A combined ATLAS and CMS analysis: searches for mass-degenerate Higgs bosons

Jaana Heikkilä

Helsinki Institute of Physics - CMS Collaboration - LHC Higgs Combination Group

Higgs Hunting 2016 LPNHE-Paris

September 2, 2016

The standard model Higgs boson or something else?

LHC Run 1 data allows to probe for

- production modes ggF, VBF, WH, ZH, and ttH and
- decay channels $\gamma\gamma$, $ZZ \rightarrow 4\ell$, $WW \rightarrow 2\ell 2\nu$, $\tau\tau$, bb, and $\mu\mu$.
- The analysis of Run 2 data is ongoing and not yet completed.
- Signal strength μ_i^f = Higgs boson yields for a process $i \to H \to f$:

$$\mu_i^f \equiv \frac{\sigma_i}{\sigma_i^{\rm SM}} \times \frac{{\rm BR}^f}{{\rm BR}_{\rm SM}^f}$$

Jaana Heikkilä (HIP, CMS, LHC-HCG)

The standard model Higgs boson or something else?

LHC Run 1 data allows to probe for

- production modes ggF, VBF, WH, ZH, and ttH and
- decay channels $\gamma\gamma$, $ZZ \rightarrow 4\ell$, $WW \rightarrow 2\ell 2\nu$, $\tau\tau$, bb, and $\mu\mu$.
- The analysis of Run 2 data is ongoing and not yet completed.
- Signal strength μ_i^f = Higgs boson yields for a process $i \to H \to f$:

$$\mu_i^f \equiv \frac{\sigma_i}{\sigma_i^{\rm SM}} \times \frac{{\rm BR}^f}{{\rm BR}_{\rm SM}^f}$$

- Two main reasons for deviations from the SM expectation $\mu_i^f = 1$:
 - 1. couplings are not SM-like, or
 - 2. we are measuring the sum of the signals from multiple particles!

Jaana Heikkilä (HIP, CMS, LHC-HCG)

Why do we want to study if the signal is due to mass-degenerate states?

All our Higgs boson studies use an underlying assumption of a single Higgs boson!

Why do we want to study if the signal is due to mass-degenerate states?

All our Higgs boson studies use an underlying assumption of a single Higgs boson!

Could we resolve overlapping resonances?

No, if they are closer than $\mathcal{O}(1)$ GeV from each other...

Jaana Heikkilä (HIP, CMS, LHC-HCG)

Why do we want to study if the signal is due to mass-degenerate states?

All our Higgs boson studies use an underlying assumption of a single Higgs boson!

Could we resolve overlapping resonances?

No, if they are closer than $\mathcal{O}(1)$ GeV from each other...

We can use the measured values of signal strengths instead!

Jaana Heikkilä (HIP, CMS, LHC-HCG)

Connection between the rank and the number of resonances

- Grossman et al.: arrange the signal strengths in a matrix and determine its rank. [2]
- The rank implies a lower bound on the number of resonances ⇒ If there is a single Higgs boson, the rank is 1.

	${\rm H} \to \gamma \gamma$	$\mathrm{H} \to \mathrm{ZZ}$	$\mathrm{H} \to \mathrm{WW}$	${\rm H} \to \tau \tau$	$\mathrm{H} \to \mathrm{b}\mathrm{b}$
ggF	$\mu_{ m ggF}^{\gamma\gamma}$	$\mu_{ m ggF}^{ m ZZ}$	$\mu^{ m WW}_{ m ggF}$	$\mu_{ m ggF}^{ au au}$	$\mu^{ m bb}_{ m ggF}$
VBF	$\mu_{ m VBF}^{\gamma\gamma}$	$\mu_{ m VBF}^{ m ZZ}$	$\mu_{ m VBF}^{ m WW}$	$\mu_{\rm VBF}^{\tau\tau}$	$\mu^{ m bb}_{ m VBF}$
WH	$\mu_{ m WH}^{\gamma\gamma}$	$\mu_{ m WH}^{ m ZZ}$	$\mu_{ m WH}^{ m WW}$	$\mu_{\rm WH}^{\tau\tau}$	$\mu_{ m WH}^{ m bb}$
ZH	$\mu_{ m ZH}^{\gamma\gamma}$	$\mu_{ m ZH}^{ m ZZ}$	$\mu_{ m ZH}^{ m WW}$	$\mu_{ m ZH}^{ au au}$	$\mu_{ m ZH}^{ m bb}$
ttH	$\mu_{ m ttH}^{\gamma\gamma}$	$\mu_{ m ttH}^{ m ZZ}$	$\mu_{ m ttH}^{ m WW}$	$\mu_{ m ttH}^{ au au}$	$\mu^{ m bb}_{ m ttH}$

Rank can be computed only if the matrix is known exactly
 ⇒ In reality the situation is much more complicated...

