

ATLAS H(125) difermion results

Elizaveta Shabalina II. Physikalisches Institut, Universität Göttingen on behalf of the ATLAS collaboration

Introduction - I

- Higgs discovery and measurements of its properties rely on bosonic Higgs decays
 - measurements confirm SM nature of Higgs
- Establish mass generation mechanism for fermions
 - demonstrate direct coupling of Higgs to fermions
 - proportionality of coupling to mass
- Larger Higgs boson sample in run 2 will allow for increased precision and probing new fermionic channels

Introduction - II

Higgs discovery and precision measurements are driven by the ggF production mode

Introduction - II

VH and ttH production mechanisms haven't been observed yet

These are the most promising channels to observe Higgs to bottom coupling

$H \rightarrow TT \qquad JHEP 04 (2015) 117$

Run I recap

All τ decay modes

Favourable S/B conditions

Designed to be sensitive to ggF, VBF, VH

- **Ο** VBF category: require 2 jets with large η separation
- □ boosted category (ggF dominated): Higgs candidate with large p_T
- Main backgrounds:
 - □ Z→ττ: determined from MC and data (τ embedding technique)
 - υ τ_{had} fakes determined from data
- Multiple control regions to validate background modelling for different categories and τ decays

31/08/2016

H→TT

BDT to extract signal: simultaneous fit to data in all 6 analysis regions

Evidence for the Yukawa-coupling to T leptons Significance obs (exp) [σ]: 4.4 (3.3)
Combination with CMS provided observation Significance obs (exp) [σ]: 5.5 (5.0)

Yields in discriminant bins ordered by log(S/B)

VH(H→ττ) run 1 search: Phys.Rev.D93, 092005

Dedicated YSF talk by Eric Drechsler later today: "Standard model $H \rightarrow \tau \tau$ searches with ATLAS"

Run 2 results

31/08/2016

GEORG-AUGUST-UNIVERSITÄT

ATLAS-CONF-2016-041

Very small branching fraction in SM

- Yukawa-coupling to 2nd generation fermions
- mass dependence
- coupling to leptons

H→µµ

ATLAS-CONF-2016-041

Very small branching fraction in SM

- Yukawa-coupling to 2nd generation fermions
- mass dependence
- coupling to leptons

Clean signature: narrow resonance in dimuon invariant mass spectra

- □ two opposite charge muons (p_T>25 (15) GeV)
- b-veto and low MET requirement to suppress ttbar
- examine (110-160) GeV mass range

Dominant irreducible background

- □ $Z/\gamma^* \rightarrow \mu\mu$: shape and normalisation from data (fit to dimuon mass spectra using parametrised function)
 - BreitWigner + Gauss (for Z->mumu)
 - e^{Ax}/x^3 (for the continuum)
 - all parameters are free in the fit

H→µµ

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Very small branching fraction in SM

- Yukawa-coupling to 2nd generation fermions
- mass dependence
- coupling to leptons

Clean signature: narrow resonance in dimuon invariant mass spectra

- □ two opposite charge muons (p_T>25 (15) GeV)
- b-veto and MET requirement to suppress ttbar
- examine (110-160) GeV mass range

Dominant irreducible background

Z/γ*→μμ : shape and normalisation from data (fit to dimuon mass spectra using parametrised function)

Analysis strategy

- split in categories with different S/B
- VBF category defined first using MVA discriminant
 - new in run 2: ~10% improvement of sensitivity
- □ the rest is split into 6 categories in muon η and $p_T(µµ)$ to take advantage of different dimuon mass resolution

Signal extracted from simultaneous fit to m_{µµ} distribution in 7 categories

H→µµ

Very small branching fraction in SM

- Yukawa-coupling to 2nd generation fermions
- mass dependence
- coupling to leptons

Clean signature: narrow resonance in dimuon invariant mass spectra

- two opposite charge muons (pT>25 (15) GeV)
- b-veto and MET requirement to suppress ttbar
- examine (110-160) GeV mass range

Dominant irreducible background

□ $Z/\gamma^* \rightarrow \mu\mu$: shape and normalisation from fit to dimuon mass spectra using parametrised function

Analysis strategy

- split in categories with different S/B
- VBF category defined first using MVA discriminant
 - new in run 2: ~10% improvement of sensitivity
- the rest is split into 6 categories in muon η and p_T(μμ) to take advantage of different dimuon mass resolution

