Effective field theory for Higgs Physics

Margherita Ghezzi

paul scherrer institut

Higgs Hunting 2016
Paris, 1st September 2016

Higgs Effective Lagrangian

In searches for new physics we can distinguish among:

- Direct searches

Searches for new resonances.

- Top-down approach: BSM models (model-dependent) Unknowns: model parameters.
- Bottom-up approach: EFT ("model-independent") Unknowns: Wilson coefficients

Assumptions:

- The dynamical degrees of freedom at the EW scale are those of the SM
- New Physics appears at some high scale $\Lambda \gg v$ (decoupling)
- Absence of mixing of new heavy scalars with the SM Higgs doublet
- $S U(2)_{\llcorner } \times U(1)_{\vee}$ is linearly realized at high energies

Higgs Effective Lagrangian

In searches for new physics we can distinguish among:

- Direct searches

Searches for new resonances.

- Top-down approach: BSM models (model-dependent) Unknowns: model parameters.
- Bottom-up approach: EFT ("model-independent") Unknowns: Wilson coefficients

Assumptions:

- The dynamical degrees of freedom at the EW scale are those of the SM
- New Physics appears at some high scale $\Lambda \gg v$ (decoupling)
- Absence of mixing of new heavy scalars with the SM Higgs doublet
- $S U(2)_{L} \times U(1)_{Y}$ is linearly realized at high energies

Higgs Effective Lagrangian

Compatibility with the SM
The Higgs boson looks like a doublet
Gap between m_{H} and the New Physics scale

We look for small deviations from the SM: precision physics era

NLO is the new standard @LHC

- Many calculations at NNLO QCD
- Many calculations at NLO EW

Higgs Effective Lagrangian

Higgs doublet - EW symmetry is linearly realized

$$
\mathcal{L}_{\text {HEFT }}=\mathcal{L}_{S M}+\sum_{n>4} \sum_{i} \frac{c_{i}}{\Lambda^{n-4}} O_{i}^{D=n}
$$

$$
\mathcal{L}_{\text {HEFT }}=\mathcal{L}_{S M}+\frac{1}{\Lambda} \mathcal{L}^{D=5}+\frac{1}{\Lambda^{2}} \mathcal{L}^{D=6}+\frac{1}{\Lambda^{3}} \mathcal{L}^{D=7}+\frac{1}{\Lambda^{4}} \mathcal{L}^{D=8}+\ldots
$$

- $\mathcal{L}^{D=5}$ and $\mathcal{L}^{D=7}$: lepton number violating
- $\mathcal{L}^{D=8}$ and higher: parametrically subleading
- $\mathcal{L}^{D=6}$: leading effect

Higgs Effective Lagrangian

Higgs doublet - EW symmetry is linearly realized

$$
\mathcal{L}_{\text {HEFT }}=\mathcal{L}_{S M}+\sum_{n>4} \sum_{i} \frac{c_{i}}{\Lambda^{n-4}} O_{i}^{D=n}
$$

$$
\mathcal{L}_{H E F T}=\mathcal{L}_{S M}+\frac{1}{\Lambda} \mathcal{L}^{D=5}+\frac{1}{\Lambda^{2}} \mathcal{L}^{D=6}+\frac{1}{\Lambda^{3}} \mathcal{L}^{D=7}+\frac{1}{\Lambda^{4}} \mathcal{L}^{D=8}+\ldots
$$

- $\mathcal{L}^{D=5}$ and $\mathcal{L}^{D=7}$: lepton number violating
- $\mathcal{L}^{D=8}$ and higher: parametrically subleading
- $\mathcal{L}^{D=6}$: leading effect

Higgs Effective Lagrangian

Higgs doublet - EW symmetry is linearly realized

$$
\mathcal{L}_{\text {HEFT }}=\mathcal{L}_{S M}+\sum_{n>4} \sum_{i} \frac{c_{i}}{\Lambda^{n-4}} O_{i}^{D=n}
$$

$$
\mathcal{L}_{H E F T}=\mathcal{L}_{S M}+\frac{1}{\Lambda} \mathcal{L}^{D=5}+\frac{1}{\Lambda^{2}} \mathcal{L}^{D=6}+\frac{1}{\Lambda^{3}} \mathcal{L}^{D=7}+\frac{1}{\Lambda^{4}} \mathcal{L}^{D=8}+\ldots
$$

