

Standard Model H→TT searches with ATLAS

Higgs Hunting 2016

Eric Drechsler on behalf of the ATLAS Collaboration

> University of Göttingen Group A. Quadt

Introduction

- establishing SM mass generation mechanism for fermions at LHC
 - measure direct coupling
 - $H \rightarrow \tau \tau$ most promising candidate (signal to background ratio S/B)
 - direct access to Higgs-fermion vertex: Higgs CP measurements •
- ATLAS Run I analysis: JHEP 04 (2015) 117
 - search in 7+8TeV datasets (4.5+20.3 fb⁻¹)
 - evidence for direct $H \rightarrow \tau \tau$ coupling
 - first significant signature for H to fermion coupling

GÖTTINGEN

Event Categorisation

- (1) split per **final state**: dileptonic (**leplep**), leptonic-hadronic (**lephad**), dihadronic (hadhad)
- divide in categories production mode and S/B (2)
 - number of jets (at least one jet)
 - rapidity gap between jets
 - momentum of Higgs candidate ٠

GÖTTINGEN

- irreducible $Z \rightarrow \tau \tau$ background:
 - **embedding** technique: replace μ in pure Z $\rightarrow \mu\mu$ data sample with simulated τ
 - corrections for μ/τ efficiencies , mass difference and polarisation effects
- background from τ fakes:
 - data-driven estimates
 - fits of fake templates (hadhad and leplep)
 - fake factor method (lephad)
- Other BG: simulation and normalisation in dedicated control regions
- **Signal**: ggF/VBF H \rightarrow tt (@NLO accuracy) using POWHEG+ Pythia

Eric Drechsler

CBA - Final Discriminant: MMC mass

- CBA discriminant: invariant mass of ττ-system used for signal extraction
 missing mass calculator (MMC):
 - solving (underconstrained) system of equations
- uses $\text{MET}_{x/y_{\!\scriptscriptstyle \! \! \! \! \! \! }}$ visible masses of τ candidates
 - most probable value for $m_{\tau\tau}$ estimated from MET resolution and τ decay topologies
 - losses due to large fluctuations of the MET
- mass resolution ~15%
 - ratio of full width at half max. and peak value of mass distribution = 30%

Eric Drechsler

MVA - Final Discriminant: BDT output

- MVA discriminant: Boosted Decision Tree (BDT)
 - recursively partition multi variate parameter space enhance S or B purities
 - variables channel-dependent: kinematic properties & event topology
- combination of trees in single discriminant **BDT output**

MVA - Results

- combined, binned maximum-Likelihood fit
 - using BDT output in 6 signal categories (separate 7/8TeV)
 - Zll, top & Rest control region to constrain backgrounds
- extracting signal strength $\boldsymbol{\mu}$
 - ratio of observed/expected SM signal for cross section times branching ratio
- MVA result for Higgs mass m_H=125.36 GeV:

observed (expected): $\sigma = 4.5(3.4)$ $\mu = 1.43^{+0.27}_{-0.26} \text{ (stat) } ^{+0.32}_{-0.25} \text{ (syst) } \pm 0.09 \text{ (theory)}$

 $\mu = \frac{(\sigma \times BR)_{obs}}{(\sigma \times BR)_{SM}}$

Eric Drechsler

CBA - Results

- same fit model but **MMC** as final discriminant
- + CBA result @ m_H =125.36 GeV for **8 TeV only**

observed (expected): $\sigma = 3.2(2.5)$ $\mu = 1.43^{+0.55}_{-0.49}$ (total)

- **good agreement** between MVA and CBA- tested with jackknife technique
 - correlation of $\mu\text{:}~0.55\text{-}0.75$ for all channels
 - results fully compatible

	Fitted μ values				
	\sqrt{s}	Multivariate analysis	Cut-based analysis		
$ au_{ m lep} au_{ m lep}$	8 TeV	$1.9^{+1.0}_{-0.9}$	$3.2^{+1.4}_{-1.3}$		
$ au_{ m lep} au_{ m had}$	8 TeV	$1.1\substack{+0.6 \\ -0.5}$	$0.7^{+0.7}_{-0.6}$		
$ au_{ m had} au_{ m had}$	8 TeV	$1.8^{+0.9}_{-0.7}$	$1.6^{+0.9}_{-0.7}$		
All channels	$8 { m TeV}$	$1.53_{-0.41}^{+0.47}$	$1.43_{-0.49}^{+0.55}$		

