

Devin Taylor, UW-Madison On behalf of the CMS Collaboration Higgs Hunting 2016, LPNHE Paris

Motivation

- Search for additional Higgs bosons
 - Additional Higgs doublet
 - Two Higgs doublet
 - MSSM
 - Higgs triplet
- Outline
 - MSSM searches
 - Double Higgs
 - Charged Higgs
 - Lepton flavor violating Higgs
 - Invisible Higgs
 - Heavy Higgs

MSSM Run-1 Summary

- Parameterize search as a function of
 - m_A: mass of the pseudoscalar Higgs
 - tan β: ratio of VEV of the two Higgs doublets

CMS-PAS-HIG-16-007

$H \rightarrow ZA \rightarrow llbb$

Devin Taylor September 1, 2016

Double Higgs

- Several analyses exploring the production of hh
 - hh → bb bb <u>CMS-PAS-HIG-16-002</u> 34% <u>CMS-PAS-HIG-16-026</u>
 - hh → bb WW <u>CMS-PAS-HIG-16-011</u> 25% <u>CMS-PAS-HIG-16-024</u>
 - hh → bb ττ <u>CMS-PAS-HIG-16-028</u>
 7.3% <u>CMS-PAS-HIG-16-029</u>
 - hh → bb γγ <u>CMS-PAS-HIG-16-032</u>
 0.26%
- Multiple interpretations
 - Resonant production
 - Spin-0
 - Spin-2
 - Non-resonant production

Non-resonant Double Higgs

September 1, 2016 **Devin Taylor**

CMS

$H^+ \rightarrow WZ$

- Georgi-Machacek
- Leptonic WZ
- VBS topology
 - High dijet mass

400

600

800

1000

m_{µ±} [GeV]

CMS Preliminary

1800

1600

1400

1200

1000

800

600

400

200

200

W⁺Z) [fb]

× BR(H[±]

ь

400

600

800

0.4

0.2

200

Devin Taylor September 1, 2016

1000

m_{H[±]} [GeV]

Doubly Charged Higgs

- Addition of a Higgs triplet
 - One neutral, two singly charged, two doubly charged Higgs

σ*BR (pb)

10

10

CMS

Preliminary

CMS-PAS-HIG-14-039

Associated Production Cross Section

Observed

Expected

Expected 2σ

Expected 1₀

100% $\Phi^{\perp \perp} \rightarrow \mu \tau$

19.7 fb⁻¹ (8 TeV)

September 1, 2016

Devin Taylor

$LFV \: H \to \mu \tau$

- Lepton flavor violating decays arise naturally in models with multiple Higgs doublets
- Two final states: eµ, μτ_h
- Search performed in multiple jet bins

September 1, 2016

Devin Taylor

Higgs Invisible

- SM BR(H \rightarrow inv.) ~1.2e-3
 - $H \rightarrow 4v$

Devin Taylor September 1, 2016

High Mass $H \rightarrow WW$

- Leptonic decays of WW
- Categorize based on number of jets
 - 0, 1 jet ggH
 - 2 jet VBF

Limits reported with several assumptions on Higgs width (narrow width shown)

•

ggH + VBF cross section

September 1, 2016

Devin Taylor

Devin Taylor September 1, 2016

High Mass $H \rightarrow ZZ$

- Search for high mass scalar resonance in ZZ 4l final state
- Production is allowed to be ggH, VH, VBF
 - Relative fraction of VBF parameterized via f_{VBF} and allowed to float

CMS Preliminary

Events / 20 GeV

m₄₁ (GeV)

Conclusion

- Many interesting BSM searches performed at CMS
 - Multitude of final states
 - Wide range of models and phase spaces tested
- 13 TeV: 2.3 12.9/fb
 - Better reach than 7/8 TeV in many scenarios
 - Much more data coming