- $\mathcal{L}^{D=5}$ and $\mathcal{L}^{D=7}$: lepton number violating
- $\mathcal{L}^{D=8}$ and higher: parametrically subleading
- $\mathcal{L}^{D=6}$: leading effect

Higgs Effective Lagrangian

Higgs doublet - EW symmetry is linearly realized

$$
\mathcal{L}_{\text {HEFT }}=\mathcal{L}_{S M}+\sum_{n>4} \sum_{i} \frac{c_{i}}{\Lambda^{n-4}} O_{i}^{D=n}
$$

$$
\mathcal{L}_{\text {HEFT }}=\mathcal{L}_{S M}+\frac{1}{\Lambda} \mathcal{L}^{D-5}+\frac{1}{\Lambda^{2}} \mathcal{L}^{D=6}
$$

- $\mathcal{L}^{D=5}$ and $\mathcal{L}^{D=7}$: lepton number violating
- $\mathcal{L}^{D=8}$ and higher: parametrically subleading
- $\mathcal{L}^{D=6}$: leading effect

$$
\mathcal{L}_{\text {HEFT }}=\mathcal{L}_{S M}+\frac{1}{\Lambda^{2}} \mathcal{L}^{D=6}
$$

C. N. Leung, S. T. Love and S. Rao, Z. Phys. C 31 (1986) 433

Buchmüller and Wyler, NPB 268 (1986) 621
Grzadkowski, Iskrzynski, Misiak and Rosiek, JHEP 1010 (2010) 085
Contino, MG, Grojean, Mühlleitner and Spira, JHEP 1307 (2013) 035

Effective Lagrangian for a Higgs doublet GIMR/Warsaw basis

X^{3}		φ^{6} and $\varphi^{4} D^{2}$		$\psi^{2} \varphi^{3}$	
Q_{G}	${ }^{A B C} G_{\mu^{\prime \prime}}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	Q_{φ}	$\left(\varphi^{\dagger} \varphi\right)^{3}$	$Q_{\text {ee }}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{I}_{p} e_{r} \varphi\right)$
$Q_{\tilde{G}}$	$f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B P} G_{\rho}^{C \mu}$	Q_{φ}	$\left(\varphi^{\dagger} \varphi\right) \square\left(\varphi^{\dagger} \varphi\right)$	$Q_{u p}$	$\left(\varphi^{\dagger} \varphi\right)\left(\overline{(}_{p} u_{r} \tilde{\tilde{\varphi}}\right)$
$Q_{\text {w }}$	$\varepsilon^{I J K} W_{\mu}^{L \mu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi\right)^{*}\left(\varphi^{\dagger} D_{\mu} \varphi\right)$	$Q_{d \rho}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} d_{r} \varphi\right)$
$Q_{\widetilde{W}}$					
$X^{2} \varphi^{2}$		$\psi^{2} X \varphi$		$\psi^{2} \psi^{2} D$	
$Q_{\varphi G}$	$\varphi^{\dagger} \varphi G_{\mu, G^{A}}^{A \mu \nu}$	$Q_{\text {ew }}$	${ }_{\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} \varphi W_{\text {He }}^{I}}$	$Q_{4}^{(1)}$	$\left(\varphi_{i}^{\dagger}{\stackrel{ד}{D_{\mu}} \varphi}_{\varphi}\right)\left(\bar{l}_{p} \gamma^{\mu} l_{r}\right)$