Eric Drechsler

Summary & Outlook

- $H \rightarrow \tau \tau$ important channel to validate SM
- ATLAS Run I search strategies and results presented

observed (expected): $\sigma = 4.5(3.4)$ $\mu = 1.43^{+0.27}_{-0.26} \text{ (stat) } ^{+0.32}_{-0.25} \text{ (syst) } \pm 0.09 \text{(theory)}$

- compatible results between different analyses approaches (MVA/CBA)
- not covered: VH $\rightarrow \tau \tau$ searches (Phys. Rev. D 93, 092005)
 - limit on signal strength μ < 5.6 (3.7)
- ATLAS + CMS combination (ATLAS-CONF-2015-044/CMS-PAS-HIG-15-002)
 - establishes discovery of $H \rightarrow \tau \tau$ with 5.5 σ
- VBF production mode discovered with 5.4 σ significance
 - $H \rightarrow \tau \tau$ major contribution •
- new results with Run II dataset expected soon
 - higher center of mass energy 13 TeV
 - signal cross sections increase factor > 2 •
 - changes in event topology (e.g. boost)
 - increase in multiple pp interactions per crossing (factor 2) ٠
 - optimised reconstruction methods better resolutions
 - new detector IBL in ATLAS
 - excitement!

9

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN Eric Drechsler

- 1. Reconstruction
- 2. Identification discrimination against:
 - Jets (multivariate BDT technique)
 - b. Electrons
- 3. Calibration
- 4. Scaling
 - a. scale factors from efficiency measurements

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN Eric Drechsler

• Higgs Branching Ratios for different mass scenarios

• typical tree level diagrams for targeted signal production modes and corresponding backgrounds

Table 4.1: Typical tree-level Feynman diagrams for the two signal processes targeted by

the event selection, together with the corresponding main background processes. The final states are characterised by hadronically decaying τ leptons (blue) and quark- or gluon-initiated jets. Signal Background g maranne q Η ZWQCD Z+jets VBF HEW Zg mananan 9 m mmmmma alle mann 9700 Multi-jet $t\bar{t}$ 9 m 9 m g mmmm ggF H + 1jQCD Z+jetsg mannen 9 m mmm a uu uuuu Multi-jet W+jets

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

Ð

ggF

√s (TeV)	Cross Section (pb)	+QCD Scale %	-QCD Scale %	+(PDF+ α_s) %	-(PDF+ α_s) %
7	15.11	+7.1	-7.8	+7.6	-7.1
8	19.24	+7.2	-7.8	+7.5	-6.9
13	43.87	+7.4	-7.9	+7.1	-6.0

VBF

√s (TeV)	Cross Section (pb)	+QCD Scale %	-QCD Scale %	+(PDF+ α_s) %	-(PDF+α _s) %
7	1.222	+0.3	-0.3	+2.5	-2.1
8	1.579	+0.2	-0.2	+2.6	-2.8
13	3.744	+0.7	-0.7	+3.2	-3.2

Systematic Uncertainties

- systematic uncertainty sources:
 - experimental: e.g. JES uncertainty
 - detector response
 - pile-up
 - η intercalibration
 - modelling of in situ jet calibration
 - theory: e.g. $BR(H \rightarrow \tau \tau)$:
 - ~6% uncertainty direct effect on signal rates
 - background model: e.g. Zlh normalisation
 - fake factors: stat uncertainty & fake background composition

Source of Uncertainty	Uncertainty on μ
Signal region statistics (data)	$+0.27 \\ -0.26$
Jet energy scale	± 0.13
Tau energy scale	± 0.07
Tau identification	± 0.06
Background normalisation	± 0.12
Background estimate stat.	± 0.10
BR $(H \to \tau \tau)$	± 0.08
Parton shower/Underlying event	± 0.04
PDF	± 0.03
Total sys.	$+0.33 \\ -0.26$
Total	$+0.43 \\ -0.37$

•small branching ratio and high background contributions

event categorisation: improved BG rejection

•poor $\tau + \tau -$ mass resolution (at least two neutrinos from the τ lepton decays)

- dedicated mass reconstruction algorithms (MMC)
- •fully leptonic channel:
 - lowest sensitivity & worst mass resolution (4 neutrinos)
 - smallest branching ratio 12.4%

•semi-leptonic channel:

• most sensitive final state - largest branching ratio of 45.6%

dihadronic channel

- second most sensitive final state branching ratio of 42%
- •final discriminant —> combined fit
 - MVA: construct BDT
 - CBA: MMC-mass

