Higgs Flavour

inclusive meansurements and distributions

Emmanuel Stamou

emmanuel.stamou@weizmann.ac.il

Weizmann Institute of Science

Higgs Hunting 2016, Paris

August 31, 2016

In collaboration with:

G. Perez, Y. Soreq, and K. Tobioka

arXiv:1503.00290 & 1505.06689

Outline

- Introduction
- \circ *h* \rightarrow quark quark

methods and prospects to measure light quark Yukawas at LHC →inclusively →exclusively [see talk by König] →via distributions NEW

• Conclusions

The Higgs boson within the Standard Model

THEORY

Role (I)

- o minimal VV scattering unitarisation
- induces W/Z masses
- single extra d.o.f., h

Quantitatively tested at LHC

- direct: observing $h \rightarrow WW, ZZ$
- indirect: electroweak precision

Role (II) [this talk]

- unitarises $f\bar{f} \rightarrow VV$ scattering
- induces fermion masses, and CKM

Many (small) parameters

- overconstrained system
- observation of 3rd gen. couplings only
- significant progress can and is being made

EXPERIMENT

Characterisation by observation of:

Mass	Charge	Spin	
	Couplings		

•
$$m_h = 125.4 \pm 0.37(\text{stat}) \pm 0.18(\text{sys}) \text{ GeV [ATLAS]}$$

 $m_h = 125.7 \pm 0.3(\text{stat}) \pm 0.3(\text{sys}) \text{ GeV [CMS]}$ a new SM parameter ✓
• neutral ✓
• $J^P = 0^+$ preferred (at 97.8% over 0⁻) ✓
• couplings predicted $g_X \propto \frac{m_X}{V}$ SO far ✓
- overconstrained in SM, test of the SM
- Yukawa couplings may not be related to EWSB
- window to new physics

Direct observations of fermionic Higgs couplings

Effective theory

If deviations from SM small and no new d.o.f.:

 $\circ~$ EFT applies, effects controlled by dim-6 operators, i.e.

$$\mathcal{L} \supset \lambda_{ij}^{u} \overline{Q}_{i} \tilde{H} U_{j} + \frac{g_{ij}^{u}}{\Lambda^{2}} H^{\dagger} H \overline{Q}_{i} \tilde{H} U_{j}$$

→ Exotic decays

[Falkowski et al 10; Curtin et al 13/14, ...]

→ Modified \mathcal{BR} for SM channels [Delaunay et al 13; Bodwin et al 13, Kagan al 14, König et al 15, arXiv:1503.00290 & 1505.06689,...]

$h \rightarrow$ light-quark light-quark

Challenges

- SM-higgs branching ratios tiny
- huge QCD background
- o need some sort of flavour tagging

(c-tag seems possible at the LHC)

Directions

• Be exclusive

[talk by König]

- $-h \rightarrow M \gamma$ as a flavour proxy (*M* vector meson)
- possible for *u*, *d*, *s*, *c* $(h \rightarrow J/\Psi\gamma, h \rightarrow \phi\gamma, h \rightarrow \rho\gamma)$

[Bodwin et al 13; Kagan et al 14; Bodwin et al 14; König et al 15;

ATLAS:1501.03276; CMS:1507.03031]

• Be inclusive

- limited by b- and c-tag
- higher statistics

[Delaunay et al 13; ATLAS arXiv:1501.01325; ATLAS-CONF-2013-063; this

works]

Impressive progress in c-tag in ATLAS used already in SUSY

Find the missing purple line

[Peskin 12 @ ILC-TDR]

 \circ focus on $\ensuremath{\textit{charm}}$

LHC8 does constrain y_c , but mildly $|\kappa_c| < 245$ LHC14 we can expect substantial improvements $|\kappa_c| < O(10)$ $\circ\,$ ATLAS and CMS constrain the higgs total width with shape analyses of the $\gamma\gamma$ and ZZ signal

 $\Gamma_{tot} < 2.6 GeV[ATLAS]$

 $\circ~$ to be compared with $\Gamma^{\rm SM}_{tot}=4.15 MeV$

 $\Gamma_{tot} < 1.7 \text{GeV}[\text{CMS}]$

- Saturate width with $h \rightarrow c\bar{c}$ $\Rightarrow \frac{y_c}{y_c^{\text{SM}}} < 150[\text{ATLAS}] \quad 120[\text{CMS}]$ @ 95% CL
 - not much hope for future improvement due to resolution of experiments

ATLAS's c-tagger, a breakthrough

ATLAS's c-tag working point

 $\epsilon_c = 19\%$ $\epsilon_b = 12\%$

– calibrated from data containing D* mesons employing multivariate techniques with information on "impact parameter on displaced tracks and topological properties of secondary and tertiary decay vertices".