$Q_{\varphi \tilde{B}}$		$Q_{\text {eB }}$	$\left(\bar{l}_{p} \sigma^{\prime \mu \nu} e_{r}\right) \varphi B_{\mu \nu}$	$Q_{4 l}^{(3)}$	$\left(\varphi^{\dagger} \vec{D}_{D_{\mu}^{\prime}}^{I} \varphi\right)\left(\bar{l}_{p} \tau^{\prime} \gamma^{\mu} l^{\mu} l_{r}\right)$
$Q_{\varphi W}$	$\varphi^{\dagger} \varphi W_{\mu,}^{I} W^{\prime \mu \nu}$	$Q_{u G}$	$\left(\overline{(}_{p} \sigma^{\mu \nu} T^{4} u_{r}\right) \widetilde{\varphi} G_{\mu \nu}^{A}$	$Q_{\text {pe }}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi\right)\left(\overline{(}_{\nu} \gamma^{\mu} e_{r}\right)$
$Q_{\varphi \bar{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}_{\mu \mu}^{\prime} W^{\prime \mu \mu}$	$Q_{u w}$	$\left(\bar{\tau}_{p} \sigma^{\mu \nu} u_{r}\right) \tau^{\prime} \widetilde{\varphi} W_{\mu \nu}^{\prime}$	$Q_{4 q}^{(1)}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi\right)\left(\overline{(}_{\nu} \gamma^{+} q_{r}\right)$
$Q_{\varphi \in}$	$\varphi^{\dagger} \varphi \bar{B}_{\mu \nu} B^{\mu \nu}$	$Q_{\text {ub }}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \widetilde{\varphi} \bar{\varphi}_{\mu \nu}$	$Q_{\varphi q}^{(3)}$	$\left(\varphi^{\dagger} \stackrel{3}{D}_{\sim}^{t} \varphi\right)\left(\bar{q}_{p} r^{t} \gamma^{\mu} q_{r}\right)$
$Q_{\varphi \bar{B}}$	$\varphi^{\dagger} \widetilde{S}_{\mu u} B^{\mu \nu}$	$Q_{\text {da }}$	$\left(\overline{(}_{p} r^{\prime \prime} \nu^{\prime} T^{A} d_{r}\right) \varphi G_{\mu \nu}^{A}$	$Q_{p u}$	$\left(\varphi^{\dagger}{\left.\stackrel{3}{D_{\mu}} \varphi\right)\left(\bar{u}_{\nu} \gamma^{\gamma} u_{r}\right)}^{\text {a }}\right.$
$Q_{\text {eWB }}$	$\varphi^{\dagger} \tau^{\tau} \varphi W_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{\text {av }}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} \varphi W_{\mu_{\mu}}^{I}$	$Q_{q d}$	$\left(\varphi^{\dagger} \vec{D}_{\mu} \varphi\right)\left(\bar{d}_{p} \gamma^{\mu} d_{r}\right)$
$Q_{\text {eU } B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \mu}^{I} B^{\mu \nu}$	$Q_{a B}$	$\left(\bar{q}_{r} \sigma^{\mu \nu} d_{r}\right) \varphi \varphi^{\prime \mu \nu}$	$Q_{\text {pud }}$	$i\left(\bar{\varphi}^{\dagger} D_{\mu} \varphi\right)\left(\bar{u}_{\varphi} \chi^{\mu} d_{r}\right)$