- Take $Z \rightarrow \mu \mu$ from data
- Remove the μ tracks and energy deposition in the calorimeter (using standalone μ simulation)
- Correct the particle 4-vectors for the μ - τ mass difference
- Simulate the $\tau\tau$ decay in Tauola for these initial 4vectors
- Insert this simulated decay back into the data events
- **Re-reconstruct objects and MET**

- τlepthad channel: the fake-factor method to estimate contributions from misidentified τ_{had} candidate
- arising from multijet, W+jets, Z+jets, and semileptonic top background events
- fake factor: ratio of #jets identified as medium τ_{had} to #jets satisfying loose, but not medium tau ID
- depending on jet parton type, jet-pT, track multiplicity
- W+jets, tt and Z+jets background components:
 - high-mT region (mT > 70 GeV)
 - inverting the b-jet veto
 - two leptons with $80 \text{ GeV} < \text{m} \ge 100 \text{ GeV}$
- multijet:

- relaxing the lepton identification and requiring jet to satisfy the loose identification criteria
- template from SR but requiring loose not medium
 - apply SF according to expected relative contributions

• MC generators

Signal $(m_{\rm c} = 125 {\rm CeV})$	MC concretor	$\sigma \times BR \ [pb]$			
Signal $(m_H = 125 \text{ GeV})$	MC generator	$\sqrt{s} = 8$	TeV		
ggF, $H \to \tau \tau$	Powheg [36–39]	1.22	NNLO+NNLL	[42-47, 78]	
	+ Pythia8 [40]				
VBF, $H \to \tau \tau$	POWHEG + PYTHIA8	0.100	(N)NLO	[51-53, 78]	
$WH, H \to \tau \tau$	Pythia8	0.0445	NNLO	[56, 78]	
$ZH, H \to \tau \tau$	Ρυτηία8	0.0262	NNLO	[56, 78]	
De cleanaun d	MC monomotor	$\sigma \times BR$ [pb]		
Dackground	MC generator	$\sqrt{s} = 8$ TeV			
$W(\rightarrow \ell \nu), \ (\ell = e, \mu, \tau)$	Alpgen [71]+Pythia8	36800	NNLO	[79, 80]	
$Z/\gamma^*(\to \ell\ell),$	Alpgen+Pythia8	3910	NNLO	[79 80]	
$60 \text{ GeV} < m_{\ell\ell} < 2 \text{ TeV}$		0010		[10,00]	
$Z/\gamma^*(\to \ell\ell),$	ALPGEN+HERWIG [81]	13000	NNLO	[79, 80]	
$10 \text{ GeV} < m_{\ell\ell} < 60 \text{ GeV}$		10000		[,]	
VBF $Z/\gamma^*(\to \ell\ell)$	Sherpa [82]	1.1	LO	[82]	
$tar{t}$	POWHEG + PYTHIA8	253^{\dagger}	NNLO+NNLL	[83-88]	
Single top : Wt	POWHEG + PYTHIA8	22^{\dagger}	NNLO	[89]	
Single top : s -channel	POWHEG + PYTHIA8	5.6^{\dagger}	NNLO	[90]	
Single top : t -channel	AcerMC [74]+Pythia6 [67]	87.8^{\dagger}	NNLO	[91]	
$q\bar{q} \rightarrow WW$	Alpgen+Herwig	54^{\dagger}	NLO	[92]	
$gg \to WW$	GG2WW [73]+Herwig	1.4^{\dagger}	NLO	[73]	
WZ, ZZ	Herwig	30^{\dagger}	NLO	[92]	
$H \to WW$	same as for $H \to \tau \tau$ signal	4.7^{\dagger}			