CMS Integrated Luminosity, pp

Run-1 2HDM Type I

• 2HDM Type I

Run-1 2HDM Type II

• 2HDM Type II

Devin Taylor September 1, 2016

Run-1 MSSM $h/H/A \rightarrow \tau\tau$

CMS-HIG-13-021

September 1, 2016

Devin Taylor

Low mass pseudoscalar

$H \rightarrow ZA \rightarrow llbb$

$H \rightarrow hh$ Summary

• Summary plots for double Higgs searches

Systematics – (Non-)Resonant hh

bb bb

Source of	Impact in I	LMR (%)	Impact in MMR (%)
systematic uncertainty	Sign	al	Signal
Jet energy scale	1.2 -	4.2	0.5 - 2.8
Jet energy resolution	0.1 –	1.4	0.5 - 1.1
b-tagging scale factor	9.6 – 1	10.4	9.3-10.6
Trigger efficiency	10.2 –	20.9	5.2 - 10.3
Source	Affects	Exp.	limit variation
Bkg norm.	bkg		33.1%
Bkg shape	bkg		29.4%
Luminosity	sig		<0.5%
QCD scale	sig		$<\!0.5\%$
PDF unc.	sig		$<\!0.5\%$
Pileup	sig		$<\!0.5\%$
JER	sig		2.2%
JES	sig		20.7%
B-tagging eff.	sig		5.2%
Trigger eff.	sig		3.7%

bb үү

Sources of Systematical Uncertainties	Туре	Value
General uncertainties		
Integrated luminosity	Normalization	2.7%
Photon related uncertainties		
Photon energy scale $\left(\frac{\Delta M(\gamma \gamma)}{M(\gamma \gamma)}\right)$	Shape	1.0%
Photon energy resolution $(\frac{\Delta\sigma_{\gamma\gamma}}{\sigma_{\gamma\gamma}})$	Shape	1.0%
Diphoton pre-selection (with trigger uncertainties)	Normalization	2.0%
Photon Identification	Normalization	1.0%
Jet related uncertainties		
Jet energy scale $\left(\frac{\Delta M(jj)}{M(jj)}\right)$	Shape	2.0%
Jet energy resolution $\left(\frac{\Delta\sigma_{jj}}{\sigma_{jj}}\right)$	Shape	8.0%
Resonant specific uncertainties		
Mass window selection (with jet selection uncertainty)	Normalization	5.0%
b tagging efficiency (Low Mass, high purity)	Normalization	2.5%
b tagging efficiency (Low Mass, medium purity)	Normalization	1.0%
b tagging efficiency (High Mass)	Normalization	1.0%
Nonresonant specific uncertainti	es	
Jet Selection plus $\tilde{M}_X > 350 \text{ GeV}$	Normalization	3.0%
b tagging efficiency (high purity)	Normalization	4.5%
b tagging efficiency (medium purity)	Normalization	1.0%

Systematics – (Non-)Resonant hh

bb WW

Source	Sig. ($m_{\chi} = 400 \text{ GeV}$)	Sig. ($m_{\chi} = 650 \text{ GeV}$)	Background
Trigger efficiency	5.1 - 6.0%	6.7 - 7.4%	4.5 - 5.3%
Jet b-tagging	4.9 - 6.5%	5.7 - 7.3%	5.1 - 6.0%
Jet energy scale	1.6 - 3.0%	0.6 - 3.9%	1.0 - 3.6%
Jet energy resolution	0.5 - 4.1%	1.8 - 3.5%	0.1 - 2.4%
Electon ID & ISO	1.3 - 1.6%	1.3 - 1.7%	1.4 - 1.5%
Muon ID & ISO	0.9 - 1.4%	1.0 - 1.1%	1.2 - 1.5%
Pileup	0.4 - 1.8%	0.1 - 0.6%	0.5 - 2.2%
Parton distributions	0.4 - 0.5%	0.2 - 0.5%	0.5 - 0.6%
QCD scale	0.3 - 0.4%	0.2 - 0.4%	0.8 - 2.4%
Luminosity		2.7%	
Signal MC stat.	1.4 - 2.4%	0.9 - 3.2%	-
Affecting	g only tī (87.0 - 95.3% o	of the total bkg.)	
$t\overline{t}$ cross section	-	-	6.5%
tt modeling	-	-	10%
$t\overline{t}$ MC stat.	-	-	0.6 - 2.3%
Affecting o	only Drell-Yan (1.8 - 7.1%	6 of the total bkg.)	
Drell-Yan modeling	-	-	30%
Drell-Yan MC stat.	-	-	4.4 - 22.7%
Affecting o	nly single top (2.5 - 4.6%	% of the total bkg.)	
Single top modeling	-	-	20%
Single top MC stat.	-	-	6.6 - 24.4%
Affecting only o	other backgrounds (0.4 -	- 1.4% of the total bkg.)	
Other backgrounds MC stat.	-	-	3.5 - 24.6%

