Neutrino mass and the invisible Higgs decays

Cesar Bonilla

In collaboration with J.C.Romao, J.W.F.Valle. Based on <u>Phys.Rev.D91(2015)11,113015</u> and <u>New J.Phys. 18 (2016) no.3, 033033</u>

Particle content in the SM

First Second Third Generation Generation Generation 10³ Top quark Higgs Ζ 10² W Bottom quark 10¹ Charm quark 10° Tau Mass [giga-electron-volts] Strange quark 10-1 Muon Down quark 10⁻² Up quark 10-3 Electron 10-4

FERMIONS*

MASSLESS BOSONS

BOSONS

Neutrino mass

Dark matter

Flavor
 problem

Aim of the work

Canonical seesaw models

 $M_{\nu} = -\lambda \frac{\langle H \rangle^2}{16\pi^2} Y_{\nu} M_{\rm R}^{-1} Y_{\nu}^{\rm T}$

 $M_{v} = \frac{hY_{l}f}{16\pi^{2}} \langle H \rangle I(\mu^{2}, M_{s_{1}}^{2}, M_{s_{2}}^{2})$

Nucl.Phys. B527, 44 (1998)

123 Model

$$L_{Y} \supset y_{ij}^{\vee} L_{i}^{T} C \Delta L_{j} + h.c.$$

$$\mathbf{V} \supset \mathbf{\kappa} (\Phi^T \Delta \Phi \sigma + h.c.)$$

	σ	Φ	Δ
SU(2)	1	2	3
$U(1)_L$	2	0	-2

Physical scalars Neutral: H_1, H_2, H_3, J, A Charged: $H^{\pm}, \Delta^{\pm\pm}$

$$\langle \sigma \rangle = v_1$$

 $\langle \Phi \rangle = v_2$
 $\langle \Delta \rangle = v_3$

5

Non-SM Higgs decays

- Contribution to the invisible Higgs decays: $H_i \rightarrow J J$ $H_i \rightarrow H_i H_i \rightarrow 4 J (i \neq j)$
- Contribution to the visible Higgs decays:

studied cases

Experimental constraints from LEP (Light scalar) $e^+e^- \rightarrow Zh \rightarrow Zb\overline{b}$

v₁=1000 GeV

 $BR(H \rightarrow Inv) < 0.25$ $BR(H \rightarrow Inv) < 0.50$ $BR(H \rightarrow Inv) < 0.75$ Forbidden by LEP(DELPHI Collaboration), Eur.Phys.J. C38, 1 (2004)

More details in, Phys.Rev. D91(2015) 11, 113015.

Experimental constraints from the LHC

• Higgs h(125):

$$0.8 \leq \mu_{XX} \leq 1.2$$

Figure taken from, Technical Report ATLAS-CONF-2015-044, CERN, Geneva (2015).

Experimental constraints from the LHC

• bounds set by the search for a heavy Higgs in the decay channels:

 $H \rightarrow VV$ in the range [145-1000] GeV. JHEP 1510 (2015) 144.

 $H \rightarrow \tau \tau$ in the range [100-1000] GeV. JHEP 10 (2014) 160.

 $A \rightarrow Zh$ in the range [220-1000] GeV. Phys. Lett. B744 (2015) 163-183

• Doubly-charged:

$$v_3 \leq 10^{-4} \longrightarrow \Delta^{\pm\pm} \rightarrow l^{\pm} l^{\pm}$$

Doubly-charged masses in the range [200-400] GeV are excluded @ 95% C.L.

Eur. Phys. J.C72(2012) 2244.

 $v_3 > 10^{-4} \longrightarrow \Delta^{\pm\pm} \rightarrow W^{\pm} W^{\pm}$

10

Constraint on $\langle \Delta \rangle = v_3$

• From the ρ -parameter:

 $\rho = 1.0004 \mp 0.00024 \implies v_3 \le 7 \, GeV$

(Particle Data Group), Chin. Phys. C38, 090001 (2014)

• From astrophysics (stellar cooling, $\gamma + e \rightarrow J + e$):

Analysis i)

RESULTS

Mass spectrum
$$\langle \sigma \rangle = v_1$$
 $m_{H_2} = 125 \, GeV$ $\langle \Phi \rangle = v_2$ $m_{H_3} \simeq m_A \simeq m_{H^{\pm}} \simeq m_{\Delta^{\pm \pm}} = 500 \, GeV$ $\langle \Delta \rangle = v_3$

12

ATLAS: $BR(H \rightarrow Inv) < 0.28$, JHEP 01 (2016) 172.