•Trigger thresholds

$\sqrt{s} = 7 \text{ TeV}$							
Trigger	Trigger level		Analysis	level t	hresholds [0	GeV]	
	thresholds, $p_{\rm T}$ [GeV]		$ au_{ m lep} au_{ m lep}$	$ au_{ m c}$	$_{ m lep} au_{ m had}$	au	had $ au_{ m had}$
Single electron	20-22	$e\mu$:	$\begin{array}{c} p_{\rm T}^{e} > 22 - 24 \\ p_{\rm T}^{\mu} > 10 \end{array}$	$e\tau$:	$\begin{array}{l} p_{\mathrm{T}}^{e} > 25 \\ p_{\mathrm{T}}^{\tau} > 20 \end{array}$		_
Single muon	18	$\mu\mu$: $e\mu$:	$p_{\rm T}^{\mu_1} > 20 \\ p_{\rm T}^{\mu_2} > 10 \\ p_{\rm T}^{\mu} > 20 \\ p_{\rm T}^{e} > 15$	$\mu \tau$:	$p_{\rm T}^{\mu} > 22 \\ p_{\rm T}^{ au} > 20$		_
Di-electron	12/12	ee:	$p_{\rm T}^{e_1} > 15$ $p_{\rm T}^{e_2} > 15$		_		_
$ ext{Di-} au_{ ext{had}}$	29/20		_		_	au au:	$\begin{array}{c} p_{\rm T}^{\tau_1} > 35 \\ p_{\rm T}^{\tau_2} > 25 \end{array}$
			$\sqrt{s} = 8 \text{ TeV}$				
Trigger	Trigger level		Analysis	level t	hresholds [(GeV]	
1118801	thresholds, $p_{\rm T}$ [GeV]		$ au_{ m lep} au_{ m lep}$	$ au_{ m c}$	$_{ m lep} au_{ m had}$	τ	$had au_{had}$
Single electron	24	еµ: ee:	$\begin{array}{c} p_{\rm T}^e > 26 \\ p_{\rm T}^\mu > 10 \\ p_{\rm T}^{e_1} > 26 \\ p_{\rm T}^{e_2} > 15 \end{array}$	e au:	$p_{\rm T}^e > 26$ $p_{\rm T}^\tau > 20$		_
Single muon	24		_	$\mu \tau$:	$\begin{array}{l} p_{\mathrm{T}}^{\mu} > 26 \\ p_{\mathrm{T}}^{\tau} > 20 \end{array}$		_
Di-electron	12/12	ee:	$\begin{array}{c} p_{\rm T}^{e_1} > 15 \\ p_{\rm T}^{e_2} > 15 \end{array}$		_		_
Di-muon	18/8	$\mu\mu$:	$p_{\rm T}^{\mu_1} > 20$ $p_{\rm T}^{\mu_2} > 10$		_		_
Electron+muon	12/8	$e\mu$:	$p_{\rm T}^e > 15 \ p_{\rm T}^{\mu} > 10$		_		_
$ ext{Di-} au_{ ext{had}}$	29/20		_		_	au au:	$\begin{array}{c} p_{\rm T}^{\tau_1} > 35 \\ p_{\rm T}^{\tau_2} > 25 \end{array}$