- factor of 5 rejection of *b*'s w.r.t. standard medium point by calibrating on simulated $t\bar{t}$ events

ATLAS search for $\tilde{t} \rightarrow c \chi_0$

Search for pair-produced top squarks decaying into charm quarks and the lightest neutralinos using 20.3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector at the LHC

[ATLAS arXiv:1501.01325]

ATLAS search for $\tilde{c}\tilde{c}^*$ with $\tilde{c} \to c\tilde{\chi}_1$ Search for Scalar-Charm Pair Production in pp Collisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector

Recasting $H \rightarrow b\bar{b}$: Idea

b-jets at LHC are NOT b-quarks

- b quarks hadronize to B mesons
- \circ *B*-mesons are long lived \sim 440 μ m/c
- · they fly in detector before decaying
- b-tagging is based on looking for such displased vertices

Jet-tagging efficiencies are correlated

[CMS arXiv:1211.4462]

- experiments can and do use different working points
- $\circ \epsilon_b$ correlated with misstag propabilities

in reality: complicated function of p_T , rapidity, channel, ...

What is the bound on y_c from mistagging?

Recasting $H \rightarrow b \bar{b}$: ATLAS and CMS analyses

ATLAS [1409.6212] and CMS [1310.3687] $h \rightarrow b\bar{b}$ analyses • *h* produced in association with W/Z

- different channels for W/Z decays
 - $Z \to \nu \bar{\nu}$ [Olepton] $Z \to \ell \bar{\ell}$ [2lepton] $W^- \to \ell^- \bar{\nu}$ [1lepton]
- different categories for $p_T(W/Z)$
- two b-jets required

b-tag working point depends on category

(2 in ATLAS, 4 in CMS)

Recasting $H \rightarrow b\bar{b}$: signal strength

Signal strength

$$\mu_{b}^{Vh} = \frac{N_{observed}^{Vh}}{N_{expected}^{Vh}} = \frac{\mathcal{L} \cdot \sigma \cdot \mathcal{BR}_{b} \cdot \epsilon_{b_{1}} \cdot \epsilon_{b_{2}} \cdot \epsilon}{\mathcal{L} \cdot \sigma^{SM} \cdot \mathcal{BR}_{b}^{SM} \cdot \epsilon_{b_{1}} \cdot \epsilon_{b_{2}} \cdot \epsilon} = \frac{\sigma \cdot \mathcal{BR}_{b}}{\sigma^{SM} \cdot \mathcal{BR}_{b}^{SM}}$$

- use multi-variate techniques to find best S/B discriminators
- minimize χ^2 over all this BDT output based on poisson statistics

$$\begin{aligned} \mu_b^{Vh} &= 0.52 \pm 0.32 \pm 0.24 & \text{[ATLAS]} \\ \mu_b^{Vh} &= 1.0 \pm 0.5 & \text{[CMS]} \end{aligned}$$

→Information on y_b What if y_c was modified by a lot? → χ^2 of two signal strenghts

Recasting $H \rightarrow b\bar{b}$: signal strength

Signal strength including c-mistag

- \circ the larger $\epsilon_{c/b}$ (the misstag) the more sensitivity
- can only constrain the combination (degeneracy)

→ need different $\epsilon_{c/b}$ working points

the more different the better

Recasting $H \rightarrow b\bar{b}$: Breaking the degeneracy

Fit assuming two signal strenths in ATLAS and CMS

Recasting $H \rightarrow b\bar{b}$: Breaking the degeneracy

Fit assuming two signal strenths in ATLAS and CMS

Recasting $H \rightarrow b\bar{b}$: production enhancement

- assume no modification of production
- assume $\mathcal{BR}(h \to c\bar{c}) = 100\%$
 - → μ_c ~ 33, our bound is trivially satisfied

However, a new production mechanism kicks in around $v_c/v_c^{SM} \sim 100$

o depends on channel, category, due to cuts

Recasting $H \rightarrow b\bar{b}$: constraining κ_c

Exclusive way: $h \rightarrow J/\psi \gamma$

Use robust LEP bound $\kappa_V = 1.08 \pm 0.07$ [Falkowski, Riva 13]

Combination: what we know about y_c from LHC8

- $\circ\;$ width bound will not improve much in the future
- \circ recast bound competes with $J/\psi\gamma$ bound
- o collaborations can improve our analysis

yt from tth and up-quark universality

Can we make any statements about up-quark universality?

$$\mu_{tth}^{\rm avg} = 2.41 \pm 0.81$$

[ATLAS and CMS average]

this translates to a lower bound on the top Yukawa

$$|\kappa_t| > 0.9 \sqrt{\frac{\mathscr{B}\mathcal{R}_{h \rightarrow \text{relevant modes}}^{\text{SM}}}{\mathscr{B}\mathcal{R}_{h \rightarrow \text{relevant modes}}}} > 0.9$$