Signal extracted from simultaneous fit to m_{µµ} distribution in 7 categories

H→μμ

upper limit @95% CL	obs (exp)
ATLAS run 1+run 2	3.5 (4.5)
ATLAS run 2	4.4 (5.5)
ATLAS run I	7.1 (7.2)
CMS run I	7.4 (6.5)

31/08/2016

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

VH (H \rightarrow bb) ATLAS-CONF-2016-091

- □ Final states with 0, 1 and 2 leptons and at least 2 jets, of which 2 b-tagged
- Higgs candidate built of 2 b-tagged jets
 - additional corrections for b-jets to improve m_{bb} resolution: *muon-in-jet*
 - D PtReco (0- and 1-lepton), kinematic LH fit in 2-lepton channel
- □ Further categorisation based on p_T^V and nJets (2,3 or ≥3)
 - **D** p_T^V defined as MET in 0-lepton channel; MET+ $p_T(\ell)$ in 1-lepton channel; p_T of 2-lepton system
 - **D** $p_T^V > 150 \text{ GeV}$ in 0,1 lepton; $p_T^V < 150 \text{ GeV}$ and $p_T^V > 150 \text{ GeV}$ in 2-lepton

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Signal extraction

	рт ^V <150 GeV		рт ^V >I50 GeV		
	2 jets	≥3 jets	2 jets	3 jets	≥3 jets
0-lepton	-	-	BDT	BDT	-
I-lepton	-	-	BDT	BDT	-
2-lepton	BDT	BDT	BDT	-	BDT

D Two types of BDTs: BDT_{VH} and BDT_{VZ}

- m_{bb}, MET, p_T(b1), p_T(b2), ΔR(b1,b2) used in all channels
- 1-lepton channel: m(top) and |ΔY(W,H)| to reject top pair background

Z⊢

Signal extraction

	рт ^V <150 GeV		p⊤ ^V >I50 GeV		eV
	2 jets	≥3 jets	2 jets	3 jets	≥3 jets
0-lepton	-	-	BDT	BDT	-
I-lepton	-	-	BDT	BDT	-
2-lepton	BDT	BDT	BDT	-	BDT

D Two types of BDTs: BDT_{VH} and BDT_{VZ}

- m(bb), MET, pT(b1), pT(b2), ΔR(b1,b2) used in all channels
- 1-lepton channel: m(top) and |ΔY(W,H)| to reject top pair background

Background	V+jets	top pairs
baseline	Sherpa 2.2 (≤2p@NLO, 4p@LO)	Powheg+Py6
systematics	Fact, Renorm, CKKW, Resum scale, MG5_aMC+P8	Powheg+Hpp, MG5_aMC+Hpp, RadHi/RadLo
treatment	free: Z/W+HF (bb, bc, cc, bl) normalisation ; 2j/3j,1l/2l(W); 2j/3j,0l/2l(Z); bb/bc/bl/cc relative	free: 0+1- <i>l</i> and 2- <i>l</i> normalisations; 2j/3j ratio uncertainty

31/08/2016

VH ($H \rightarrow bb$) results

Simultaneous fit to BDT distributions in 8 regions

- uncertainties cover normalisation (overall and relative between analysis regions) and shape
 - $\hfill\square$ derived for m_{bb} and $p_T{}^V$
- free parameters have a large effect on signal strength
- also important: b/c-tagging, Z+jets mbb shape, ttbar model, MC statistics for background

Sample	Scale factor
$t\bar{t}$ 0+1-lepton	0.86 ± 0.13
$t\overline{t}$ 2-lepton	0.94 ± 0.09
W + HF	1.59 ± 0.39
Z + HF	1.04 ± 0.11

VZ fit result $\mu_{VZ} = 0.91 \pm 0.17(\text{stat})^{+0.32}_{-0.27}(\text{syst})$ significance obs (exp) 3.0 (3.2) SD

VH ($H \rightarrow bb$) results

Simultaneous fit to BDT distributions in 8 regions

- uncertainties cover normalisation (overall and relative between analysis regions) and shape
- free parameters have a large effect on signal strength
- also important: b/c-tagging, Z+jets mbb shape, ttbar model, MC statistics for background