	Chan	nel Preselection c	uts				
•MVA selectio)n $\tau_{lep}\tau$	$\begin{array}{c c c c c c } Exactly two is \\ Events with \tau_1 \\ 30 \text{ GeV} < m_{\tau\tau}^{\text{vis}} \\ \Delta \phi_{\ell\ell} < 2.5 \\ E_{\text{T}}^{\text{miss}} > 20 (40 \\ E_{\text{T}}^{\text{miss},\text{HPTO}} > \\ p_{\text{T}}^{\ell_1} + p_{\text{T}}^{\ell_2} > 35 \\ E\text{vents with a} \\ 0.1 < r r \end{array}$	olated opposi ad candidates < 100 (75) C)) GeV for DF 40 GeV for S GeV b-tagged jet v	te-sign leptons s are rejected GeV for DF (SF) events F (SF) events F events with $p_{\rm T} > 25$ GeV are rejected	ed		
	$ au_{ m lep} au_{ m l}$	$\tau_{\text{lep}}\tau_{\text{had}} = \frac{0.1 < x_{\tau_1}, x_{\tau_2} < 1}{m_{\tau\tau}^{\text{coll}} > m_Z - 25 \text{ GeV}}$ Exactly one isolated lepton and one medium τ_{had} candidate with opposite chan $m_{\text{T}} < 70 \text{ GeV}$ Events with a <i>b</i> -tagged jet with $p_{\text{T}} > 30 \text{ GeV}$ are rejected					
	$ au_{ m had} au$	had below the formula	One isolated medium and one isolated tight opposite-sign τ_{had} -candidate Events with leptons are vetoed $E_{\text{T}}^{\text{miss}} > 20 \text{ GeV}$ $E_{\text{T}}^{\text{miss}}$ points between the two visible taus in ϕ , or min $[\Delta \phi(\tau, E_{\text{T}}^{\text{miss}})] < \pi/4$ $0.8 < \Delta R(\tau_{\text{had}_1}, \tau_{\text{had}_2}) < 2.4$ $\Delta n(\tau_{\text{had}_1}, \tau_{\text{had}_2}) < 1.5$				
	Chan	nel VBF category	selection cuts	8			
	$ au_{ m lep} au$	$\begin{array}{c c} & \text{At least two je} \\ \hline & \Delta \eta(j_1, j_2) > 2 \end{array}$	ets with $p_{\rm T}^{j_1} > .2$	$40 \text{ GeV} \text{ and } p_{\mathrm{T}}^{j_2} > 30 \text{ GeV}$			
	$ au_{ m lep} au_{ m l}$	$\begin{array}{c c} & \text{At least two je} \\ & \Delta \eta(j_1, j_2) > 3 \\ & m_{\tau\tau}^{\text{vis}} > 40 \text{ GeV} \end{array}$	ets with $p_{\rm T}^{j_1} > .0$	\cdot 50 GeV and $p_{\rm T}^{j_2} > 30~{\rm GeV}$			
	$ au_{ m had} au$	had At least two je $p_{\rm T}^{j_2} > 35 \text{ GeV}$ $\Delta \eta(j_1, j_2) > 2$	At least two jets with $p_{\rm T}^{j_1} > 50$ GeV and $p_{\rm T}^{j_2} > 30$ GeV $p_{\rm T}^{j_2} > 35$ GeV for jets with $ \eta > 2.4$ $\Delta \eta(j_1, j_2) > 2.0$				
	Chan	nel Boosted categ	ory selection	cuts			
	$\tau_{\rm lep} \tau_{\rm lep}$	ep At least one je	et with $p_{\rm T} > 4$	40 GeV			
AVA CR	All	Failing the VE $p_{\rm T}^H > 100 {\rm ~GeV}$	BF selection				
[Process	$ au_{ m lep} au_{ m lep}$		$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$		
	$Z \to \ell \ell$ -enriched	$80 < m_{\tau\tau}^{\rm vis} < 100 \ Ge$	eV				
		(same-flavour)					

•MV

Process	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$
$Z \to \ell\ell$ -enriched	$80 < m_{\tau\tau}^{\rm vis} < 100 \ GeV$		
	(same-flavour)		
Top control region	Invert <i>b</i> -jet veto	Invert <i>b</i> -jet veto and $m_{\rm T} > 40 \ GeV$	
Rest category			Pass preselection,
			Fail VBF and Boosted selections
$Z \to \tau \tau$ -enriched	$m_{\tau\tau}^{\rm HPTO} < 100 \; GeV$	$m_{\rm T} < 40 \ GeV$ and $m_{\tau\tau}^{\rm MMC} < 110 \ GeV$	
Fake-enriched	Same sign τ decay products	Same sign τ decay products	
W-enriched		$m_{\rm T} > 70~GeV$	
Mass sideband			$m_{\tau\tau}^{\rm MMC} < 110 \ GeV \ {\rm or} \ m_{\tau\tau}^{\rm MMC} > 150 \ GeV$
Top control regionRest category $Z \rightarrow \tau \tau$ -enrichedFake-enrichedW-enrichedMass sideband	$\frac{m_{\tau\tau}^{\text{HPTO}} < 100 \text{ GeV}}{\text{Same sign } \tau \text{ decay products}}$	Invert b-jet veto and $m_{\rm T} > 40~GeV$ $m_{\rm T} < 40~GeV$ and $m_{\tau\tau}^{\rm MMC} < 110~GeV$ Same sign τ decay products $m_{\rm T} > 70~GeV$	Pass preselection, Fail VBF and Boosted selections $m_{\tau\tau}^{\rm MMC} < 110 \ GeV \ {\rm or} \ m_{\tau\tau}^{\rm MMC} > 150 \ Ge$