- 15 bosonic operators
- 19 single-fermionic-current operators

$(\bar{L} L)(\bar{L} L)$		$(\bar{R} R)(\bar{R} R)$		$(\bar{L} L)(\bar{R} R)$	
Q_{u}	${ }^{\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{l}_{s} \gamma^{\mu} l_{t}\right)}$	$Q_{\text {ee }}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$	$Q_{l e}$	$\left(\overline{(}_{p} \gamma_{\mu} l_{\tau}\right)\left(\bar{e}_{*} \gamma^{\mu} e_{t}\right)$
$Q_{q q}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)$	$Q_{u u}$	$\left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{l}\right)$	$Q_{t u}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$
$Q_{q q}^{(3)}$	$\left(\bar{q}_{p} \gamma_{\mu} \tau^{I} q_{\tau}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{l}\right)$	$Q_{d d}$	$\left(\bar{d}_{p} \gamma_{\mu} d_{r}\right)\left(\bar{d}_{s}{ }^{\mu}{ }^{\mu} d_{l}\right)$	$Q_{l d}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$
$Q_{l_{\text {l }}}^{(1)}$	$\left(\bar{L}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)$	$Q_{\text {eu }}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$	$Q_{q e}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$
$Q_{1 q}^{(3)}$	$\left(\bar{l}_{p} \gamma_{\mu} \tau^{I} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right)$	$Q_{\text {ed }}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{q u}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$
		$Q_{\text {ud }}^{(1)}$	$\left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{q u}^{(8)}$	$\left(\overline{(}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} T^{A} u_{t}\right)$
		$Q_{\text {ud }}{ }^{\text {(8) }}$	$\left(\bar{u}_{p} \gamma_{\mu} T^{A} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right)$	$Q_{q d}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$
				$Q_{q d}^{(8)}$	$\left(\overline{(}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{l}\right)$
$(\bar{L} R)(\bar{R} L)$ and $(\bar{L} R)(\bar{L} R)$		B-violating			
$Q_{\text {ledq }}$	${ }^{\left(\bar{l}_{p} e_{r}\right)\left(\bar{d}_{s} q_{i}{ }^{i}\right)}$	$Q_{\text {dus }}$	$\varepsilon^{\alpha \beta \gamma \chi_{j k}}$ [(${ }^{\text {d }}$	${ }^{T} \mathrm{Cu} u_{r}^{\beta}$	$\left[\left(q_{s}^{\gamma_{j}}\right)^{T} C l_{t}^{k}\right]$
$Q_{\text {grugd }}^{(1)}$	$\left(\bar{q}_{p}^{j} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} d_{l}\right)$	$Q_{q q u}$	$\varepsilon^{\alpha \beta \beta \gamma} \varepsilon_{j k}\left[\left(q_{p}^{\alpha}\right)\right.$	${ }^{T} C q_{r}^{\text {g }}$]	$\left[\left(u_{s}^{T}\right)^{T} C e_{t}\right]$
$Q_{\text {quug }}{ }^{\text {(8) }}$	$\left.\left(\bar{q}_{p}^{T} T^{A} u_{r}\right)\right)_{j k}\left(\bar{q}_{s}^{k} T^{A} d_{t}\right)$	$Q_{q 9 q}^{(1)}$	$\varepsilon^{\alpha \beta \gamma^{\prime}} \varepsilon_{j k} \varepsilon_{m n}\left[\left(q^{\prime}\right.\right.$	$)^{T} C q_{r}^{\text {B }}$	*] $\left[\left(q_{s}^{m}\right)^{T} C l_{t}^{n}\right]$
$Q_{\text {lequ }}^{\text {(1) }}$	$\left(\bar{p}_{p} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} u_{t}\right)$	$Q_{q 9 q}^{(3)}$	$\varepsilon^{a \beta \gamma}\left(\tau^{I} \varepsilon\right)_{j k}\left(\tau^{I} \varepsilon\right)_{\text {mn }}$	$\left[\left(q_{p}^{\text {ojo }}\right.\right.$)	$\left.C q_{r}^{B k}\right]\left[\left(q_{s}^{m m^{m}}\right)^{T} C l_{t}^{n}\right]$
$Q_{\text {lequ }}^{(3)}$	$\underline{\left(\bar{p}_{p} \sigma_{\mu \nu} e_{r}\right) \varepsilon_{j k}\left(\bar{l}_{\vec{s}}^{k} \sigma^{\mu \nu} u_{t}\right)}$	$Q_{\text {duau }}$	$\varepsilon^{\alpha \beta \gamma}\left[\left(d_{p}^{a}\right)^{r}\right.$	$\left.\mathrm{Cu}_{r}^{\beta}\right][$	${ }^{\left.\left(u_{s}^{7}\right)^{T} C e_{t}\right]}$

- 25 four-fermion operators (assuming barionic number conservation)
$15+19+25=59$ independent operators (for 1 fermion generation)

Grzadkowski, Iskrzynski, Misiak, Rosiek, JHEP 1010 (2010) 085

From 1 to 3 fermion generations

- Add flavour indices to all operators
- From 59 to 2499 operators!
- Assume some flavour structure to avoid severe constraints from FCNC

Alonso, Jenkins, Manohar and Trott, JHEP 1404 (2014) 159

NLO Higgs EFT

One-loop calculations in linear Higgs EFT

Complete anomalous dimension matrix:
(Warsaw basis)

- Grojean, Jenkins, Manohar, Trott 2013
- Jenkins, Manohar, Trott 2013 \& 2014
- Alonso, Jenkins, Manohar, Trott 2014
(SILH basis)
- Elias-Miró, Espinosa, Masso and Pomarol 2013
- Elias-Miró, Grojean, Gupta, Marzocca 2014

Some Higgs decays, finite renormalization:

- MG, Gomez-Ambrosio, Passarino and Uccirati 2015 ($h \rightarrow \gamma \gamma, Z \gamma, W W, Z Z$)
- Hartmann, Trott 2015 ($h \rightarrow \gamma \gamma$ in detail)

NLO Higgs EFT

One-loop calculations in linear Higgs EFT

Complete anomalous dimension matrix:
(Warsaw basis)