Events / 0.5	10^{8} 10^{7} $\sqrt{s} = 13 \text{ TeV } \int \text{Ldt} = 13.2 \text{ fb}^{-1}$ 10^{6} 10^{5} 10^{5} $Z_{+}(bb,bc,cc,bl)$
	10 ⁴ 10 ³ 10 ² 10
Pull (stat.)	$1 \\ 2 \\ 0 \\ -2 \\ -4 \\ -3.5 \\ -3 \\ -2.5 \\ -2 \\ -4 \\ -3.5 \\ -3 \\ -2.5 \\ -2 \\ -1.5 \\ -1 \\ -0.5 \\ 0 \\ 0 \\ 0.5 \\ 0 \\ 0.5 \\ 0 \\ 0.5 \\ 0 \\ 0.5 \\ 0 \\ 0.5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $

Data consistent with background only post-fit and also consistent with SM (μ =1)

Sample	Scale factor
$t\bar{t}$ 0+1-lepton	0.86 ± 0.13
$t\bar{t}$ 2-lepton	0.94 ± 0.09
W + HF	1.59 ± 0.39
Z + HF	1.04 ± 0.11

	significance obs (exp) [σ]	μ
ATLAS run I	I.4 (2.6)	$0.51\substack{+0.40 \\ -0.37}$
ATLAS run 2	0.42 (1.94)	$0.21\substack{+0.51 \\ -0.50}$
CMS run I	2.1 (2.5)	0.89 ± 0.43
ATLAS+CMS run I	2.6 (3.7)	$0.70\substack{+0.29 \\ -0.27}$

More details in YSF talk by Jeff Hetherly: "Recent Vh, $h \rightarrow b\overline{b}$ Analysis Results" on Friday

31/08/2016

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

VBF H→bb

□ VBF H→bb search suffers from large non-resonant *bbjj* background

VBF H \rightarrow bb with γ ATLAS-CONF-2016-063

□ Require high p_T photon in the final state

- provides a clean signature for efficient triggering
- gluon-induced component of non-resonant bbjjγ is suppressed
- destructive interference further suppresses central photon emissions
- **D**ramatically increases S/B in VBF mode

VBF $H \rightarrow bb$ with γ

WZNN⁷

- main background non-resonant bbjjγ production - determined from data
- smaller contribution from Zγ + jets used for control measurement

□ Require high p_T photon in the final state

- provides a clean signature for efficient triggering
- gluon-induced component of non-resonant bbjjγ is suppressed
- destructive interference further suppresses central photon emissions

Dramatically increases S/B in VBF mode

Selection

- one photon with $p_T > 30 \text{ GeV}$
- 4 jets two of which are central and b-tagged
- □ p_T(bb)>80 GeV, VBF pair m(jj)>800 GeV

Split events in 3 regions according to BDT
 Simultaneous fit to m_{bb} distributions in 3 regions

31/08/2016

VBF $H \rightarrow bb$: results

□ Require high p_T photon in the final state

- provides a clean signature for efficient triggering
- gluon-induced component of non-resonant bbjjγ is suppressed
- destructive interference further suppresses central photon emissions

Dramatically increases S/B in VBF mode

upper limit @95% CL	obs (exp)	μ
ATLAS run I	4.4 (5.4)	-0.8 ± 2.3
ATLAS (VBF with γ) run 2	4.0 (6.0)	$-3.9^{+2.8}_{-2.7}$
CMS run I	5.5 (2.5)	$2.8^{+1.6}_{-1.4}$
CMS run 2	3.0 (5.0)	$-3.7^{+2.4}_{-2.5}$
CMS run I+run 2	3.4 (2.2)	$1.3^{+1.2}_{-1.1}$

Z+ γ measurement with the same signature obs (exp) limit: 2.0 (1.8), μ = 0.3±0.8

ttH production

- Top quark is the most strongly-coupled to Higgs SM particle (Y_t ~ 1)
- Precise measurement of top-Higgs Yukawa-coupling is critical to establish SM nature of Higgs boson and look for deviation from SM behaviour

most extensions of the SM predict the largest deviations from the SM couplings in ttH

Ο Indirect constraints provided by the gluon fusion and via $H \rightarrow \gamma \gamma$ decays

ttH (H \rightarrow bb) ATLAS-CONF-2016-080

- Event selection
 - □ Single lepton channel: 1 lepton (e or μ), from 4 to ≥6 jets with 2 to ≥4 b-jets
 - □ Dilepton channel: 2 opposite-sign leptons (ee, µµ, eµ), from 3 to ≥4 jets with 2 to ≥4 b-jets