postfit event yields

Process/Category		VBF			Boosted	
BDT output bin	All bins	Second to last bin	Last bin	All bins	Second to last bin	Last bin
Fake background	1680 ± 50	8.2 ± 0.9	5.2 ± 0.7	5640 ± 160	51.0 ± 2.5	22.3 ± 1.8
$Z \to \tau \tau$	877 ± 29	7.6 ± 0.9	4.2 ± 0.7	6210 ± 170	57.5 ± 2.8	41.1 ± 3.2
Тор	82 ± 15	0.3 ± 0.4	0.5 ± 0.4	380 ± 50	12 ± 4	4.8 ± 1.5
$Z \to \ell \ell (\ell \to \tau_{\rm had})$	54 ± 26	1.0 ± 0.7	0.30 ± 0.28	200 ± 50	13 ± 4	8.6 ± 3.5
Diboson	63 ± 11	1.0 ± 0.4	0.48 ± 0.20	430 ± 40	9.7 ± 2.2	4.7 ± 1.6
ggF: $H \to \tau \tau \ (m_H = 125 GeV)$	16 ± 6	1.0 ± 0.4	1.2 ± 0.6	60 ± 20	9.2 ± 3.2	10.1 ± 3.4
VBF: $H \to \tau \tau$	31 ± 8	4.5 ± 1.1	9.1 ± 2.2	16 ± 4	2.5 ± 0.6	2.9 ± 0.7
$WH: H \to \tau \tau$	0.6 ± 0.4	< 0.1	< 0.1	9.1 ± 2.3	1.3 ± 0.4	1.9 ± 0.5
$ZH: H \to \tau \tau$	0.16 ± 0.07	< 0.1	< 0.1	4.6 ± 1.2	0.77 ± 0.20	0.93 ± 0.24
Total background	2760 ± 40	18.1 ± 2.3	10.7 ± 2.7	12860 ± 110	143 ± 6	82 ± 6
Total signal	48 ± 12	5.5 ± 1.3	10.3 ± 2.5	89 ± 26	14 ± 4	16 ± 4
Data	2830	22	21	12952	170	92

lephad

Process/Category		VBF			Boosted	
BDT output bin	All bins	Second to last bin	Last bin	All bins	Second to last bin	Last bin
$Z \to \tau \tau$	589 ± 24	9.7 ± 1.0	1.99 ± 0.34	2190 ± 80	33.7 ± 2.3	11.3 ± 1.3
Fake background	57 ± 12	1.2 ± 0.6	0.55 ± 0.35	100 ± 40	2.9 ± 1.3	0.6 ± 0.4
Тор	131 ± 19	0.9 ± 0.4	0.89 ± 0.33	380 ± 50	9.8 ± 2.1	4.3 ± 1.0
Others	196 ± 17	3.0 ± 0.4	1.7 ± 0.6	400 ± 40	8.3 ± 1.6	2.6 ± 0.7
ggF: $H \to WW \ (m_H = 125 \ GeV)$	2.9 ± 0.8	0.12 ± 0.04	0.11 ± 0.04	7.7 ± 2.3	0.43 ± 0.13	0.24 ± 0.08
VBF: $H \to WW$	3.4 ± 0.4	0.40 ± 0.06	0.38 ± 0.08	1.65 ± 0.18	0.102 ± 0.017	< 0.1
$WH: H \rightarrow WW$	< 0.1	< 0.1	< 0.1	0.90 ± 0.10	< 0.1	< 0.1
$ZH: H \rightarrow WW$	< 0.1	< 0.1	< 0.1	0.59 ± 0.07	< 0.1	< 0.1
ggF: $H \to \tau \tau \ (m_H = 125 GeV)$	9.8 ± 3.4	0.73 ± 0.26	0.35 ± 0.14	21 ± 8	2.4 ± 0.9	1.3 ± 0.5
VBF: $H \to \tau \tau$	13.3 ± 4.0	2.7 ± 0.7	3.3 ± 0.9	5.5 ± 1.5	0.95 ± 0.26	0.49 ± 0.13
$WH: H \to \tau \tau$	0.25 ± 0.07	< 0.1	< 0.1	3.8 ± 1.0	0.44 ± 0.12	0.22 ± 0.06
$ZH: H \to \tau \tau$	0.14 ± 0.04	< 0.1	< 0.1	2.0 ± 0.5	0.21 ± 0.06	0.113 ± 0.031
Total background	980 ± 22	15.4 ± 1.8	5.6 ± 1.4	3080 ± 50	55 ± 4	19.2 ± 2.1
Total signal	24 ± 6	3.5 ± 0.9	3.6 ± 1.0	33 ± 10	4.0 ± 1.2	2.1 ± 0.6
Data	1014	16	11	3095	61	20