- Grojean, Jenkins, Manohar, Trott 2013
- Jenkins, Manohar, Trott 2013 \& 2014
- Alonso, Jenkins, Manohar, Trott 2014
(SILH basis)
- Elias-Miró, Espinosa, Masso and Pomarol 2013
- Elias-Miró, Grojean, Gupta, Marzocca 2014

Some Higgs decays, finite renormalization:

- MG, Gomez-Ambrosio, Passarino and Uccirati 2015 ($h \rightarrow \gamma \gamma, Z \gamma, W W, Z Z)$
- Hartmann, Trott 2015 ($h \rightarrow \gamma \gamma$ in detail)

NLO Higgs EFT

Conventions

Each term of the $d=6$ Lagrangian is of the form:

$$
\frac{c_{i}}{M_{W}^{2}} g_{6} g^{n_{i}} \mathcal{O}_{i} \quad g_{6} \equiv \frac{1}{\sqrt{2} G_{F} \Lambda^{2}} \simeq 0.0606\left(\frac{\mathrm{TeV}}{\Lambda}\right)^{2}
$$

Insertion of 1-loop corrections in the EFT
Processes starting at tree-level in the SM

$$
\text { e.g. } h \rightarrow W^{+} W^{-}:
$$

Processes starting at 1-loop in the SM
e.g. $h \rightarrow \gamma \gamma$:

MG, Gomez-Ambrosio, Passarino and Uccirati, JHEP 1507 (2015) 175
EFT for Higgs Physics

NLO Higgs EFT

Preliminary steps

Vanishing of the linear H-term

In the SM there is a contribution to the linear H-term from the Higgs potential:

$$
V(\phi)=\mu^{2} \phi^{\dagger} \phi-\frac{\lambda}{2}\left(\phi^{\dagger} \phi\right)^{2} \quad \phi=\frac{1}{\sqrt{2}}\binom{-i \sqrt{2} G^{+}}{h+v+i G^{0}}
$$

Its cancellation implies:

$$
\mu^{2}=-\lambda v^{2}+\beta_{h} \quad\left(\beta_{h}=0 \text { at tree level }\right)
$$

In the dim-6 SMEFT also the operator $\mathcal{O}_{\phi}=\left(\phi^{\dagger} \phi\right)^{3}$ contributes.
Hence, the cancellation implies:

$$
\mu^{2}=-\lambda v^{2}+3 M_{W}^{2} g_{6} a_{\phi}+\beta_{h} \quad\left(\beta_{h}=0 \text { at tree level }\right)
$$

NLO Higgs EFT

Preliminary steps
Redefinition of fields and parameters
All the operators with at least 2 powers of ϕ contribute to the quadratic terms.
All the fields and parameters must be redefined.

Example: $\mathcal{O}_{\phi \square}=\partial_{\mu}\left(\phi^{\dagger} \phi\right) \partial^{\mu}\left(\phi^{\dagger} \phi\right)$

$$
\frac{c_{\phi \square}}{v^{2}} \mathcal{O}_{\phi \square}=c_{\phi \square} \partial_{\mu} h \partial^{\mu} h+\ldots
$$

$$
\Delta \mathcal{L}_{h}=\frac{1}{2}\left(1+2 c_{\phi \square}\right) \partial_{\mu} h \partial^{\mu} h+\ldots \quad \Rightarrow \quad \bar{h}=\left(1+2 c_{\phi \square}\right)^{\frac{1}{2}} h
$$

Redefinition of the gauge parameters

$$
\begin{gathered}
\mathcal{L}_{\mathrm{gf}}=-\mathcal{C}^{+} \mathcal{C}^{-}-\frac{1}{2} \mathcal{C}_{\mathrm{Z}}^{2}-\frac{1}{2} \mathcal{C}_{\mathrm{A}}^{2} \\
\mathcal{C}^{ \pm}=-\xi_{\mathrm{W}} \partial_{\mu} W_{\mu}^{ \pm}+\xi_{ \pm} M \phi^{ \pm} \quad \mathcal{C}_{\mathrm{Z}}=-\xi_{\mathrm{Z}} \partial_{\mu} Z_{\mu}+\xi_{0} \frac{M}{c_{\theta}} \phi^{0} \quad \mathcal{C}_{\mathrm{A}}=\xi_{\mathrm{A}} \partial_{\mu} A_{\mu}
\end{gathered}
$$