- Categorise events by jet and b-jet multiplicity
 - take advantage of low S/B regions to constrain systematic uncertainties
 - maximise sensitivity by separating regions with different S/VB
- Build MVA discriminant to separate signal from background in signal-rich regions

Analysis strategy

single lepton channel

$$H_T^{had} = \sum_{i=1}^{r} p_T$$

~12% (8%) efficiency to match all jets correctly in $\geq 6j$, $\geq 4b$ region with (without) Higgs-related variables (max = 38%)

Reconstruction BDT

- trained to match reconstructed jets to partons
- with and without Higgs-related variables
- variables:
 - masses: m_t(lep), m_t(had), m_H
 - angular separation: $\Delta R(b_1, b_2)$, $\Delta R(b_1, \ell)$, $\Delta R(b \text{ from } t_{lep}, \ell)$

~42% (29%) efficiency to match all jets correctly in \geq 4j, \geq 4b region with (without) Higgs-related variables (max = 93%)

Classification BDT

- combines output of recoBDT with other variables to discriminate signal from background
- distributions are used in the fit to data
- NN in 3j 3b region without reconstruction

Background composition

Detailed classification

- $\Box \quad \texttt{tt+\geq1b: tt+b, tt+B, tt+bb, tt+\geq3b}$
- used to apply corrections and estimate uncertainties

Background model

tt+jets

□ tt+light/tt+≥1c nominal (Powheg+Py6) and alternative ttbar samples are reweighted to NNLO theory prediction (sequential p_T(ttbar) and p_T(top) reweighting)

□ tt+≥1b nominal and alternative are reweighted to Sherpa OpenLoops

tt+jets systematics

- □ decorrelated between tt+light, tt+≥1c and tt+≥1b
- for all three components:
 - ISR/FSR radiation
 - parton shower and hadronisation
 - NLO MC generator
- □ tt+light, tt+ \geq 1c: uncertainty on p_T(top) and p_T(ttbar)
- □ tt+≥1b
 - variations of SherpaOL 4F settings
 - alternative generator MG5_aMC@NLO (4F)
 - alternative PS: MG5_aMC@NLO (4F)+P8 or H++

tt+≥1c and tt+≥1b normalisations are free parameters of the fit

Signal extraction

single lepton channel BDT

- Simultaneous fit to discriminants in 6 signal and 8 control regions
- Significant reduction of uncertainties post-fit

dilepton channel BDT

31/08/2016

Results

tt+≥1c and tt+≥1b normalisations post-fit $k_{t\bar{t}+\geq 1b} = 1.33^{+0.18}_{-0.17}$ $k_{t\bar{t}+\geq 1c} = 1.31^{+0.53}_{-0.40}$

Results

Uncertainty source	Δ	μ
$t\bar{t}+\geq 1b \mod$	+0.53	-0.53
Jet flavour tagging	+0.26	-0.26
$t\bar{t}H$ modelling	+0.32	-0.20
Background model statistics	+0.25	-0.25
$t\bar{t}+\geq 1c$ modelling	+0.24	-0.23
Jet energy scale and resolution	+0.19	-0.19
$t\bar{t}$ +light modelling	+0.19	-0.18
Other background modelling	+0.18	-0.18
Jet-vertex association, pileup modelling	+0.12	-0.12
Luminosity	+0.12	-0.12
$t\bar{t}Z$ modelling	+0.06	-0.06
Light lepton (e, μ) ID, isolation, trigger	+0.05	-0.05
Total systematic uncertainty	+0.90	-0.75
$t\bar{t}+\geq 1b$ normalisation	+0.34	-0.34
$t\bar{t}+\geq 1c$ normalisation	+0.14	-0.14
Statistical uncertainty	+0.49	-0.49
Total uncertainty	+1.02	-0.89

	significance obs (exp) [0]	μ
ATLAS run I	1.4 (1.1)	1.5 ± 1.1
ATLAS run 2	2.4 (1.2)	$2.1\substack{+1.0 \\ -0.9}$
CMS run 2 (2.7 fb ⁻¹)		-2.0 ± 1.8