Jaana Heikkilä (HIP, CMS, LHC-HCG)

Best fit values of signal strength for each channel $i \rightarrow H \rightarrow f$

Produ	uction				_			Deca	y mode		_			_		
process $H \rightarrow \gamma \gamma$ [fb]		$H \rightarrow ZZ$ [fb]		$H \rightarrow WW$ [pb]		$H \rightarrow \tau \tau [{\rm fb}]$			$H \rightarrow bb$ [pb]							
		Best fit	Uncer	rtainty	Best fit	Uncer	rtainty	Best fit	Uncer	rtainty	Best fit	Unce	rtainty	Best fit	Uncer	rtainty
		value	Stat	Syst	value	Stat	Syst	value	Stat	Syst	value	Stat	Syst	value	Stat	Syst
ggF	Measured	48.0 +10.0 -9.7	+9.4 -9.4	+3.2 -2.3	580 +170 -160	+170 -160	+40 -40	3.5 +0.7	+0.5 -0.5	+0.5 -0.5	1300 +700 -700	+400 -400	+500 -500		-	
		$\binom{+9.7}{-9.5}$	$\binom{+9.4}{-9.4}$	$\binom{+2.5}{-1.6}$	$\binom{+150}{-130}$	$\binom{+140}{-130}$	$\binom{+30}{-20}$	$\binom{+0.7}{-0.7}$	$\binom{+0.5}{-0.5}$	$\binom{+0.5}{-0.5}$	(+700 -700)	$\binom{+400}{-400}$	$\binom{+500}{-500}$		-	
	Predicted	44 ± 5			510 ± 60			4.1 ±0.5			1210 ± 140)		11.0 ± 1.2		
	Ratio	$1.10 \substack{+0.23 \\ -0.22}$	+0.22 -0.21	+0.07 -0.05	$1.13 \ ^{+0.34}_{-0.31}$	+0.33 -0.30	+0.09 -0.07	$0.84 \substack{+0.17 \\ -0.17}$	+0.12 -0.12	$^{+0.12}_{-0.11}$	$1.0 \substack{+0.6 \\ -0.6}$	$^{+0.4}_{-0.4}$	+0.4 -0.4		-	
VBF	Measured	$4.6^{+1.9}_{-1.8}$	$^{+1.8}_{-1.7}$	+0.6	3 +46	+46	+7 -7	$0.39 {}^{+0.14}_{-0.13}$	+0.13 -0.12	+0.07	125 +39	+34	+19		-	
		$\binom{+1.8}{-1.6}$	$\binom{+1.7}{-1.6}$	$\binom{+0.5}{-0.4}$	$\binom{+60}{-39}$	$\binom{+60}{-39}$	$\binom{+8}{-5}$	$\begin{pmatrix} +0.15 \\ -0.13 \end{pmatrix}$	(+0.13)	$\begin{pmatrix} +0.07 \\ -0.06 \end{pmatrix}$	(+39 (-37)	$\binom{+34}{-32}$	$\binom{+19}{-18}$		-	
	Predicted	3.60 ± 0.20			42.2 ±2.0			0.341 ±0.017			100 ±6			0.91 ±0.04		
	Ratio	$1.3^{+0.5}_{-0.5}$	+0.5 -0.5	+0.2 -0.1	$0.1 {}^{+1.1}_{-0.6}$	+1.1 -0.6	+0.2 -0.2	$1.2^{+0.4}_{-0.4}$	+0.4 -0.3	+0.2 -0.2	$1.3 ^{+0.4}_{-0.4}$	+0.3 -0.3	+0.2 -0.2		-	
WH	Measured	$0.7^{+2.1}_{-1.9}$	$^{+2.1}_{-1.8}$	+0.3		-		$0.24 \substack{+0.18 \\ -0.16}$	+0.15 -0.14	$^{+0.10}_{-0.08}$	-64 +64	+55 -50	+32 -34	0.42 +0.21 -0.20	+0.17 -0.16	+0.12
