

H(125) width and lifetime measurements in the 4*l* final state

Ulascan Sarica

on behalf of the CMS Collaboration

Higgs Hunting 2016 – 31.08.2016 Young Scientist Forum

Outline

 \rightarrow Presenting results from CMS with focus on the 4*l* final state:

- → Run I introduction and Run II progress in width measurements
 - \rightarrow Lifetime measurement
 - \rightarrow Width vs. mass
 - \rightarrow Onshell-only or onshell+offshell combination
 - \rightarrow Width vs. anomalous couplings (tensor structure)

 \rightarrow Related talks:

- ightarrow Diboson results by A. Calderon
- ightarrow BSM searches by D. N. Taylor
- ightarrow Run II prospects by D. Sperka

Run I: Lifetime from $H \rightarrow 4l$

Run I: Width lower bound from lifetime

Run I: Width onshell upper bound

Run I: Width upper bound: Offshell method 🐺

Expected $\Gamma_H < 26$ MeV Observed $\Gamma_H < 13$ MeV

Latest width combination using 4l, and WW and ZZ $\rightarrow 2l2\nu$ using onshell + offshell combination of events (arxiv:1605.02329, submitted to JHEP)

physics

NEW

Run II: Width-mass measurement (41)

6

123 123 5 124 124 5 125 125 5 126 126 5 127

m_н [GeV]

Run II: Width-mass measurement (4l cont.) 💱

Т_н [GeV]

HVV anomalous couplings

$$A(HVV) \sim \left[a_1 - e^{i\phi_{\Lambda Q}} \frac{(q_{V1} + q_{V2})^2}{\Lambda_Q^2} - e^{i\phi_{\Lambda 1}} \frac{(q_{V1}^2 + q_{V2}^2)}{\Lambda_1^2} \right] m_V^2 \epsilon_{V1}^* \epsilon_{V2}^*$$

+ $a_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$
 \rightarrow Any anomalous coupling can be described with an effective

→ Any anomalous coupling can be described with an effective onshell cross sectional fraction and a phase

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_j |a_j|^2 \sigma_j} \qquad \phi_{ai} = \tan^{-1}(a_i/a_1)$$

→ $f_{\Lambda Q}$ observable only from offshell, others measurable from either onshell or offshell

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV) :MS Observed 121.5 < m₄₁ < 130.5 GeV SM f_{a3}=1 10 f₁₁=0.5 ZZ/Zγ' Z+X -2 Phys. Rev. D 92 (2015) 012004 Φ

In 4*l*, use discriminants based on MELA from MCFM/JHUGen:

$$D_{A vs B} = \frac{P_A}{P_A + P_B}$$
$$D_{A-B int.} = \frac{P_{A+B} - P_A - P_B}{P_A + P_B}$$

Run I: Anomalous couplings combination

Run I: Anomalous couplings from off-shell

Summary

- \rightarrow Presented results from CMS with focus on $H \rightarrow 4l$:
 - ightarrow Model-independent constraint on lifetime from 4l
 - ightarrow Lower bound on width
 - ightarrow Width vs. mass
 - ightarrow Joint width constraints with mass
 - \rightarrow Resolution-limited width constraint from onshell
 - \rightarrow Tighter width constraint from offshell+onshell combination
 - ightarrow Combination of final states possible as in Run I
 - \rightarrow Width vs. anomalous couplings (tensor structure)
 - \rightarrow Could apply joint constraints on f_{ai} vs. Γ_H for any a_i in the future, as exemplified in the Run I $f_{\Lambda O}$ vs. Γ_H result

Backup

Run I: Mass measurement from CMS

Latest Run I CMS+ATLAS 7 and 8 TeV mass measurement: arXiv:1503.07589, Phys. Rev. Lett. 114 (2015) 191803

Run I: Width upper bound from CMS

Observed: $\mu_{GF}^{off-shell} < 2.4$ $\mu_{VBF}^{off-shell} < 19.3$

Expected: $\mu_{GF}^{off-shell} < 6.2$ $\mu_{VBF}^{off-shell} < 34.4$

Latest width combination using 4*l*, and WW and ZZ $\rightarrow 2l2\nu$ using on-shell + off-shell combination of events (arxiv:1605.02329, submitted to JHEP)

Run II: Mass measurement (41)

CMS-PAS-HIG-16-033

Using 4I 3D measurement, observed $m_H = 124.50^{+0.48}_{-0.46}$ $(stat {}^{+0.47}_{-0.45}, syst {}^{+0.13}_{-0.11})$ GeV D_{mass} from lepton momentum errors \rightarrow Corrected in data and MC using Z decay events \rightarrow Improves resolution by 8%

Run II: Anomalous couplings (f_{a3} result)

Expected: $0.00^{+0.26}_{-0.26}$ (95% CL: [-0.59, 0.59]) Observed: $-0.56^{+0.38}_{-0.32}$ (95% CL: [-1.00, 1.00])

CMS-PAS-HIG-16-033

-0.4

-0.2

0

0.2

0.4

 D_{CP}

Run II: Anomalous couplings (f_{a2} result)

Observed: $-0.06^{+0.06}_{-0.09}$ (95% CL: [-0.13, 0.92])

CMS-PAS-HIG-16-033

ᅇ

0.2

0.4

0.6

0.8

D_{int}

Run II: Anomalous couplings ($f_{\Lambda 1}$ result)

$$R_{ai} = \frac{\left|\frac{a_i^{WW}/a_1^{WW}}{a_i^{ZZ}/a_1^{ZZ}}\right| \cdot \frac{a_i^{WW}/a_1^{WW}}{a_i^{ZZ}/a_1^{ZZ}}}{1 + \left(\frac{a_i^{WW}/a_1^{WW}}{a_i^{ZZ}/a_1^{ZZ}}\right)^2}$$

Run I: Anomalous couplings combination

÷

<u>Phys. Rev. D 92 (2015) 012004</u> 4I+ $WW \rightarrow 2l2\nu$ combination (+ $\gamma\gamma$ for spin-2 couplings)

20

Run I: Anomalous couplings using production 💱

