H production

NNLOPS: shortcomings/limitations

- MINLO relies on knowledge of B_2 terms from analytic resummation \longrightarrow to date only known for colour singlet production
- MINLO relies on reweighting with full NNLO result \rightarrow one parameter for $H(y_H)$, more complicated for Z, \ldots
- UN²LOPS relies on integrating single- and double emission to low scales and combination of unresolved with virtual emissions

 —> potential efficiency issues, need NNLO subtraction
- UN²LOPS puts unresolved & virtuals in "zero-emission" bin \longrightarrow no parton showering for virtuals (?)

イロト イヨト イヨト イヨト

merging example: $p_{\perp,\gamma\gamma}$ in MEPS@LO vs. NNLO

(arXiv:1211.1913 [hep-ex])

multijet-merging at NLO

- sometimes "more legs" wins over more loops
- basic idea like at LO: towers of MEs with increasing jet multi (but this time at NLO)
- combine them into one sample, remove overlap/double-counting
- maintain NLO and LL accuracy of ME and PS
- this effectively translates into a merging of MC@NLO simulations and can be further supplemented with LO simulations for even higher final state multiplicities
- different implementations, parametric accuracy not always clear

(MEPS@NLO, FxFx, UNLOPS)

イロト イヨト イヨト

• starts being used, still lacks careful cross-validation

Transverse momentum of the Higgs boson

 first emission by MC@NLO

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필 _ ∽

• first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$

<ロト < 国ト < 国ト < 国

F. Krauss

- first emission by MC@NLO, restrict to Q_{n+1} < Q_{cut}
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$

- * ロ ▶ * @ ▶ * 目 ▶ * 目 * の < @

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$

- ▲ ロ ト - 4 屈 ト - 4 屈 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 三 - - つ へ ()

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$

イロト イヨト イヨト

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate

<ロ> <同> <同> <同> <同> <同

Transverse momentum of the Higgs boson $d\sigma/dp_{\perp}$ [pb/GeV] $pp \rightarrow h + jets$ $-- pp \rightarrow h + 0j @ NLO$ ----- $pp \rightarrow h + 1j @ NLO$ - · · · - $pp \rightarrow h + 2j @ NLO$ $\cdots p p \rightarrow h + 3i @ LO$ 10^{-2} 10^{-3} 10^{-4} 0 50 100 150 200 250 300 $p_{\perp}(h)$ [GeV]

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate

イロト イヨト イヨト

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- Mc@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate

<ロ> <同> <同> <同> <同> <同

• sum all contributions

Transverse momentum of the Higgs boson dơ/dp⊥ [pb/GeV] $pp \rightarrow h + jets$ $-- pp \rightarrow h + 0j @ NLO$ 10 ----- $pp \rightarrow h + 1j @ NLO$ - · · · - $pp \rightarrow h + 2j @ NLO$ $\cdots p p \rightarrow h + 3i @ LO$ 10^{-2} 10^{-3} 10^{-4} 0 50 100 150 200 250 300 $p_{\perp}(h)$ [GeV]

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- Mc@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions
- eg. p⊥(h)>200 GeV has contributions fr. multiple topologies

results from various schemes in H+jets through ggF

- ▲口> ▲園> ▲国> ▲国> 三国 ろんの

aside: quark mass effects

• include effects of quark masses

• reweight NLO HEFT with LO ratio:

(reweight virtual with Born ratio, real with real ratio)

- (1)

$$\mathrm{d}\sigma_{\mathrm{mass}}^{(\mathrm{NLO})} \approx \mathrm{d}\sigma_{\mathrm{HEFT}}^{(\mathrm{NLO})} \times \frac{\mathrm{d}\sigma_{\mathrm{mass}}^{(\mathrm{LO})}}{\mathrm{d}\sigma_{\mathrm{HEFT}}^{(\mathrm{LO})}}$$

b-mass effects: playtime

• use LO multijet merging for *tb*-interference

イロト イヨト イヨト イヨト

limitations of full simulations

- lots of routinely used tools for large FS multis (4 and more) at NLO accuracy, but
 - \longrightarrow not many detailled comparisons

(critical appraisals and learning curve in their phenomenological use still in infancy)

 \rightarrow no standard way of estimating uncertainties (yet?)