		$\binom{+1.9}{-1.8}$	$\binom{+1.9}{-1.8}$	$\binom{+0.1}{-0.1}$		-		$\begin{pmatrix} +0.16 \\ -0.14 \end{pmatrix}$	$\binom{+0.14}{-0.13}$	$\begin{pmatrix} +0.08 \\ -0.07 \end{pmatrix}$	$\binom{+67}{-64}$	$\binom{+60}{-54}$	$\binom{+30}{-32}$	(+0.22 -0.21)	$\binom{+0.18}{-0.17}$	$\binom{+0.12}{-0.11}$
	Predicted	1.60 ± 0.09			18.8 ± 0.9			0.152 ± 0.007			44.3 ± 2.8			0.404 ±0.017	7	
	Ratio	$0.5^{+1.3}_{-1.2}$	+1.3 -1.1	+0.2 -0.2		-		$1.6^{+1.2}_{-1.0}$	+1.0 -0.9	+0.6 -0.5	$-1.4 {}^{+1.4}_{-1.4}$	$^{+1.2}_{-1.1}$	+0.7 -0.8	$1.0 \substack{+0.5 \\ -0.5}$	+0.4 -0.4	+0.3 -0.3
ZH	Measured	$0.5^{+2.9}_{-2.4}$	+2.8 -2.3	+0.5		-		0.53 +0.23 -0.20	+0.21 -0.19	+0.10 -0.07	58 ⁺⁵⁶ -47	+52	+20 -16	0.08 +0.09	$^{+0.08}_{-0.08}$	+0.04
		$\binom{+2.3}{-1.9}$	$\binom{+2.3}{-1.9}$	$\binom{+0.1}{-0.1}$		-		$\begin{pmatrix} +0.17 \\ -0.14 \end{pmatrix}$	$\binom{+0.16}{-0.14}$	$\begin{pmatrix} +0.05 \\ -0.04 \end{pmatrix}$	$\binom{+49}{-40}$	$\binom{+46}{-38}$	$\binom{+16}{-12}$	(+0.10 (-0.09)	$\binom{+0.09}{-0.08}$	$\binom{+0.05}{-0.04}$
	Predicted	0.94 ± 0.06			11.1 ± 0.6			0.089 ± 0.005			26.1 ± 1.8			0.238 ±0.012	2	
	Ratio	$0.5 \substack{+3.0 \\ -2.5}$	+3.0 -2.5	+0.5 -0.2		-		5.9 +2.6 -2.2	+2.3 -2.1	+1.1 -0.8	$2.2^{+2.2}_{-1.8}$	+2.0	+0.8 -0.6	$0.4 {}^{+0.4}_{-0.4}$	+0.3 -0.3	+0.2 -0.2
ttH	Measured	$0.64 \substack{+0.48 \\ -0.38}$	+0.48	+0.07		-		0.14 +0.05	+0.04	+0.03	-15^{+30}_{-26}	+26 -22	+15	0.08 +0.07	+0.04 -0.04	+0.06
		$\binom{+0.45}{-0.34}$		$\begin{pmatrix} +0.10 \\ -0.05 \end{pmatrix}$		-		$\begin{pmatrix} +0.04 \\ -0.04 \end{pmatrix}$	$\binom{+0.04}{-0.04}$	$\begin{pmatrix} +0.02 \\ -0.02 \end{pmatrix}$	$\binom{+31}{-26}$	$\binom{+26}{-22}$	$\binom{+16}{-13}$	(+0.07) (-0.06)	$\binom{+0.04}{-0.04}$	$\binom{+0.06}{-0.05}$
	Predicted	0.294 ±0.035			3.4 ±0.4			0.0279 ±0.003	2		8.1 ±1.0			0.074 ±0.00	8	
	Ratio	$2.2^{+1.6}_{-1.3}$	+1.6	+0.2 -0.1		-		$5.0^{+1.8}_{-1.7}$	+1.5	+1.0	$-1.9^{+3.7}_{-3.3}$	$^{+3.2}_{-2.7}$	+1.9	$1.1^{+1.0}_{-1.0}$	+0.5	+0.8