bb ττ

Systematic	value	processes
luminosity	6.2%	all but multijet, Z+jets
Jet energy scale	2-4%	all
MC cross-section	1-10%	backgrounds, not Z+jets, multijet
b-tag efficiency	2-6%	all
lepton efficiency	2-6%	all
Z+jets SF uncertainty	1-10%	Z+jets
au energy scale	3-10%	all
scale unc.	+4.3/-6%	theory
PDF variation	3.1%	theory

Source	Background yield variation	SM signal yield variatior
Jet b-tagging	3.6%	3.5%
Trigger efficiency	3.3%	4.0%
Luminosity	2.7%	2.7%
Jet energy scale	1.7%	1.4%
Muon ID	1.2%	1.2%
Muon ISO	0.9%	0.7%
Parton distributions	0.6%	0.2%
Electron ID & ISO	0.5%	0.5%
Pileup	0.2%	0.2%
Jet energy resolution	< 0.1%	< 0.1%
Affe	cting only t ī (90.7% of the tota	l bkg.)
QCD scale	12.9%	6
tī cross-section	5.2%	5
MC stat.	< 0.1	%
Affectin	g only Drell-Yan (6.0% of the t	otal bkg.)
QCD scale	15.2%	6
Drell-Yan cross-section	4.9%	D
MC stat.	4.5%	5
Affecting	g only Single top (2.6% of the t	total bkg.)
Single top cross-section	7.0%	, ~ >
MC stat.	0.7%	D
QCD scale	0.3%	, D
	Affecting only SM signal	
QCD scale	24.3%	6
MC stat.	< 0.1	%

Systematics – H+ \rightarrow WZ

Source	Signal	WZ	VVV	$Z\gamma$	ZZ	Non-prompt
Luminosity	2.7-6.2	—	2.7-6.2	2.7-6.2	2.7-6.2	—
Lepton efficiency	4.0		4.0	4.0	4.0	—
Lepton momentum scale	1.0	1.0	1.0	1.0	1.0	
Jet momentum scale	2.0 - 5.0	8.0	6.0	30.0	13.0	
$E_{\rm T}^{\rm miss}$ resolution	5.0	1.7	1.0		7.0	
B-tagging	2.0	—	2.0	2.0	2.0	—
WZ normalization		21-23				
Non-prompt normalization						30-81
GM uncertainties	8					—

Run-1 LFV H $\rightarrow \mu \tau$

- Best fit 0.84% BR(H $\rightarrow \mu \tau$)
- 2.4σ excess

Devin Taylor September 1, 2016

CMS-HIG-14-040

19.7 fb⁻¹ (8 TeV)

10⁻⁶

10⁻⁵

 10^{-4}

 $|Y_{eu}|$

Run-1 LFV $H \rightarrow e\tau$, $e\mu$

28

Devin Taylor September 1, 2016

Systematics – LFV H $\rightarrow \mu \tau$

Systematic uncertainty	$H \rightarrow \mu \tau_e$	$H \rightarrow \mu \tau_h$
Muon trigger/ID/isolation	3%	3%
Electron trigger/ID/isolation	3%	
Hadronic $ au$ efficiency		10%
b-tagging veto	3%	
$Z \rightarrow \tau \tau$ background	10%⊕5%	10%⊕5%
$Z \rightarrow \mu \mu$, ee background	$10\%{\oplus}5\%$	$10\%{\oplus}5\%$
Misidentified μ , e background	$40\%{\oplus}10\%$	
Misidentified $ au_{ m h}$ background		30%⊕10%
WW, ZZ background	10%⊕5%	$10\%{\oplus}5\%$
tī background	20%⊕5%	20%⊕5%
$W + \gamma$ background	$10\%{\oplus}5\%$	
Single top production background	10%	10%
Jet energy scale	3-20%	3-20%
Hadronic τ energy scale		3%
Misidentified lepton shape	$\pm \sigma$	$\pm \sigma$
Theory uncertainty	10%	10%
Luminosity	2.7%	2.7%