ttH combination

ATLAS-CONF-2016-068

Channel	Significance		
	Observed $[\sigma]$	Expected $[\sigma]$	
$t\bar{t}H, H \to \gamma\gamma$	-0.2	0.9	
$t\bar{t}H, H \to (WW, \tau\tau, ZZ)$	2.2	1.0	
$t\bar{t}H, H \to b\bar{b}$	2.4	1.2	
$t\bar{t}H$ combination	2.8	1.8	

	significance obs (exp) [0]	μ
ATLAS run I	2.33 (1.53)	I.7 ± 0.8
ATLAS run 2	2.8 (1.8)	I.8 ± 0.7
CMS run I	3.4 (1.2)	$2.8^{+1.0}_{-0.9}$
ATLAS+CMS run I	4.4 (2.0)	$2.3\substack{+0.7 \\ -0.6}$

- ATLAS performed searches for Higgs boson decaying in two fermions with up to 13.2 fb⁻¹ of data at 13 TeV
- □ New results are available for $H \rightarrow bb$ and $H \rightarrow \mu\mu$ decay channels
- Sensitivity of H $\rightarrow \mu\mu$ search is greatly improved with respect to run 1
- Combination of ttH searches in various final states was performed and it surpassed sensitivity of run 1 ttH search

Backup

ttH: complete systematics

Systematic source	How evaluated	$t\bar{t}$ categories
$t\bar{t}$ cross-section	$\pm 6\%$	All, correlated
NLO generator (residual)	Powheg-Box + Herwig++ vs. MG5_aMC + Herwig++	All, uncorrelated
Radiation (residual)	Variations of $\mu_{\rm R}, \mu_{\rm F}, {\rm and} hdamp$	All, uncorrelated
PS & hadronisation (residual)	Powheg-Box + Pythia 6 vs. Powheg-Box + Herwig++	All, uncorrelated
NNLO top & $t\bar{t} p_{\rm T}$	Maximum variation from any NLO prediction	$t\bar{t} + \geq 1c, t\bar{t} + \text{light, uncorr.}$
$t\bar{t} + b\bar{b}$ NLO generator reweighting	SherpaOL vs. MG5_aMC + Pythia8	$t\bar{t}+\geq 1b$
$t\bar{t} + b\bar{b}$ PS & hadronis. reweighting	MG5_aMC + Pythia8 vs. MG5_aMC + Herwig++	$t\bar{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ renorm. scale reweighting	Up or down a by factor of two	$t\bar{t}+\geq 1b$
$t\bar{t} + b\bar{b}$ resumm. scale reweighting	Vary $\mu_{\rm Q}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ global scales reweighting	Set $\mu_{\rm Q}$, $\mu_{\rm R}$, and $\mu_{\rm F}$ to $\mu_{\rm CMMPS}$	$t\bar{t}+\geq 1b$
$t\bar{t} + b\bar{b}$ shower recoil reweighting	Alternative model scheme	$t\bar{t}+\geq 1b$
$t\bar{t} + b\bar{b}$ PDF reweighting	CT10 vs. MSTW or NNPDF	$t\bar{t}+\geq 1b$
$t\bar{t} + b\bar{b}$ MPI	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + b\bar{b}$ FSR	Radiation variation samples	$t\bar{t} + \geq 1b$
$t\bar{t}+c\bar{c}$ ME calculation	MG5_aMC + Herwig++ inclusive vs. ME prediction	$t\bar{t} + \ge 1c$

MC simulation details

tt inclusive MC model (5F)

ME gen.	Powheg-Box	Powheg-Box	MG5_aMC	Powheg-Box	Powheg-Box
PS/UE gen.	Pythia 6.428	Herwig++ $2.7.1$	Herwig++ $2.7.1$	Pythia 6.428	Pythia 6.428
Ren. scale	$\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$\sqrt{m_t^2 + \frac{1}{2}(p_{\rm T,t}^2 + p_{\rm T,\bar{t}}^2)}$	$\frac{1}{2} \cdot \sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$2 \cdot \sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$
Fact. scale	$\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$\sqrt{m_t^2 + \frac{1}{2}(p_{\mathrm{T,t}}^2 + p_{\mathrm{T,\bar{t}}}^2)}$	$\frac{1}{2} \cdot \sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$2 \cdot \sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$
hdamp	m_t	m_t	-	$2 \cdot m_t$	m_t
ME PDF	CT10	CT10	CT10	CT10	CT10
PS/UE PDF	CTEQ6L1	CTEQ6L1	CTEQ6L1	CTEQ6L1	CTEQ6L1
Tune	P2012	UE-EE5	UE-EE5	P2012 radHi	P2012 radLo

tt+bb MC model (4F)