See also, Eur. Phys. J. C 74 (2014) and JHEP 13 1411 (2014) 039.

Analysis ii)

Mass spectrum

$$m_{H_1} = 125 \, GeV$$

 $m_{H_2} = [150,500] \, GeV$
 $m_{H_3} \simeq m_A \simeq m_{H^{\pm}} \simeq m_{\Delta^{\pm\pm}} = 600 \, GeV$

$$\langle \sigma \rangle \equiv v_1 \\ \langle \Phi \rangle \equiv v_2 \\ \langle \Delta \rangle \equiv v_3$$

The green region satisfy:

Scalar potential is bounded from below.
All experimental constraints, including the Bounds on searches of heavy scalars.

CONCLUSIONS

- Invisible Higgs decays connected to neutrino mass generation.
- neutrino physics is a nice "portal to PBSM"
- LFVP, e.g. $\mu \rightarrow e J$?. Work in progress in collab with N. Rojas, J. Romao, J. Valle

Thank you!

BACKUP

$$\mathcal{L}_Y = y_{ij}^d \overline{Q}_i u_{R_j} \Phi + y_{ij}^u \overline{Q}_i d_{R_j} \tilde{\Phi} + y_{ij}^\ell \overline{L_i} \ell_{R_j} \Phi + y_{ij}^\nu L_i^T C \Delta L_j + \text{h.c.}$$

$$V = \mu_1^2 \sigma^* \sigma + \mu_2^2 \Phi^{\dagger} \Phi + \mu_3^2 \operatorname{tr}(\Delta^{\dagger} \Delta) + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 [\operatorname{tr}(\Delta^{\dagger} \Delta)]^2 + \lambda_3 \Phi^{\dagger} \Phi \operatorname{tr}(\Delta^{\dagger} \Delta) + \lambda_4 \operatorname{tr}(\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta) + \lambda_5 (\Phi^{\dagger} \Delta^{\dagger} \Delta \Phi) + \beta_1 (\sigma^* \sigma)^2 + \beta_2 (\Phi^{\dagger} \Phi) (\sigma^* \sigma) + \beta_3 \operatorname{tr}(\Delta^{\dagger} \Delta) (\sigma^* \sigma) - \kappa (\Phi^T \Delta \Phi \sigma + \operatorname{h.c.}).$$

Nucl.Phys. B527, 44 (1998)

123 Model

$$M_{R}^{2} = \begin{bmatrix} 2\beta_{1}v_{1}^{2} + \frac{1}{2}\kappa v_{2}^{2}\frac{v_{3}}{v_{1}} & \beta_{2}v_{1}v_{2} - \kappa v_{2}v_{3} & \beta_{3}v_{1}v_{3} - \frac{1}{2}\kappa v_{2}^{2} \\ \beta_{2}v_{1}v_{2} - \kappa v_{2}v_{3} & 2\lambda_{1}v_{2}^{2} & (\lambda_{3} + \lambda_{5})v_{2}v_{3} - \kappa v_{1}v_{2} \\ \beta_{3}v_{1}v_{3} - \frac{1}{2}\kappa v_{2}^{2} & (\lambda_{3} + \lambda_{5})v_{2}v_{3} - \kappa v_{1}v_{2} & 2(\lambda_{2} + \lambda_{4})v_{3}^{2} + \frac{1}{2}\kappa v_{2}^{2}\frac{v_{1}}{v_{3}} \end{bmatrix}.$$

$$M_I^2 = \kappa \begin{bmatrix} \frac{1}{2} v_2^2 \frac{v_3}{v_1} & v_2 v_3 & \frac{1}{2} v_2^2 \\ v_2 v_3 & 2 v_1 v_3 & v_1 v_2 \\ \frac{1}{2} v_2^2 & v_1 v_2 & \frac{1}{2} v_2^2 \frac{v_1}{v_3} \end{bmatrix}.$$

$$m_A^2 = \kappa \left(\frac{v_2^2 v_1^2 + v_2^2 v_3^2 + 4 v_3^2 v_1^2}{2 v_3 v_1} \right).$$

$$M_{H^{\pm}}^{2} = \begin{bmatrix} \kappa v_{1}v_{3} - \frac{1}{2}\lambda_{5}v_{3}^{2} & \frac{1}{2\sqrt{2}}v_{2}(\lambda_{5}v_{3} - 2\kappa v_{1}) \\ \frac{1}{2\sqrt{2}}v_{2}(\lambda_{5}v_{3} - 2\kappa v_{1}) & \frac{1}{4v_{3}}v_{2}^{2}(-\lambda_{5}v_{3} + 2\kappa v_{1}) \end{bmatrix}.$$