. 29

	Systematic uncertainty	Impact
-	Common	
\mathbf{e}	ZZ background theory	16%
$\mathbf{\tilde{\mathbf{v}}}$	luminosity	8.4%
	b jet tag efficiency	6.2%
	Electron efficiency	6.2%
	Muon efficiency	6.2%
	Flectron energy scale	3.2%
	Muon momentum scale	3.2%
	International and a scale	3.2 /o
	Jet energy scale	2.2%
	Diboson normalisation	5.3%
	e μ region extrapolation	4.0%
	$Z(l^+l^-)$ normalisation	4.8%
	Signal specific	
	QCD scale + PDF (qqZH)	7.4%
	QCD scale + PDF (ggZH)	4.0%
:	Total statistical only –	-50/+56%
	Total uncertainty –	-55/+62%
	<u> </u>	
_11	Systematic uncertainty	Impact
3H -	Common	
	Muon efficiency	24%
	Electron efficiency	22%
	Lepton veto efficiency	16%
	b jet tag efficiency	3.2%
	$W(l\nu)$ +jets/ $Z(\nu\nu)$ +jets ratio theory	16%
	γ +jets/Z($\nu\nu$)+jets ratio theory	5.8%
	Jet energy scale+resolution	10%
	$E_{\rm T}^{\rm miss}$ scale	1.8%
	Luminosity	3.0%
	Diboson background normalisation	2.7%
	Top quark background normalisation	< 1%
	Signal specific	
	$ggH p_T$ -spectrum	15%
	QCD scale + PDF (ggH)	5.8%
:	Total statistical only	-22/+25%
	To all outforcur orig	