Missing elements, uncertainties, and correlations!

Jaana Heikkilä (HIP, CMS, LHC-HCG)

A solution: the profile likelihood ratio test

Evaluate the statistical compatibility of the measured matrix with a rank 1 matrix, i.e.

- 1. construct parametrizations for null and alternative hypotheses: rank 1 vs. rank N $\,$
- 2. **define the test statistic** as a profile likelihood ratio to discriminate between the two hypotheses
- generate the expected distribution of the test statistic and determine the p-value for the null hypothesis.

 \Rightarrow Discriminate between a single Higgs boson, with arbitrary scalar couplings, and the sum of any number of nearly-degenerate Higgs bosons!

A solution: the profile likelihood ratio test

Evaluate the statistical compatibility of the measured matrix with a rank 1 matrix, i.e.

- 1. construct parametrizations for null and alternative hypotheses: rank 1 vs. rank N $\,$
- 2. **define the test statistic** as a profile likelihood ratio to discriminate between the two hypotheses
- 3. generate the expected distribution of the test statistic and **determine the p-value** for the null hypothesis.

 \Rightarrow Discriminate between a single Higgs boson, with arbitrary scalar couplings, and the sum of any number of nearly-degenerate Higgs bosons!

Check how consistent the data is with the assumption of a single particle!

Jaana Heikkilä (HIP, CMS, LHC-HCG)

Two hypotheses, two parametrizations

General matrix parameterisation: $rank(\mathcal{M}) = 5$

Signal	$H \rightarrow \gamma \gamma$	$H \rightarrow ZZ$	$H \rightarrow WW$	$H \rightarrow \tau \tau$	$H \rightarrow bb$
model	$\Pi \rightarrow \gamma \gamma$	$\Pi \rightarrow LL$		$m \rightarrow rr$	$\Pi \rightarrow bb$
ggF	$\mu_{ggF}^{\gamma\gamma}$	μ^{ZZ}_{ggF}	μ^{WW}_{ggF}	$\mu_{ggF}^{ au au}$	μ_{ggF}^{bb}
VBF	$\lambda_{VBF}^{\gamma\gamma}\mu_{ggF}^{\gamma\gamma}$	$\lambda_{VBF}^{ZZ} \mu_{ggF}^{ZZ}$	$\lambda_{VBF}^{WW} \mu_{ggF}^{WW}$	$\lambda_{VBF}^{ au au} \mu_{ggF}^{ au au}$	$\lambda_{VBF}^{bb} \mu_{ggF}^{bb}$
WH	$\lambda_{WH}^{\gamma\gamma} \mu_{ggF}^{\gamma\gamma}$	$\lambda_{WH}^{ZZ} \mu_{ggF}^{ZZ}$	$\lambda_{WH}^{WW} \mu_{ggF}^{WW}$	$\lambda_{WH}^{\tau\tau} \mu_{ggF}^{\tau\tau}$	$\lambda_{WH}^{bb} \mu_{ggF}^{b\bar{b}}$
ZH	$\lambda_{ZH}^{\gamma\gamma} \mu_{ggF}^{\gamma\gamma}$	$\lambda_{ZH}^{ZZ} \mu_{ggF}^{\overline{Z}\overline{Z}}$	$\lambda_{ZH}^{WW} \mu_{ggF}^{WW}$	$\lambda_{ZH}^{\tau\tau} \mu_{ggF}^{\tau\tau}$	$\lambda_{ZH}^{bb} \mu_{ggF}^{b\bar{b}}$
ttH	$\lambda_{ttH}^{\gamma\gamma} \mu_{ggF}^{\gamma\gamma}$	$\lambda_{ttH}^{ZZ} \mu_{ggF}^{ZZ}$	$\lambda_{ttH}^{WW} \mu_{ggF}^{WW}$	$\lambda_{ttH}^{ au au} \mu_{ggF}^{ au au}$	$\lambda_{ttH}^{bb} \mu_{ggF}^{bb}$