Physical scalars
Neutral:
$$H_1, H_2, H_3, J, A$$

Charged: $H^{\pm}, \Delta^{\pm\pm}$

$$m_{H^{\pm}}^2 = \frac{1}{4v_3} (2\kappa v_1 - \lambda_5 v_3) (v_2^2 + 2v_3^2).$$

$$m_{\Delta^{++}}^2 = \frac{1}{2v_3} (\kappa v_1 v_2^2 - 2\lambda_4 v_3^3 - \lambda_5 v_2^2 v_3).$$

Nucl.Phys. B527, 44 (19998)

$$\begin{split} \lambda_1 > 0, \quad \beta_1 > 0, \quad \lambda_{24} > 0, \quad \hat{\lambda} \equiv \beta_2 + 2\sqrt{\beta_1 \lambda_1} > 0, \\ \tilde{\lambda} \equiv \beta_3 + 2\sqrt{\beta_1 \lambda_{24}} > 0, \quad \bar{\lambda} \equiv \lambda_3 + \theta(-\lambda_5)\lambda_5 + 2\sqrt{\lambda_1 \lambda_{24}} > 0, \quad \text{and} \\ \sqrt{\beta_1 \lambda_1 \lambda_{24}} + [\lambda_3 + \theta(-\lambda_5)\lambda_5]\sqrt{\beta_1} + \beta_2\sqrt{\lambda_{24}} + \beta_3\sqrt{\lambda_1} + \sqrt{\hat{\lambda}\tilde{\lambda}\bar{\lambda}} > 0, \end{split}$$

Eur.Phys.J. C72, 2093 (2012) 21

Experimental constraints from the LHC - Higgs h(125): $0.8 \le \mu_{XX} \le 1.2$

- bounds set by the search for a heavy Higgs in the decay channels:
 - * $H \rightarrow VV$ in the range [145-1000] GeV.
 - * $H \rightarrow \tau \tau$ in the range [100-1000] GeV.
 - * $A \rightarrow Zh$ in the range [220-1000] GeV.
- Doubly-charged:

$$\Delta^{\pm\pm} \rightarrow \left(l^{\pm} l^{\pm}, W^{\pm} W^{\pm}, W^{\pm} H^{\pm}, H^{\pm} H^{\pm} \right)$$

SUM RULE

Sum rules (like in the TypeII seesaw model):

$$m_{H^+}^2 - m_{\Delta^{++}}^2 \approx m_A^2 - m_{H^+}^2 \approx \frac{\lambda_5 v_2^2}{4}$$

Because the smalless of the triplet's vev:

$$m_{H_3}^2 - m_A^2 \approx 2\lambda_2 v_3^2 \Rightarrow m_{H_3} \approx m_A$$

The coupling of H3 to the SM is very small in both cases:

$$\frac{g_{H_3 ff}}{g_{hff}^{SM}} = \frac{g_{H_3 VV}}{g_{hVV}^{SM}} = C_3 \sim 10^{-7}$$

CASE II : Heavies

 $m_{H_2} \\$

Experimental constraints
ON
$$V_3$$

> From astrophysics (stellar
cooling, $\gamma + e \rightarrow J + e$)
 $|g_{Jee}| = |O_{12}^I m_e / v_2|$,
 $|\langle J|\phi \rangle| = \frac{2|v_2|v_3^2}{\sqrt{v_1^2(v_2^2 + 4v_3^2)^2 + 4v_2^2v_3^4 + v_2^4v_3^2}} \lesssim 10^{-7}$.

Other bounds on invisible decays

- CMS: $BR(H \rightarrow Inv) < 0.58$
- Fit: $BR(H \rightarrow Inv) < 0.39$

- , Eur. Phys. J. C 74 (2014) 2980.
- , JHEP 1411 (2014) 039.