Syst. – Higgs Invisibl

12%

3.0%

1.4%

-46/+50%

-69/+74%

Systematic uncertainty	Impact
Common	
W to Z ratio in QCD produced V+jets	13%
W to Z ratio in EW produced V+jets	6.3%
Jet energy scale+resolution	6.0%
QCD multijet normalisation	4.3%
PU mis-modelling	4.2%
Lepton efficiencies	2.5%
Luminosity	2.2%
Signal specific	
ggH acceptance	3.8%
QCD scale + PDF (qqH)	1.8%
QCD scale + PDF (ggH)	< 0.2%
Total statistical only	-27/+28%
Total uncertainty	-33/+32%
Systematic uncertainty	Impact
Systematic uncertainty Common	Impact
Systematic uncertainty Common γ +jets/Z($\nu\nu$)+jets ratio theory	Impact 32%
Systematic uncertainty Common γ +jets/Z($\nu\nu$)+jets ratio theory W($l\nu$)+jets/Z($\nu\nu$)+jets ratio theory	Impact 32% 21%
Systematic uncertainty Common γ +jets/Z($\nu\nu$)+jets ratio theory W($l\nu$)+jets/Z($\nu\nu$)+jets ratio theory Jet energy scale+resolution	Impact 32% 21% 12%
Systematic uncertainty Common γ +jets/Z($\nu\nu$)+jets ratio theory W($l\nu$)+jets/Z($\nu\nu$)+jets ratio theory Jet energy scale+resolution V-tagging efficiency	Impact 32% 21% 12% 12%
Systematic uncertaintyCommon γ +jets/Z($\nu\nu$)+jets ratio theoryW($l\nu$)+jets/Z($\nu\nu$)+jets ratio theoryJet energy scale+resolutionV-tagging efficiencyLepton veto efficiency	Impact 32% 21% 12% 12% 13%
Systematic uncertainty Common γ +jets/ $Z(\nu\nu)$ +jets ratio theory $W(l\nu)$ +jets/ $Z(\nu\nu)$ +jets ratio theory Jet energy scale+resolution V-tagging efficiency Lepton veto efficiency Electron efficiency	Impact 32% 21% 12% 12% 13% 13%
Systematic uncertainty Common γ +jets/Z($\nu\nu$)+jets ratio theory W($l\nu$)+jets/Z($\nu\nu$)+jets ratio theory Jet energy scale+resolution V-tagging efficiency Lepton veto efficiency Electron efficiency Muon efficiency	Impact 32% 21% 12% 12% 13% 13% 8.6%
Systematic uncertainty Common γ +jets/Z($\nu\nu$)+jets ratio theory W($l\nu$)+jets/Z($\nu\nu$)+jets ratio theory Jet energy scale+resolution V-tagging efficiency Lepton veto efficiency Electron efficiency Muon efficiency b jet tag efficiency	Impact 32% 21% 12% 12% 13% 13% 8.6% 5.7%
Systematic uncertainty Common γ +jets/Z($\nu\nu$)+jets ratio theory W($l\nu$)+jets/Z($\nu\nu$)+jets ratio theory Jet energy scale+resolution V-tagging efficiency Lepton veto efficiency Electron efficiency Muon efficiency b jet tag efficiency Photon efficiency	Impact 32% 21% 12% 12% 13% 13% 8.6% 5.7% 3.1%
Systematic uncertainty Common γ +jets/Z($\nu\nu$)+jets ratio theory W($l\nu$)+jets/Z($\nu\nu$)+jets ratio theory Jet energy scale+resolution V-tagging efficiency Lepton veto efficiency Electron efficiency Muon efficiency b jet tag efficiency Photon efficiency E_{T}^{miss} scale	Impact 32% 21% 12% 13% 13% 8.6% 5.7% 3.1% 4.6%
Systematic uncertainty Common γ +jets/ $Z(\nu\nu)$ +jets ratio theory $W(l\nu)$ +jets/ $Z(\nu\nu)$ +jets ratio theory Jet energy scale+resolution V-tagging efficiency Lepton veto efficiency Electron efficiency Muon efficiency b jet tag efficiency Photon efficiency E_{T}^{miss} scale Top quark background normalisation	Impact 32% 21% 12% 13% 13% 5.7% 3.1% 4.6% 6.0%
Systematic uncertainty Common γ +jets/Z($\nu\nu$)+jets ratio theory W($l\nu$)+jets/Z($\nu\nu$)+jets ratio theory Jet energy scale+resolution V-tagging efficiency Lepton veto efficiency Electron efficiency Muon efficiency b jet tag efficiency Photon efficiency Efficiency Efficiency Dipo quark background normalisation Diboson background normalisation	Impact 32% 21% 12% 12% 13% 13% 5.7% 3.1% 4.6% 6.0% $< 1\%$
Systematic uncertainty Common γ +jets/Z($\nu\nu$)+jets ratio theory $N(l\nu)$ +jets/Z($\nu\nu$)+jets ratio theory et energy scale+resolution V-tagging efficiency Σ -epton veto efficiency Electron efficiency Muon efficiency Σ -pt tag efficiency Σ -pt tag efficiency Σ -noton efficiency Σ -noton efficiency Σ -miss scale Top quark background normalisation Diboson background normalisation Σ -minosity	Impact 32% 21% 12% 12% 13% 8.6% 5.7% 3.1% 4.6% 6.0% $< 1\%$ $< 1\%$

30

Devin Taylor September 1, 2016

Vj

ggH $p_{\rm T}$ -spectrum QCD scale + PDF (ggH)

QCD scale + PDF (VH)

Total statistical only Total uncertainty

V

Devin Taylor September 1, 2016

31

 VBF and VH searches using invisible decays

CMS-PAS-HIG-16-009

CMS-PAS-EXO-16-038

High Mass $H \rightarrow bb$

- Search for heavy resonance in bb final state
 - Spin-0 and spin-2
- Binned maximum likelihood fit in the m_{bb} distribution

Devin Taylor September 1, 2016