Redefinition of the ξ_{i} parameters normalized to 1: $\quad \xi_{i}=1+g_{6} \Delta R_{\xi_{i}}$

MG, Gomez-Ambrosio, Passarino and Uccirati, JHEP 1507 (2015) 175

NLO Higgs EFT

Renormalization

Counterterms for fields and parameters
Define UV-divergent counterterms for the fields:

$$
F=\left(1+\frac{1}{2} \frac{g^{2}}{16 \pi^{2}} d Z_{F} \Delta_{U V}\right) F_{r e n}
$$

and for the parameters:

$$
\begin{gathered}
P=\left(1+\frac{1}{2} \frac{g^{2}}{16 \pi^{2}} d Z_{P} \Delta_{U V}\right) P_{\text {ren }} \\
\Delta_{U V}=\frac{2}{\varepsilon}-\gamma_{E}-\ln \pi-\ln \frac{\mu_{R}^{2}}{\mu^{2}} \quad d Z_{i}=d Z_{i}^{(4)}+g_{6} d Z_{i}^{(6)}
\end{gathered}
$$

Calculate the self-energies and determine the counterterms

$$
\Sigma_{i i}=\frac{g^{2}}{16 \pi^{2}}\left(\Sigma_{i i}^{(4)}+g_{6} \Sigma_{i i}^{(6)}\right) \quad \Sigma_{i i}^{(n)}=\Sigma_{i i ; U V}^{(n)} \Delta_{U V}\left(M_{W}^{2}\right)+\Sigma_{i i ; f i n}^{(n)}
$$

Require that the $H H, Z Z, \gamma \gamma, \gamma Z, W W$, ff self-energies are UV-finite.

NLO Higgs EFT

Running of the Wilson coefficients

Construct the 3-point (and higher) functions:

- they are $\mathcal{O}^{(4)}$-finite
- remove the $\mathcal{O}^{(6)}$ UV divergencies by mixing the Wilson coefficients

Running and mixing of Wilson coefficients

$$
\bar{c}_{i}(\mu)=\left(\delta_{i j}+\gamma_{i j}^{(0)} \frac{g_{S M}^{2}}{16 \pi^{2}} \log \left(\frac{\mu}{M}\right)\right) \bar{c}_{j}(M)
$$

- Compared to the SM, additional logarithmic divergences are present;
- these divergences are absorbed by the running of the coefficients of the local operators;
- the matrix $\gamma_{i j}^{(0)}$ mixes the coefficients;
- the only one-loop diagrams which generate logarithmic divergences are the ones containing one insertion of effective vertices;
- A selection of the operators a priori is not possible.

NLO Higgs EFT

Finite renormalization

On-shell finite renormalization
After removal of the UV poles we have replaced $M_{\text {bare }} \rightarrow M_{\text {ren }}$.
Now we establish the connection to the on-shell masses:

$$
M_{r e n}^{2}=M_{O S}^{2}\left[1+\frac{g_{r e n}^{2}}{16 \pi^{2}}\left(d \mathcal{Z}_{M}^{(4)}+g_{6} d \mathcal{Z}_{M}^{(6)}\right)\right] \quad \text { etc. }
$$

G_{F} and α renormalization schemes
Choose input observables:

- $\left\{G_{F}, M_{Z}, M_{W}\right\}$
- $\left\{\alpha, G_{F}, M_{z}\right\}$
- ...
and write the corresponding equations that connect renormalized parameters to experimental measurements.

MG, Gomez-Ambrosio, Passarino and Uccirati, JHEP 1507 (2015) 175

NLO Higgs EFT

Finite renormalization

Example: $\left\{G_{F}, M_{Z}, M_{W}\right\}$ scheme

- Establish a connection between $g_{\text {ren }}$ and G_{F}

$$
\begin{gathered}
\text { th. } \frac{1}{\tau_{\mu}}=\frac{m_{\mu}^{5}}{192 \pi^{3}} \frac{g^{4}}{32 M_{W}^{4}}\left(1+\delta_{\mu}\right) \\
\text { exp. } \frac{1}{\tau_{\mu}}=\frac{m_{\mu}^{5}}{192 \pi^{3}} G_{F}^{2} \\
\frac{G_{F}}{\sqrt{2}}=\frac{g^{2}}{8 M_{W}^{2}}\left[1+\frac{g^{2}}{16 \pi^{2}}\left(\delta_{G}+\frac{\Sigma_{W W}(0)}{M_{W}^{2}}\right)\right] \\
g_{\text {ren }}^{2}=4 \sqrt{2} G_{F} M_{W ; r e n}^{2}\left[1-\frac{G_{F} M_{W ; r e n}^{2}}{2 \sqrt{2} \pi^{2}}\left(\delta_{G}+\frac{\Sigma_{W W ; f i n}(0)}{M_{W}^{2}}\right)\right]
\end{gathered}
$$

