Recent VH, H→bb Analysis Results

Jeff Hetherly on behalf of the ATLAS Collaboration Higgs Hunting 2016 YSF <u>ATLAS-CONF-2016-091</u>

Overview

- VH, $H \rightarrow b\bar{b}$ (V = W/Z) Physics at the LHC
- Analysis Details
- Systematics Uncertainties
- Statistical Treatment & Measurement
- Summary

VH, H→bb̄ Physics

- H→bb has the largest predicted branching ratio out of all the possible Higgs decays
 - Test of Yukawa coupling between b-quarks and Higgs boson (yet to be directly observed)
 - Jets in the final state introduces potential for large background contamination

- Vector boson-associated Higgs (@125 GeV) production at the LHC provides a convenient mechanism to search for the Higgs boson
 - Cross-section is much lower than gluon-gluon fusion (ggF)

 \checkmark Leptonic decays of vector boson allow for triggering and reduction of multi-jet backgrounds

VH Analysis Overview

Ζ

W

 $\bar{\nu}$

- Events are classified by:
 - exclusive number of (non- τ) leptons: 0, 1, & 2
 - vector boson transverse momentum
 - jet multiplicity
- Flavor tagging of calorimeter jets is used to distinguish "Higgs" jets from backgrounds largely comprised of non-b-quark initiated jets
- Uses both 2015 (3.2 fb^{-1}) and 2016 (10 fb^{-1}) datasets

O-lepton Channel

1-lepton Channel

2-lepton Channel

·		
Selection	2-lepton	
Trigger	μ -sub-channel: lowest unprescaled single μ trigger	
Noush an of London	e-sub-channel: lowest unprescaled single e trigger	h
Number of Leptons	exactly 1 "low quality" lepton and 1 "medium quality" lepton of the same navor	g'
Lepton Charge	opposite charge in μ -sub-channel	$Z \xrightarrow{H} \overline{b}$
m_{ll}	$m_{ll} < 121 \text{GeV}$	June 4
Number of Jets	$2 \text{ or } \geq 3$	a wit
0-jets Looding Lot g	exactly 2 θ -tagged jets	\overline{t}
Leading Jet $p_{\rm T}$	> 43 GeV [0, 150] and [150, ap] CoV	
$p_{\rm T}$ regions	[0, 150] and [150, ∞] GeV	
$p_{\mathrm{T}}^{l} > 25 \mathrm{GeV}/7 \mathrm{GeV}$ f	or "medium/low quality" leptons	
Point 120 ATLAS Preliminary $fs = 13 \text{ TeV } \int \text{Ldt} = 13.2 \text{ fb}^{-1}$ $100 \qquad p_{\tau}^{V} \ge 150 \text{ GeV}$ $80 \qquad \qquad$	 Vittebioson Z+heavy flavor tī Diboson Single top Negligible multi-jet checked with data after m_{ll} cut b-jet energy correction: μ-in-jet Event-level kinematic fit using fully reconstructed Zh system T 	$ \begin{array}{c} \sum V & \text{Inputs} \\ \overline{\mathcal{P}_{T}^{V}} \\ E_{T}^{\text{miss}} \\ \mathcal{P}_{T}^{b_{1}} \\ \mathcal{P}_{T}^{b_{2}} \\ \mathcal{P}_{T}^{b_{2}} \\ m_{bb} \\ \Delta \mathcal{P}_{T}(b_{1}, b_{2}) \\ \Delta \mathcal{P}_{T}(b_{1}, b_{2}) \\ \Delta \mathcal{P}_{T}(b_{1}, b_{2}) \\ \Delta \mathcal{P}_{T}(V, bb) \\ \Delta \mathcal{P}_{T}(V, bb) \\ m_{ll} \\ \mathcal{P}_{T}^{\text{jet}_{3}} \\ m_{bbj} \end{array} $