• Since $\frac{y_c}{y_t} \simeq \frac{1}{280} \frac{\kappa_c}{\kappa_t}$ the combination of κ_c / κ_t bounds means

 $y_c < y_t$

LHC8 data excluded up-quark universality

Down-quark universality? Possibly in the future via distributions. [see below, i.e., Soreq et al 16]

Global fit

Fit dominated by untagged Higgs decay driven by VBF production.

$$\mu_{\text{VBF} \rightarrow h \rightarrow WW^*} = \kappa_V^2 \times \frac{\kappa_V^2}{\Gamma_{\text{tot}}/\Gamma_{\text{tot}}^{\text{SM}}} \Rightarrow \Gamma_{\text{tot}} < 4\Gamma_{\text{tot}}^{\text{SM}}$$

Robust as long as there is no new VBF production channel

Prospects at LHC14

2×300 **fb**⁻¹ 2×3000 **fb**⁻¹

No data, but ATLAS $h \rightarrow b\bar{b}$ 14 TeV study

[ATL-PHYS-PUB-2014-011]

- MC simulation of all backgrounds ($t\bar{t}$, $Wb\bar{b}$,...)
- binned analysis (1-lepton, 2-lepton, $p_T(V)$, $m_{b\bar{b}}$,...)
- based on med-med working point
- need at least two working points
 - → choose c-tagging working points (I,II,III)

	€b	€c	εı
b-tagging	70%	20%	1.25%
c-tagging I *	13%	19%	0.5%
c-tagging II	20%	30%	0.5%
c-tagging III	20%	50%	0.5%

- → rescale B's and S appropriately
- → each event categorised according to tagging info
- small dependence on correlation between *b* and *c*-tagged jets

κ_c prospects at LHC14

2×300 **fb**⁻¹ 2×3000 **fb**⁻¹

c-tagging I

κ_c prospects at LHC14

2×300 **fb**⁻¹ 2×3000 **fb**⁻¹

c-tagging II

κ_c prospects at LHC14

2×300 **fb**⁻¹ 2×3000 **fb**⁻¹

c-tagging III

Exclusive possibilities

only known way to flavour-tag light-quarks

[Kagan et al 14]

- predictions under control
- [Bodwin et al 13/14, König et al 15]
- \circ interference effect \rightarrow amplitude-level info.

[König et al 15]

Exclusive projection for y_c and y_s

Assumptions for extrapolation: $S_E/\sqrt{B_E} \sim S_8/\sqrt{B_8}$, unchanged signal efficiencies, $S_E/\sqrt{B_E}$ same in J/ψ and ϕ mode, PYTHIA simulation to rescale B

Results for charm-Yukawa

 $|\kappa_c| < 91, 56, 33$ at LHC run 2, HL LHC, and a 100 TeV with 2×3000 fb⁻¹

Results for strange-Yukawa

 $|\kappa_s| < 3300, 2000, 1200$ at LHC run 2, HL LHC, and a 100 TeV with 2×3000 fb⁻¹

→ exclusive approach struggles with QCD background ← possible to reduce in other production modes? Vh, VBF, tth?

[Perez et al, 15]

New approach: Yukawa couplings via distributions

- be less direct → abandon strict flavour tagging (exclusive or inclusive)
- $\circ\,$ look at p_T/y distributions that are affected by Yukawa modifications
 - → bottom, charm, strange [Bishara, Haisch, Monni, Re 16]
 - → up, down, strange [Soreq, Zhu, Zupan 16]
- o consider normalised distribution, e.g.,

$$\frac{1}{\sigma}\frac{d\sigma}{dp_T}$$

in which part of theoretical uncertainties cancel [Catani et al 07]

Charm from distributions I [Bishara et al 16]

- $\circ \ p_T$ distribution of Higgs plus jet events
- @ LO: $gg \rightarrow hj$, $gq \rightarrow hq$, $q\bar{q} \rightarrow hg$ gg fusion

inteference between q and top loop

→ linear dependence on κ_q , sign sensitivity

• real emission of jets in $m_q < p_T < m_h$

➔ large double log

$$\propto \kappa_q \frac{m_q^2}{m_h^2} \log^2 \left(\frac{p_T^2}{m_q^2} \right)$$

The $p_{T,i}$ spectrum by varying the charm-quark Yukawa at 8 TeV

similar results for the $p_{T,h}$ spectrum

Charm from distributions III [Bishara et al 16]

Racast of ATLAS's and CMS's $p_{T,i}$ and $p_{T,h}$ spectra

@LHC run I $\kappa_c \in [-20, 25]$ at 95% CL

significantly more stringent constraint that from the inclusive or exclusive approach