Example: Higgs decay to a photon pair

$h \rightarrow \gamma \gamma$

$$
\begin{aligned}
& A_{H \gamma \gamma}^{\mu \nu}=\mathcal{T}_{H \gamma \gamma} T^{\mu \nu} \quad M_{H}^{2} T^{\mu \nu}=p_{2}^{\mu} p_{1}^{\nu}-p_{1} \cdot p_{2} \delta^{\mu \nu} \\
& \mathcal{T}_{H \gamma \gamma}=\kappa_{W}^{H \gamma \gamma} \mathcal{T}_{H \gamma \gamma}^{W}+\kappa_{t}^{H \gamma \gamma} \mathcal{T}_{H \gamma \gamma}^{t}+\kappa_{b}^{H \gamma \gamma} \mathcal{T}_{H \gamma \gamma}^{b}+\mathcal{T}_{H \gamma \gamma}^{N F}
\end{aligned}
$$

The SM contribution

$$
\kappa_{W}^{H \gamma \gamma}=\kappa_{t}^{H \gamma \gamma}=\kappa_{b}^{H \gamma \gamma}=1
$$

$$
\begin{gathered}
\mathcal{T}_{H \gamma \gamma}^{\times}=\frac{i g^{3} s_{W}^{2}}{8 \pi^{2}} \frac{M_{x}^{2}}{M_{W}} T_{H \gamma \gamma}^{\times} \quad C_{0}^{x} \equiv C_{0}\left(-M_{H}^{2}, 0,0 ; M_{X}, M_{x}, M_{x}\right) \\
T_{H \gamma \gamma}^{W}=-6-6\left(M_{H}^{2}-2 M_{W}^{2}\right) C_{0}^{W} \\
T_{H \gamma \gamma}^{t}=\frac{16}{3}+\frac{8}{3}\left(M_{H}^{2}-4 M_{t}^{2}\right) C_{0}^{t} \quad T_{H \gamma \gamma}^{b}=\frac{4}{9}+\frac{2}{9}\left(M_{H}^{2}-4 M_{b}^{2}\right) C_{0}^{b}
\end{gathered}
$$

Example: Higgs decay to a photon pair

$h \rightarrow \gamma \gamma$

$$
\begin{aligned}
& A_{H \gamma \gamma}^{\mu \nu}=\mathcal{T}_{H \gamma \gamma} T^{\mu \nu} \quad M_{H}^{2} T^{\mu \nu}=p_{2}^{\mu} p_{1}^{\nu}-p_{1} \cdot p_{2} \delta^{\mu \nu} \\
& \mathcal{T}_{H \gamma \gamma}=\kappa_{W}^{H \gamma \gamma} \mathcal{T}_{H \gamma \gamma}^{W}+\kappa_{t}^{H \gamma \gamma} \mathcal{T}_{H \gamma \gamma}^{t}+\kappa_{b}^{H \gamma \gamma} \mathcal{T}_{H \gamma \gamma}^{b}+\mathcal{T}_{H \gamma \gamma}^{N F}
\end{aligned}
$$

The factorizable $d=6$ contributions: $\quad \kappa_{x}^{H \gamma \gamma}=1+g_{6} \Delta \kappa_{x}^{H \gamma \gamma} \quad(x=W, t, b)$

$$
\Delta \kappa_{W}^{H \gamma \gamma}=2 a_{\phi \square}-\frac{1}{2 s_{W}^{2}} a_{\phi D}+\left(6-s_{W}^{2}\right) a_{A A}+c_{W}^{2} a_{Z Z}+\left(2+s_{W}^{2}\right) \frac{c_{W}}{s_{W}} a_{A Z}
$$