Systematics

flavor-tagging has largest impa	act			
of the experimental systematic	cs 🔪	Source	Impact	on Error
Z hoovy flover permetization has la	racet		+	
	rgest	DataStat	0.361	0.346
impact of the modeling systemati	CS	MC Stat.	0.208	0.215
Notable Reekaround Systematics:		Flavor Tagging	0.162	0.19
Notable Background Systematics:		Z+jets	0.118	0.179
• V+jels:		Floating Normalizations	0.0985	0.15
Relative normalization ratios of the neavy fla	vor	W+jets	0.097	0.136
components		Model $t\bar{t}$	0.09	0.145
 Normalization uncertainties for the V+cl and 	V+I	Signal	0.081	0.028
components		Jets + MET	0.0504	0.0462
 Relative acceptance ratios between the lept 	on and N _{jets}	Model Single Top	0.042	0.031
channels		Diboson	0.0225	0.0217
• tt		Luminosity	0.0173	0.011
 Relative acceptance ratios between the lept 	on and N _{iets}	Model Multi-Jet	0.016	0.017
channels	,	Leptons	0.01	0.0105
Single top		FullSyst	0.358	0.36
 Cross section uncertainties broken down by 	t, s, and	Total	0.508	0.499
 Wt channels Relative acceptance ratios between the lept channels 	(Not a	a quadrati	ure sum)	
Dominant Experimental Systematics:	Notable Sig	gnal Systematics:		
 Flavor Tagging = 3 b-jet + 4 c-jet + 5 light-jet + 	Cross se	ection uncertainties for qā	and gg	productio
2 "extrapolation"	Branchir	ng ratio		
 Jet Energy Scale and Resolution = 19 	nce variations (parton sh	ower, etc))	

Statistical Treatment

- BDT output is used as the final discriminant
- Parameter of interest is μ (signal yield over Standard Model expectation)
- Binned-Likelihood model
 - Poisson terms for bin contents
 - Constraint terms for various systematics, etc.

Sample	Scale factor
$t\bar{t}$ 0+1-lepton	0.86 ± 0.13
tt 2-lepton	0.94 ± 0.09
W + HF	1.59 ± 0.39
Z + HF	1.04 ± 0.11

Postfit

- Total of a 8 regions (N_{jets}: 2 & 3^{*}, p^V_T regions: [0,150] GeV in 2-lepton & [150,∞] GeV in all lepton channels)
- Floating Normalizations: tt (separately for 0+1 lepton and 2 lepton), W/Z+heavy flavor

Dominant Background Systematics (description: correlated regions)
V + jets
V+hf norm: all, Vbl/Vbb acc. ratio: all, Vcc/Vbb acc. ratio: all, Vbc/Vbb acc. ratio: all
Vbb 2-3 jets acc. ratio: 2 jets, Zbb 0-2 lep. acc. ratio: 0-lepton, Wbb 0-1 lep. acc. ratio: 0-lepton
Vl norm: all, Vcl norm: all, $p_{\rm T}^{\rm V}$ shape: all, m_{bb} shape: all
$t \overline{t}$
$t\bar{t}$ norm: 0+1 lepton and 2-lepton, $t\bar{t}$ 2-3 jets acc. ratio: 0+1 lepton and 2-lepton
$p_{\rm T}^{\rm V}$ shape: 0+1 lepton and 2-lepton, m_{bb} shape: 0+1 lepton and 2-lepton

Results

Rost Fit Signal Strongth							
Dest in Signal Shenying	l imits	n-va		<u>ک</u>	siar	nific	ance
ATLAS Preliminary Is=13 TeV, JL dt= 13.2 fb ⁻¹		ρνα	lucc	, A	Sigi		
Tot	Detect	Lim	it	p	0	Signi	ficance
2 lepton → → → → → → → → → → → → → → → → → → →	Dataset	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.
1 lepton - → → → → → → → → → → → → → → → → → →	0-lepton	$1.4^{+0.6}_{-0.4}$	2.0	0.07	0.15	1.45	1.02
0.47 + 0.73 (+0.59 + 0.44)	1-lepton	$2.0^{+0.8}_{-0.6}$	2.1	0.15	0.46	1.04	0.10
-0.69 -0.55 -0.42	2-lepton	$1.8^{+0.7}_{-0.5}$	1.7	0.13	0.57	1.14	-0.17
Combination - $H \rightarrow H$ 0.21+0.51 (+0.36 +0.36) - 0.35 - 0.36) -	Combined	$1.0^{+0.4}_{-0.3}$	1.2	0.03	0.34	1.94	0.42
0 2 4 6 8 10							
Best fit $\mu = \sigma / \sigma_{SM}$ for m _H =125 GeV							

Table 8: The expected and observed 95% CL limits on the ratio of the cross-section times branching ratio with respect to the SM expectation and p_0 and significance values for the individual lepton channels and their combination. The expected limits are evaluated assuming the absence of signal and the expected p_0 and significance assuming a Higgs boson of 125 GeV mass with the SM signal strength.