lep	lep
-----	-----

Process/Category		VBF			Boosted	
BDT output bin	All bins	Second to last bin	Last bin	All bins	Second to last bin	Last bin
Fake background	370 ± 18	2.3 ± 0.9	0.57 ± 0.29	645 ± 26	35 ± 4	0.65 ± 0.33
Others	37 ± 5	0.67 ± 0.22	< 0.1	89 ± 11	15.9 ± 2.0	0.92 ± 0.22
$Z \to \tau \tau$	475 ± 16	0.6 ± 0.7	0.6 ± 0.4	2230 ± 70	93 ± 4	5.4 ± 1.6
ggF: $H \to \tau \tau \ (m_H = 125 GeV)$	8.0 ± 2.7	0.67 ± 0.23	0.53 ± 0.20	21 ± 8	9.1 ± 3.3	1.6 ± 0.6
VBF: $H \to \tau \tau$	12.0 ± 3.1	1.8 ± 0.5	3.4 ± 0.9	6.3 ± 1.6	2.8 ± 0.7	0.52 ± 0.13
$WH: H \to \tau \tau$	0.25 ± 0.07	< 0.1	< 0.1	4.0 ± 1.1	1.9 ± 0.5	0.41 ± 0.11
$ZH: H \to \tau \tau$	0.16 ± 0.04	< 0.1	< 0.1	2.4 ± 0.6	1.13 ± 0.30	0.23 ± 0.06
Total background	883 ± 18	3.6 ± 1.3	1.2 ± 1.0	2960 ± 50	143 ± 6	7.0 ± 1.8
Total signal	20 ± 5	2.5 ± 0.6	3.9 ± 1.0	34 ± 10	15 ± 4	2.7 ± 0.8
Data	892	5	6	3020	161	10

hadhad

22

CPA polootion oritoria	Channel	VBF category selection criteria				
CBA selection chiena	$ au_{ m lep} au_{ m lep}$	At least two jets with $p_{\rm T}^{j_1} > 40$ GeV and $p_{\rm T}^{j_2} > 30$ GeV $ \Delta \eta_{j_1,j_2} > 3.0$ $m_{j_1,j_2} > 400$ GeV <i>b</i> -jet veto for jets with $p_{\rm T} > 25$ GeV Jet veto: no additional jet with $p_{\rm T} > 25$ GeV within $ \eta < 2.4$				
	$ au_{ m lep} au_{ m had}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
	$ au_{ m had} au_{ m had}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
	Channel	Boosted category selection criteria				
	$ au_{ m lep} au_{ m lep}$	Exclude events passing the VBF selection $p_{\rm T}^H > 100 \text{ GeV}$ <i>b</i> -jet veto for jets with $p_{\rm T} > 25 \text{ GeV}$				
	$ au_{ m lep} au_{ m had}$	Exclude events passing the VBF selection $E_{\rm T}^{\rm miss} > 20 \text{ GeV}$ $p_{\rm T}^H > 100 \text{ GeV}$ $p_{\rm T}(\tau_{\rm had}) > 30 \text{ GeV}$ <i>b</i> -jet veto for jets with $p_{\rm T} > 30 \text{ GeV}$				
	$ au_{ m had} au_{ m had}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$				

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

MMC variable ranking

Variable		VBF		Boosted		
Variable	$ au_{ m lep} au_{ m lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$\tau_{\rm had} \tau_{\rm had}$	$ au_{ m lep} au_{ m lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$ au_{\rm had} au_{\rm had}$
$m_{ au au}^{ m MMC}$	•	٠	٠	•	•	•
$\Delta R(au_1, au_2)$	•	•	•		•	•
$\Delta \eta(j_1, j_2)$	•	•	•			
m_{j_1, j_2}	•	•	•			
$\eta_{j_1} \times \eta_{j_2}$		•	•			
$p_{\mathrm{T}}^{\mathrm{Total}}$		•	•			
$\operatorname{Sum} p_{\mathrm{T}}$					•	•
$p_{\rm T}^{ au_1}/p_{\rm T}^{ au_2}$					•	٠
$E_{\rm T}^{\rm miss}\phi$ centrality		•	•	•	٠	٠
m_{ℓ,ℓ,j_1}				•		
m_{ℓ_1,ℓ_2}				•		
$\Delta \phi(\ell_1,\ell_2)$				•		
Sphericity				•		
$p_{\mathrm{T}}^{\ell_1}$				•		
$p_{\mathrm{T}}^{j_{1}}$				•		
$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{\ell_2}$				•		
$m_{ m T}$		٠			٠	
$\min(\Delta \eta_{\ell_1 \ell_2, \text{jets}})$	•					
$C_{\eta_1,\eta_2}(\eta_{\ell_1}) \cdot C_{\eta_1,\eta_2}(\eta_{\ell_2})$	•					
$C_{\eta_1,\eta_2}(\eta_\ell)$		•				
$C_{\eta_1,\eta_2}(\eta_{j_3})$	•					
$C_{\eta_1,\eta_2}(\eta_{\tau_1})$			•			
$C_{\eta_1,\eta_2}(\eta_{\tau_2})$			•			