Single-state matrix parameterisation: $rank(\mathcal{M}) = 1$

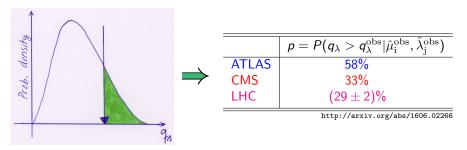
Signal	$H \rightarrow \gamma \gamma$	$H \rightarrow ZZ$	$H \rightarrow WW$	$H \rightarrow \tau \tau$	$H \rightarrow bb$
model	$\Pi \to \gamma \gamma$	$\Pi \rightarrow LL$	$\Pi \rightarrow W W$	$\Pi \rightarrow l l$	$\Pi \rightarrow bb$
ggF	$\mu_{ggF}^{\gamma\gamma}$	μ^{ZZ}_{ggF}	μ^{WW}_{ggF}	$\mu_{gg\mathrm{F}}^{ au au}$	μ^{bb}_{ggF}
VBF	$\lambda_{VBF} \mu_{ggF}^{\gamma\gamma}$	$\lambda_{VBF} \mu_{ggF}^{ZZ}$	$\lambda_{VBF} \mu_{ggF}^{WW}$	$\lambda_{VBF} \mu_{ggF}^{ au au}$	$\lambda_{VBF} \mu_{ggF}^{bb}$
WH	$\lambda_{WH} \mu_{ggF}^{\gamma\gamma}$	$\lambda_{WH} \mu_{ggF}^{ZZ}$	$\lambda_{WH} \; \mu_{ggF}^{WW}$	$\lambda_{WH} \mu_{ggF}^{ au au}$	$\lambda_{WH} \mu_{ggF}^{bb}$
ZH	$\lambda_{ZH} \mu_{ggF}^{\gamma\gamma}$	$\lambda_{ZH} \mu_{ggF}^{ZZ}$	$\lambda_{ZH} \mu_{ggF}^{WW}$	$\lambda_{ZH} \mu_{ggF}^{ au au}$	$\lambda_{ZH} \mu^{bb}_{ggF}$
ttH	$\lambda_{ttH} \mu_{ggF}^{\tilde{\gamma}\tilde{\gamma}}$	$\lambda_{ttH} \mu_{ggF}^{ZZ}$	$\lambda_{ttH} \mu_{ggF}^{WW}$	$\lambda_{ttH} \mu_{ggF}^{\tau au}$	$\lambda_{ttH} \mu_{ggF}^{bb}$

In the case of a single resonance, i.e. rank 1 matrix, the relative scaling factors $\lambda_i = \mu_i^f / \mu_{ggF}^f$ do not depend on the decay mode! Jaana Heikkilä (HIP, CMS, LHC-HCG) September 2, 2016 Searches for degenerate Higgs bosons

6/12

The profile likelihood ratio

• Define the test statistic using ratio between the profile likelihood of the two aforementioned models:


$$q_{\lambda} = -2\ln \frac{\mathcal{L}(\text{data}|\lambda_i^j = \hat{\lambda}_i, \hat{\mu}_{ggF}^j)}{\mathcal{L}(\text{data}|\hat{\lambda}_i^j, \hat{\mu}_{ggF}^{\prime j})}$$

- If the signal strength matrix has rank 1, both parametrizations fit the data equally well $ightarrow q_{\lambda}$ is small.
- If the rank is not equal to unity, the most general 5×5 parametrization will fit the data better $\rightarrow q_{\lambda}$ is large.

Jaana Heikkilä (HIP, CMS, LHC-HCG)

P-values for the single Higgs boson hypothesis

- Generate pseudo-data samples randomly from the best fit values of rank 1 hypothesis to obtain the expected distribution
- Compare the observed value of *q_λ* in data with the expected distribution
 → the p-value for the single Higgs boson hypothesis.
- Apply the approach to the ATLAS, CMS, and LHC measurements!

Conclusion

- A method that can be used to test for the presence of multiple Higgs bosons has been developed.
- The method takes into account the uncertainties, correlations and missing elements of data.
- Applying the method to the ATLAS, CMS and LHC measurements results p-values of 58%, 33%, and 29% for the single Higgs boson hypothesis, respectively

 \Rightarrow Compatible with the hypothesis of a single Higgs boson (as in the SM)!

Thank you for your attention!

Any questions?

Jaana Heikkilä (HIP, CMS, LHC-HCG)

Searches for degenerate Higgs bosons

September 2, 2016 10/12

Call for contributions

At the moment we only study how compatible the data are with the single Higgs boson hypothesis...

but if *specific benchmark models* were provided, the method could also be adapted to *quote exclusions for alternative BSM hypotheses*!

 \implies Inputs from the theory community are welcome!

Jaana Heikkilä (HIP, CMS, LHC-HCG)

References for further reading

- John F. Gunion, Yun Jiang, Sabine Kraml: Diagnosing Degenerate Higgs Bosons at 125 GeV (http://arxiv.org/abs/1208.1817)
- Yuval Grossman, Ze'ev Surujon, Jure Zupan: How to test for mass degenerate Higgs resonances (http://arxiv.org/abs/1301.0328)
- André David, Jaana Heikkilä, Giovanni Petrucciani: Searching for degenerate Higgs bosons (http://arxiv.org/abs/1409.6132).
- 3. CMS Collaboration:

Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV (https://arxiv.org/abs/1412.8662).

4. ATLAS and CMS Collaborations: Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC *pp* collision data at $\sqrt{s} = 7$ and 8 TeV (https://arxiv.org/abs/1606.02266).

• The Higgs boson cartoon by Jorge Cham, Picture of Einstein by unknown. Jaana Heikkilä (HIP, CMS, LHC-HCG) Searching for degenerate Higgs bosons September 2, 2016