Di-boson cross-check: 3.21σ (3.0σ) exp. (obs.) significance $\mu_{VZ} = 0.91 \pm 0.17(\text{stat.})^{+0.32}_{-0.27}(\text{syst.})$

Summary & Outlook

- ATLAS' first SM VH, H→bb̄ results for Run 2 appear promising and consistent with SM
 - statistical and systematic contributions to error are currently equal
- Important decay channel that has yet to be observed
 - Looking forward to more luminosity

Run	Signal Strength	Observed (Expected) Significance
Ι	0.52 ± 0.32 (stat.) ± 0.24 (syst.)	$1.4\sigma(2.6\sigma)$
II	$0.21 \pm 0.36 (\text{stat.}) \pm 0.36 (\text{syst.})$	$0.42\sigma(1.94\sigma)$

b-Jet Energy Correction

<u>https://cds.cern.ch/record/2207283/files/ATL-PHYS-</u> SLIDE-2016-465.pdf

Object Selection

Electron Selection	p_{T}	η	ID	d_0^{sig}	$ \Delta z_0^{BL} \sin \theta $	Isolation
VH - loose	>7 GeV	$ \eta < 2.47$	LH Loose + B-layer cut	< 5	< 0.5 mm	LooseTrackOnly
ZH – signal	>25 GeV	$ \eta < 2.47$	LH Loose + B-layer cut	< 5	< 0.5 mm	LooseTrackOnly
WH – signal	>25 GeV	$ \eta < 2.47$	LH Tight	< 5	< 0.5 mm	FixedCutTight

Table 4: Electron selection requirements.

Muon Selection	p_{T}	η	ID	d_0^{sig}	$ \Delta z_0^{\rm BL} \sin \theta $	Isolation
VH-Loose	>7 GeV	$ \eta < 2.7$	Loose quality	< 3	< 0.5 mm	LooseTrackOnly
ZH-Signal	>25 GeV	$ \eta < 2.5$	Loose quality	< 3	< 0.5 mm	LooseTrackOnly
WH-Signal	>25 GeV	$ \eta < 2.5$	Medium quality	< 3	< 0.5 mm	FixedCutTightTrackOnly

Table 5: Muon selection requirements.

Jet Category	Selection Requirements				
	jet cleaning				
Forward Jets	$p_{\rm T} > 30 {\rm GeV}$				
	$2.5 \le \eta < 4.5$				
	$p_{\rm T} > 20 {\rm GeV}$ and $ \eta < 2.5$				
Signal Jets	jet cleaning				
	$JVT \ge 0.64$ if $(p_T < 60 \text{ GeV and } \eta < 2.4)$				

Table 6: AntiKt4EMTopoJets selection requirements. The jet cleaning is applied via the JetCleaningTool, that removes events in regions corresponding to hot calorimeter cells.

70% b-tagging MV2c10 working point

Systematics

Systematics

	Z+jets		ZZ		
Zl normalisation	18%	Normalisation	Normalisation 20%		
Zcl normalisation	23%	0-to-2 lepton ratio 30%			
Zbb normalisation	Floating	2-to-3 jet ratio		19 %	
Zbc-to-Zbb ratio	14-27%	m_{bb}, p_T^V	S (correlat	ed with WZ uncertainties)	
Zcc-to-Zbb ratio	7-31%		WZ		
Zbl-to-Zbb ratio	15-38%	Normalisation		26%	
0-to-2 lepton ratio	26%	2-to-3 jet ratio	14% (0-le	epton) and 11% (1-lepton)	
2-to-3 jet ratio	28% (0-lepton) and 25% (2-lepton)	0-to-1 lepton ratio		12%	
p_T^V, m_{bb}	S	m_{bb}, p_T^V	S (correlat	ted with ZZ uncertainties)	
W+jets			WW	,	
Wl normalisation	32%	Normalisation 25%			
Wcl normalisation	37%	Multi iat (1 lanton)			
Wbb normalisation	Floating	Normalisation	Mulu-jet (1-1	(alastron) 5 500 (muon)	
Wbl-to-Wbb ratio	17% (0-lepton) and 31% (1-lepton)	Normalisation 14-81% ((electron), 5-50%(muon)	
Wbc-to-Wbb ratio	42% (0-lepton) and 21% (1-lepton)	Template variations S			
Wcc-to-Wbb ratio 17% (0-lepton) and 31% (1-lepton)					
2-to-3 jet ratio	23%			Signal	
0-to-1 lepton ratio	17%	Cross section (se	cale)	$0.7\% (a\overline{a}), 27\%$	(gg)
p_T^V, m_{bb}	S	Cross section (P	PDF)	$1.9\% (a\bar{a} \rightarrow WH) 1.6\% (a\bar{a} \rightarrow WH)$	$\rightarrow ZH$) 5% (ee)
tt (all are deco	rrelated between the 0+1 and 2-lepton channels)	Dronohing ratio		170	
tt normalisation	Floating	branching ratio	1->	1.7 %	
2-to-3-jet ratio	9% (0+1-lepton) and 24% (2-lepton)	Acceptance (scale)		1.4%-5%	
$p_{\rm T}^V, m_{bb}$	S	3-jet acceptance	(scale)	1.4%-4.7%	
Single top		$p_{\rm T}^V$ shape (scale)		S	
Cross section	4.4% (s-channel), 4.6% (t-channel), 6% (Wt)	Acceptance (PDF)		0.3%-0.7%	
Acceptance 2-jet	16% (t-channel), 25% (Wt)	p_{V}^{V} shape (NLO EW correction)		S	
Acceptance 3-jet	19% (t-channel), 32% (Wt)	Acceptance (par	ton shower)	4%-7.5%	
m_{bb}, p_T^{v}	$S(p_{T}^{v} \text{ uncorrelated between 2 and 3-jet channels } Wt)$				