ME gen.	MG5_aMC	MG5_aMC	SherpaOL
PS/UE gen.	Herwig++ $2.7.1$	Pythia 8.210	Sherpa
Renorm. scale	$\mu_{ m CMMPS}$	$\mu_{ m CMMPS}$	$\mu_{ m CMMPS}$
Fact. scale	$H_{\rm T}/2$	$H_{\rm T}/2$	$H_{\mathrm{T}}/2$
Resumm. scale	$f_{ m Q}\sqrt{\hat{s}}$	$f_{\rm Q}\sqrt{\hat{s}}$	$H_{\rm T}/2$
ME PDF	NNPDF3.0 4F	NNPDF3.0 4F	$CT10 \ 4F$
PS/UE PDF	CTEQ6L1	NNPDF2.3	
Tune	UE-EE-5	A14	Author's tune

Uncertainty Source	Δ	$\cdot \mu$
$t\bar{t} + \ge 1b$ modelling	+0.34	-0.33
Jet flavour tagging	+0.19	-0.19
Background model statistics	+0.18	-0.18
$t\bar{t} + \geq 1c \text{ modelling}$	+0.17	-0.17
Jet energy scale and resolution	+0.18	-0.18
$t\bar{t}H$ modelling	+0.20	-0.13
$t\bar{t}$ +light modelling	+0.14	-0.14
Other background modelling	+0.16	-0.15
Fake lepton uncertainties	+0.11	-0.12
Jet-vertex association, pileup modelling	+0.09	-0.09
Luminosity	+0.09	-0.09
$t\bar{t}Z$ modelling	+0.08	-0.07
Light lepton (e, μ) , photon, and τ ID, isolation, trigger	+0.04	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t} + \geq 1b$ normalisation	+0.24	-0.24
$t\bar{t} + \geq 1c$ normalisation	+0.11	-0.11
Statistical uncertainty	+0.38	-0.38
Total uncertainty	+0.69	-0.66

ttH combination LH curves

VH selection details

Selection	0-lepton	1-lepton	2-lepton
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss}$ (μ sub-channel)	
		Lowest unpress	aled single lepton
Leptons	0 loose lepton	1 tight lepton	2 loose leptons
			$(\geq 1 \text{ medium lepton})$
Lepton pair	-	-	Same flavour
			opposite-charge for $\mu\mu$
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 150 GeV	> 30 GeV (e sub-channel)	-
m_{ll}	-	-	$71 < m_{ll} < 121 \text{ GeV}$
S_{T}	> 120 (2 jets), >150 GeV (3 jets)	-	-
Jets	Exactly 2 or 3 signal jets Exactly 2 or \geq 3 signal		
b-jets	2 <i>b</i> -tagged signal jets		
Leading jet $p_{\rm T}$	> 45 GeV		
$\min\Delta\phi(E_{\rm T}^{\rm miss}, {\rm jet})$	$> 20^{\circ}$	-	-
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}},h)$	$> 120^{\circ}$	-	-
$\Delta \phi(\text{jet1,jet2})$	$< 140^{\circ}$	-	-
$\Delta \phi(E_{\rm T}^{\rm miss}, E_{{\rm T},trk}^{\rm miss})$	$< 90^{\circ}$	-	-
$p_{\rm T}^V$ regions	[0, 150]	GeV (2-lepton), $[150, \infty]$ Ge	V

Improving m(bb)

Additional corrections on top of standard JES

- For jets that contain a reconstructed muon with pT>4 GeV, dR(μ,jet)<0.4 from semileptonic decays (about 12% of b-tagged jets):
 - muon 4-vectior added
 - energy deposited in calorimeter removed
- In 0 and 1-lepton channels for all jets PtReco correction
 - scaling of jet 4-vector as a function of jet pT derived from signal ZH MC by comparing calibrated jet energy to that of matched truth jet
 - 12% (24%) at low pT, 1% (6%) at high pT for hadronic (semi-leptonic) b-jets
- In 2-lepton channel resolution is improved through kinematic likelihood fit