$$
\begin{aligned}
\Delta \kappa_{t} H \gamma \gamma & =\left(6+s_{W}^{2}\right) a_{A A}-c_{W}^{2} a_{Z Z}+\left(2-s_{W}^{2}\right) \frac{c_{W}}{s_{W}} a_{A Z}+\frac{3}{16} \frac{M_{H}^{2}}{s_{W} M_{W}^{2}} a_{t W B}+a_{t \phi} \\
\Delta \kappa_{b}^{H \gamma \gamma} & =\left(6-s_{W}^{2}\right) a_{A A}-c_{W}^{2} a_{Z Z}+\left(2-s_{W}^{2}\right) \frac{c_{W}}{s_{W}} a_{A Z}-\frac{3}{8} \frac{M_{H}^{2}}{s_{W} M_{W}^{2}} a_{b W B}-a_{b \phi}
\end{aligned}
$$

MG, Gomez-Ambrosio, Passarino and Uccirati, JHEP 1507 (2015) 175

Example: Higgs decay to a photon pair

$h \rightarrow \gamma \gamma$

$$
\begin{gathered}
A_{H \gamma \gamma}^{\mu \nu}=\mathcal{T}_{H \gamma \gamma} T^{\mu \nu} \quad M_{H}^{2} T^{\mu \nu}=p_{2}^{\mu} p_{1}^{\nu}-p_{1} \cdot p_{2} \delta^{\mu \nu} \\
\mathcal{T}_{H \gamma \gamma}=\kappa_{W}^{H \gamma \gamma} \mathcal{T}_{H \gamma \gamma}^{W}+\kappa_{t}^{H \gamma \gamma} \mathcal{T}_{H \gamma \gamma}^{t}+\kappa_{b}^{H \gamma \gamma} \mathcal{T}_{H \gamma \gamma}^{b}+\mathcal{T}_{H \gamma \gamma}^{N F}
\end{gathered}
$$

The non-factorizable $d=6$ contributions:

$$
\begin{gathered}
\mathcal{T}_{H \gamma \gamma}^{N F}=i g g_{6} \frac{M_{H}^{2}}{M_{W}} a_{A A}+1 \frac{g^{3} g_{6}}{16 \pi^{2}}\left[a_{A A} \mathcal{T}_{H \gamma \gamma}^{A A}(\mu)+a_{Z Z} \mathcal{T}_{H \gamma \gamma}^{Z Z}(\mu)+a_{A Z} \mathcal{T}_{H \gamma \gamma}^{A Z}(\mu)+a_{t W B} \mathcal{T}_{H \gamma \gamma}^{t W B}(\mu)+a_{b W B} \mathcal{T}_{H \gamma \gamma}^{b W B}(\mu)\right] \\
\\
\mathcal{T}_{H \gamma \gamma}^{A A}(\mu)=-\frac{x_{H}^{2}}{32}\left[8\left(1-3 s_{W}^{2}\right) s_{W}^{2}+\left(3-4 s_{W}^{2} c_{W}^{2}\right) x_{H}^{2}\right] \ln \frac{\mu^{2}}{M_{H}^{2}}+\ldots \\
\\
\mathcal{T}_{H \gamma \gamma}^{Z Z}=\frac{s_{W}^{2} c_{W}^{2} x_{H}^{2}}{8}\left(6-x_{H}^{2}\right) \ln \frac{\mu^{2}}{M_{H}^{2}}+\ldots \\
\\
\mathcal{T}_{H \gamma \gamma}^{A Z}=-\frac{s_{W} c_{W} x_{H}^{2}}{16}\left[2\left(1-6 s_{W}^{2}\right)-\left(1-2 s_{W}^{2}\right) x_{H}^{2}\right] \ln \frac{\mu^{2}}{M_{H}^{2}}+\ldots
\end{gathered}
$$

MG, Gomez-Ambrosio, Passarino and Uccirati, JHEP 1507 (2015) 175

Summary and Outlook

Summary

- We have shown the effective Lagrangian for a Higgs doublet. In the spirit of a bottom-up approach, it is an essential framework to perform searches for new physics in a model-independent way.
- In view of a precision Higgs physics phase, NLO calculations are in need. The whole anomalous dimension matrix is now known and some Higgs processes have been calculated.

Outlook
A lot still to be done:

- The other Higgs decay and production channels
- S, T, U parameters
- Implement $\mathcal{L}_{d=6}$ in automatic tools for NLO calculations
- Fit experimental data!