S denotes shape systematics

S/B yield plot

Figure 4: Event yields as a function of $\log(S/B)$ for data, background and Higgs boson signal with $m_H = 125$ GeV. Final-discriminant bins in all signal regions are combined into bins of $\log(S/B)$. The signal S and background B yields are the expected and fitted values, respectively. The Higgs boson signal contribution is shown as expected for the SM cross section (indicated as $\mu = 1.0$). The pull of the data with respect to the background-only prediction is shown without systematic uncertainties. The solid red line indicates the pull of the prediction for signal ($\mu = 1.0$) and background with respect to the background-only prediction.

Postfit Plots

0-Lepton

1-Lepton

2-Lepton: Low p^{V_T}

2-Lepton: High pVT

Postfit Yields Table

	0-10	epton	1-lepton		2-lepton				
Sample	$p_{\rm T}^V > 150 {\rm GeV}, 2$ -tag		$p_{\rm T}^V > 150 {\rm GeV}, 2$ -tag		$p_{\rm T}^V < 150$	GeV, 2-tag	$p_{\rm T}^V > 150$ GeV, 2-tag		
	2-jet	3-jet	2-jet	3-jet	2-jet	3-jet	2-jet	3-jet	
Z + l	1.5 ± 0.1	3.3±2.2	_	-	4.6±0.1	15.4±0.5	0.4±0.0	2.9±0.1	
Z + cl	4.2±1.8	6.7±2.6	0.9±0.6	-	13.9±5.9	49±21	1.0±0.4	10.0±4.3	
Z + HF	864±49	1300±90	29.0±3.0	65.7±3.7	4000±120	8250±300	260±14	1192±49	
W + l	2.3±1.5	3.8±2.2	4.3±0.1	9.6±0.3	0.0 ± 0.0	0.0 ± 0.0	0.0±0.0	0.0±0.0	
W + cl	3.7±1.8	7.4±3.5	20±11	33±17	0.0 ± 0.0	0.5±0.0	0.0±0.0	0.0±0.0	
W + HF	184±37	440±96	741±114	1610±300	1.2±0.3	42±10	0.4±0.1	1.3±0.3	
Single-top	45.5±7.7	204±39	331±55	1590±300	139±39	400±130	10.5±3.0	44±14	
Multi-jet	-	-	101±63	210±140	-	-	-	-	
tī	136±14	1081 ± 67	886±82	7520±360	4080±120	12210±340	42.3±4.3	402±36	
Diboson	56±17	65±16	39±10	68±16	121±32	190±36	8.3±2.3	46.6±8.4	
Total bkg.	1297±35	3110±52	2152±48	11120±110	8358±92	21150±150	322±13	1698±38	
VH(bb) (fit)	3.7±8.7	4.3±10.3	4.2±10.1	5.0±12.0	4.2±10.0	6.2±14.9	0.9±2.2	2.5±5.9	
Data	1313	3120	2145	11124	8365	21163	316	1700	

Table 7: The data, background and signal yields along with the total uncertainty. All the background and signal values are evaluated according to the results of the global fit. The V + HF yields includes events from the V + bb, V + bc, V + bl and V + cc categories.