- to improve: description of loop-induced processes
 - \longrightarrow potentially important for new physics searches
- \bullet users of codes: higher orders tricky \rightarrow training needed

(MC = black box attitude problematic - a new brand of pheno/experimenters needed?)

イロト イポト イヨト イヨト

a systematic uncertainty

(quite often just used as black box)

- maybe include higher orders?
- example right:

 μ_R uncertainty in $p_{\perp}^{(\text{emit})}$ in ggF

《曰》《聞》《臣》《臣

limitations

F. Krauss MC Tools and NLO Monte Carlos IPPP

Э

▲口> ▲圖> ▲屋> ▲屋>

theory limitations/questions

- we have constructed lots of tools for precision physics at LHC
 but we did not cross-validate them careful enough (vet)
 - \longrightarrow but we did not compare their theoretical foundations (yet)
- will NNLO (or beyond) become as automated as NLO?

 \longrightarrow or more precisely: when and how?

- we also need unglamorous improvements on existing tools:
 - systematically check advanced scale-setting schemes (MINLO)
 - automatic (re-)weighting for PDFs & scales
 - scale compensation in PS is simple (implement and check)
- 4 vs. 5 flavour scheme \rightarrow really?
- how about $\alpha_{\mathcal{S}}$: range from 0.113 to 0.118

(yes, I know, but still - it still bugs me)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

 \rightarrow is there any way to settle this once and for all (measurements?)

more theory uncertainties/issues?

• with NNLOPS approaching 5% accuracy or better:

- non-perturbative uncertainties start to matter:
 - \longrightarrow PDFs, MPIs, hadronization, etc.
- question (example): with hadronization tuned to quark jets (LEP)
 - \longrightarrow how important is the "chemistry" of jets for JES?
 - \longrightarrow can we fix this with measurements?
- example PDFs: to date based on FO vs. data
 - \rightarrow will we have to move to resummed/parton showered?

(reminder: LO* was not a big hit, though)

・ロト ・回ト ・ヨト

- $g \rightarrow q \bar{q}$ at accuracy limit of current parton showers:
 - \longrightarrow how bad are $\sim 25\%$ uncertainty on $g \rightarrow b\bar{b}$?
 - \longrightarrow can we fix this with measurements?

plan

F. Krauss MC Tools and NLO Monte Carlos

achievable goals in fixed order calculations: a roadmap (?)

- practical limitations/questions to be overcome:
 - dealing with IR divergences at NNLO: slicing vs. subtracting

- how far can we push NNLO? are NLO automated results stable enough for NNLO at higher multiplicity?
- matching for generic processes at NNLO?

(MINLO or UN^2LOPS or something new?)

・ロト ・四ト ・日・ ・日

- NLO for loop-induced processes:
 - fixed-order starting, MC@NLO tedious but straightforward
- EW NLO corrections with tricky/time-consuming calculational setup
 - $\bullet\,$ but important at large scales: effect often \sim QCD, but opposite sign
 - need maybe faster approximation for high-scales (EW Sudakovs)

⁽I'm not sure we have THE solution yet)

"curable" bottleneck: colours/spins in parton showers

- parton shower usually is spin-averaged, leading colour, (next-to) leading log
- start including next-to leading colour

(first attempts by Platzer & Sjodahl; Nagy & Soper)

- no big effects in e⁻e⁺ → hadrons seen maybe more exclusive observables?
- aside: can also include spin-correlations important for EW emissions

(maybe relevant for ultra-high energies)

• HO being implemented at nthe moment

・ロト ・同ト ・ヨト ・ヨ

outlook

• will need precision for ballistics of smoking guns

3