@LHC run II
$$\kappa_c \in [-4.7, 5.5]$$
at 95% CL, projection@HL-LHC $\kappa_c \in [-2.9, 4.2]$ at 95% CL, projection

u, d Yukawas from distributions I [Soreq et al 16]

- consider y_h and $p_{T,h}$ distributions
- in SM gg fusion dominates, g's equal partonic x rapidity distribution peaks at $y_h = 0$
- o enhance, e.g, up Yukawa →uū fusion
 - asymmetric rapidity distribution (u valence and ū sea quark)
 - *p*_T spectrum peaks before *gg* fusion (different effective radiation strength)

u, d Yukawas from distributions II [Soreq et al 16]

ATLAS and CMS recast and LHC13 projection

At 95% CL the p_T distributions lead to: $\bar{\kappa}_u \equiv y_u/y_b^{SM} < 0.46(0.27)$ at LHC8 (LHC13 with 2ab⁻¹) $\bar{\kappa}_d \equiv y_d/y_b^{SM} < 0.54(0.31)$ at LHC8 (LHC13 with 2ab⁻¹) Stronger bounds than from inclusive fit! Together with $\bar{\kappa}_b$ projection may exclude down-quark universality in down sector at LHC13!

LHC tests for the first time directly the flavour of the Higgs

 a lot of progress made in extracting fermion Yukawas (both theo. and exp.)

complementary approaches

 inclusive - limited applicability (b,c)
 exclusive - limited statistics (QCD bkg)
 via distributions - theory limitations, less direct

- sensitivity of the LHC higher than anticipated, good prospects and valuable information to extract
- collaborations already pursuing some directions

Recasting $H \rightarrow b\bar{b}$: an example

ATLAS: $pp \rightarrow Z(\ell \ell) H(b\bar{b})$ with $p_T(Z) > 120 \text{ GeV}$

- Signal, Background, Data binned in BTD output

- Each bin is one independent measurement entering the χ^2

- Unfortunately, they don't give tables → digitize plots

Recasting $H \rightarrow b\bar{b}$ **: ATLAS**

Recasting $H \rightarrow b\bar{b}$ **: CMS**

- \circ reproduced ATLAS and CMS μ_b result and error up to 10% \checkmark
- o statistical error dominating (otherwise impossible to reproduce)
- \circ USE only S/B> 2.5% (because we cannot control sys. of bkg like the exp.)

μ_c prospects at LHC14

2×300 **fb**⁻¹ 2×3000 **fb**⁻¹

c-tagging I

Grey region unphysical unless Higgs production modified w.r.t. SM

$$\mu_{c}\mathcal{BR}_{c\bar{c}}^{\mathrm{SM}} + \mu_{b}\mathcal{BR}_{b\bar{b}}^{\mathrm{SM}} < 1$$

Expect $\Delta \mu_{c} = \pm 15, \pm 5.6$ at Run 2, HL-LHC

E. Stamou: Higgs Flavour

μ_c prospects at LHC14

2×300 **fb**⁻¹ 2×3000 **fb**⁻¹

c-tagging II

Grey region unphysical unless Higgs production modified w.r.t. SM

$$\mu_c \mathcal{BR}_{c\bar{c}}^{SM} + \mu_b \mathcal{BR}_{b\bar{b}}^{SM} < 1$$

Expect $\Delta \mu_c = \pm 10, \pm 3.7$ at Run 2, HL-LHC

E. Stamou: Higgs Flavour

μ_c prospects at LHC14

2×300 **fb**⁻¹ 2×3000 **fb**⁻¹

c-tagging III

Grey region unphysical unless Higgs production modified w.r.t. SM

$$\mu_{c} \mathcal{BR}_{c\bar{c}}^{SM} + \mu_{b} \mathcal{BR}_{b\bar{b}}^{SM} < 1$$

Expect $\Delta \mu_{c} = \pm 5.8, \pm 2.0$ at Run 2, HL-LHC

E. Stamou: Higgs Flavour

Exclusive approach: $h \rightarrow J/\psi \gamma$ result

ATLAS $\sigma \cdot \mathcal{BR}(h \to J/\psi \gamma) < 33 \text{fb}$ at 95% CL

[ATLAS 1501.03276]

Important for 2 reasons:

- translates to a weak $|\kappa_c| < 220$ bound (after normalising to $h \rightarrow ZZ^*$, and assuming κ_V, κ_γ like in SM) [arXiv:1502.00290]
- first measurement of a tough QCD background

→ QCD+real photon and QCD with jet mistagged as a γ $P(j \rightarrow \gamma) \simeq 2.9 \cdot 10^{-2}$

[ATL-COM-PHYS-2010-1051]

- → expect similar background for other modes
- \rightarrow use new data to project sensitivy in ϕ mode

[arXiv:1505.06689]