significances MVA per channel and category

Channel and Category	Expected Significance (σ)	Observed Significance (σ)
$\tau_{\rm lep} \tau_{\rm lep}$ VBF	1.15	1.88
$\tau_{\rm lep} \tau_{\rm lep}$ Boosted	0.57	1.72
$\tau_{\rm lep} \tau_{\rm lep}$ Total	1.25	2.40
$\tau_{\rm lep} \tau_{\rm had}$ VBF	2.11	2.23
$\tau_{\rm lep} \tau_{\rm had}$ Boosted	1.11	1.01
$\tau_{\rm lep} \tau_{\rm had}$ Total	2.33	2.33
$\tau_{\rm had} \tau_{\rm had}$ VBF	1.70	2.23
$\tau_{\rm had} \tau_{\rm had}$ Boosted	0.82	2.56
$\tau_{\rm had} \tau_{\rm had}$ Total	1.99	3.25
Combined	3.43	4.54

ATLAS+CMS combination

- ATLAS-CONF-2015-044 or CMS-PAS-HIG-15-002
- based on 7+8TeV datasets

Channel	References for		Signal stre	Signal strength [µ]		Signal significance $[\sigma]$	
	individual publications		from	from results in this paper (Section 5.2)			
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS	
$H \rightarrow \gamma \gamma$	[51]	[52]	$1.15^{+0.27}_{-0.25}$	$1.12^{+0.25}_{-0.23}$	5.0	5.6	
			(+0.26) (-0.24)	$\binom{+0.24}{-0.22}$	(4.6)	(5.1)	
$H \to Z Z \to 4\ell$	[53]	[54]	$1.51^{+0.39}_{-0.34}$	$1.05^{+0.32}_{-0.27}$	6.6	7.0	
			(^{+0.33})	$\binom{+0.31}{-0.26}$	(5.5)	(6.8)	
$H \rightarrow WW$	[55, 56]	[57]	$1.23^{+0.23}_{-0.21}$	0.91+0.24 -0.21	6.8	4.8	
			(^{+0.21})	$\binom{+0.23}{-0.20}$	(5.8)	(5.6)	
$H \rightarrow \tau \tau$	[58]	[59]	$1.41^{+0.40}_{-0.35}$	0.89+0.31 -0.28	4.4	3.4	
			(^{+0.37} _{-0.33})	$\binom{+0.31}{-0.29}$	(3.3)	(3.7)	
$H \rightarrow bb$	[38]	[39]	$0.62^{+0.37}_{-0.36}$	$0.81^{+0.45}_{-0.42}$	1.7	2.0	
			(+0.39) (-0.37)	$\binom{+0.45}{-0.43}$	(2.7)	(2.5)	
$H \rightarrow \mu \mu$	[60]	[61]	-0.7 ± 3.6	0.8 ± 3.5			
			(±3.6)	(±3.5)			
ttH production	[28,62,63]	[65]	$1.9^{+0.8}_{-0.7}$	2.9 ^{+1.0}	2.7	3.6	
			(^{+0.72} _{-0.66})	(^{+0.88})	(1.6)	(1.3)	

	Untagged	VBF	VH	ttH
$\mathrm{H}{\rightarrow}\gamma\gamma$	✓	✓	✓	✓
H→ZZ→llll	✓	✓	✓	✓
H→WW	✓	✓	✓	✓
$H \rightarrow \tau \ \tau$	✓	✓	✓	✓
H→bb			✓	✓
$\mathrm{H}{\rightarrow}\mu~\mu$	included in tree level	fit for H- µ coupling		

ATLAS+CMS combination

- The ATLAS+CMS coupling combination results include:
 1) Fits of signal strengths (global, by production, by decay) relative to the SM
 2) Fits in the κ-framework, measuring coupling modifiers
- 3) Generic parameterizations based on ratios of XS and BR and on coupling modifier ratios
- Common Assumptions:
- Assume there is only one Higgs boson with Spin Parity 0+ and with a narrow width such that production and decay are decoupled

GEORG-AUGUST-UNIVERSITÄT