VH background systematics

	Z+jets		
Zl normalisation	18%		Single top
Zcl normalisation	23%	Cross section	4.4% (s-channel), $4.6%$ (t-channel), $6%$ (Wt)
Zhh normalisation	Floating	Acceptance 2-jet	16% (t-channel), $25%$ (Wt)
$Z_{\rm both}$ in $Z_{\rm bb}$ satisfy	14.0702	Acceptance 3-jet	19% (t-channel), 32% (Wt)
$Z_{9}c$ -to- Z_{00} ratio	14-2770	m_{bb}, p_T^V	S ($p_{\rm T}^{V}$ uncorrelated between 2 and 3-jet channels Wt)
Zcc-to-Zbb ratio	7-31%		ZZ
Zbl-to-Zbb ratio	15-38%	Normalisation	20%
0-to-2 lepton ratio	26%	0-to-2 lepton ratio	30%
2-to-3 jet ratio	28% (0-lepton) and $25%$ (2-lepton)	2-to-3 jet ratio	19 %
$p_{\mathrm{T}}^{V}, m_{bb}$	S	m_{bb}, p_T^V	S (correlated with WZ uncertainties)
	W+jets		WZ
Wl normalisation	32%	Normalisation	26%
Wcl normalisation	37%	2-to-3 jet ratio	14% (0-lepton) and 11% (1-lepton)
Wbb normalisation	Floating	0-to-1 lepton ratio	12%
Wbl-to-Wbb ratio	17% (0-lepton) and $31%$ (1-lepton)	m_{bb}, p_T^V	S (correlated with ZZ uncertainties)
Wbc-to-Wbb ratio	42% (0-lepton) and $21%$ (1-lepton)	WW	
Wcc-to- Wbb ratio	17% (0-lepton) and $31%$ (1-lepton)	Normalisation	25%
2-to-3 jet ratio	23%	Multi-jet (1-lepton)	
0-to-1 lepton ratio	17%	Normalisation	14-81% (electron), 5-50%(muon)
p_{T}^V,m_{bh}	S	Template variations	S
$t\overline{t}$ (all are decord	rrelated between the $0-1$ and 2 -lepton channels)	_	
$t\bar{t}$ normalisation	Floating	_	
2-to-3-jet ratio	9% (0+1-lepton) and $24%$ (2-lepton)		
p_T^V,m_{bb}	S	_	

VH: ranking

Signal systematics

Signal		
Cross section (scale)	$0.7\% (q\overline{q}), 27\% (gg)$	
Cross section (PDF)	1.9% $(q\overline{q} \rightarrow WH)$, 1.6% $(q\overline{q} \rightarrow ZH)$, 5% (gg)	
Branching ratio	1.7 %	
Acceptance (scale)	1.4%-5%	
3-jet acceptance (scale)	1.4% - 4.7%	
p_T^V shape (scale)	S	
Acceptance (PDF)	0.3% - 0.7%	
$p_{\rm T}^V$ shape (NLO EW correction)	S	
Acceptance (parton shower)	4% - 7.5%	

VZ fit

 $\mu_{VZ} = 0.91 \pm 0.17 (\text{stat})^{+0.32}_{-0.27} (\text{syst})$ significance obs (exp) 3.0 (3.2) SD

Signal model

o VH

- □ qq \rightarrow VH: Pythia8 with NNPDF23LO and A14
- □ gg \rightarrow ZH: Powheg+Pythia8 with CT10nlo and AZNLO
- Inclusive xs: NNLO (QCD) and NLO (EW)
- gluon-induced ZH xs: NLO+NLL (QCD)
- additional NLO (EW) SF(pT(V)) is applied based on Hawk

□ VBF H→bb

Madgraph5_aMC@NLO+Pythia8; ME at LO with PDF4LHC_nlo_mc 5F (massless b)

□ Η→ττ, Η→μμ

- ggF and VBF: Powheg+Pythia8 with CT10;
- ggF normalised to NNLO+NNLL (QCD) with NLO(EW)
- VBF normalised to NLO (QCD and EW) with approximate NNLO QCD correction applied
- ggF: Higgs pT distribution corrected to match HRes2.1
- for events with 2 particle jets Higgs pT reweighed to MinLo HJJ