

Very Rare, Exclusive Higgs Decays in QCD Factorization

Matthias König THEP, Johannes Gutenberg-University (Mainz)

Higgs Hunting Paris, 31 August, 2016

Cluster of Excellence

Precision Physics, Fundamental Interactions and Structure of Matter

JGU

We did hunt the Higgs successfully and we **consider the SM to be completed**.

While it does describe observation nicely, the Higgs sector has an **unsatisfactory amount of free parameters**.

Many open questions are linked to the question whether these parameters are just what they are or **can be predicted from a more fundamental principle**.

The premise for new physics searches nowadays: Leave no stone unturned!

Exclusive hadronic decays can serve as probes for new physics, revealing more information when combined with "more conventional" searches!

Exclusive Radiative Decays of ${\rm W}$ and ${\rm Z}$ Bosons in QCD Factorization

Yuval Grossman, MK, Matthias Neubert

JHEP 1504 (2015) 101, arXiv:1501.06569

Exclusive Radiative Z-Boson Decays to Mesons with Flavor-Singlet Components

Stefan Alte, MK, Matthias Neubert

JHEP 1602 (2016) 162, arXiv:1512.09135

Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings

MK, Matthias Neubert

JHEP 1508 (2015) 012, arXiv:1505.03870

Exclusive Weak Radiative Higgs Decays and Flavor-Changing Higgs-Top Couplings Stefan Alte, MK, Matthias Neubert

arXiv:160x.soon

1 QCD-factorization

- The factorization formula
- 2 Hadronic Higgs decays
 - Radiative hadronic Higgs decays
 - Weak radiative hadronic Higgs decays

3 Conclusions

QCD-factorization The factorization formula

The framework of QCD factorization was originally developed by Brodsky, Efremov, Lepage and Radyushkin in the beginning of the 1980's.

[Brodsky, Lepage (1979), Phys. Lett. B 87, 359] [Brodsky, Lepage (1980), Phys. Rev. D 22, 2157] [Efremov, Radyushkin (1980), Theor. Math. Phys. 42, 97] [Efremov, Radyushkin (1980), Phys. Lett. B 94, 245]

The factorization formula was **derived using light-cone perturbation theory**.

The derivation **can also be phrased in** the language of **soft-collinear effective theory**.

[Bauer et al. (2001), Phys. Rev. D 63, 114020]

[Bauer Pirjol, Stewart (2002), Phys. Rev. D 65, 054022]

[Beneke, Chapovsky, Diehl, Feldmann (2002), Nucl. Phys. B 643, 431]

QCD factorization: The hadronization happens well after the hard scattering has taken place \rightarrow separation of scales.

The scale separation in the case at hand calls for an effective theory description!

The amplitude can now be written as:

$$i\mathcal{A} = \int \mathcal{C}(t,\dots) \langle M(k) | J_q(t,\dots) | 0 \rangle dt$$
$$= \int T_H(x,\mu) \phi_M(x,\mu) dx$$

The hadronic matrix element defines the light-cone distribution amplitude (LCDA), which encodes the non-perturbative physics.

The Wilson coefficients C contain the hard scattering processes that are integrated out at the factorization scale.

The LCDAs are expanded in Gegenbauer polynomials:

$$\phi_M^q(x,\mu) = 6x \,\bar{x} \left[1 + \sum_{n=1}^{\infty} a_n^M(\mu) C_n^{(3/2)}(2x-1) \right]$$

 $a_n^M(\mu)$: scale-dependent expansion coefficients

Large logarithms $\alpha_s \log \mu_H / \Lambda_{QCD}$ are resummed through renormalization group evolution.

Hadronic Higgs decays Radiative hadronic Higgs decays

Idea: Use hadronic Higgs decays to probe non-standard Higgs couplings.

[Isidori, Manohar, Trott (2013), Phys. Lett. B 728, 131]

[Bodwin, Petriello, Stoynev, Velasco (2013), Phys. Rev. D 88, no. 5, 053003]

[Kagan et al. (2014), arXiv:1406.1722]

[Bodwin et al. (2014), arXiv:1407.6695]

Light quark Yukawa couplings could **differ significantly from the SM** prediction, this is still **compatible with observation**! Work with the effective Lagrangian:

$$\begin{aligned} \mathcal{L}_{\text{eff}}^{\text{Higgs}} &= \kappa_W \frac{2m_W^2}{v} h W_{\mu}^+ W^{-\mu} + \kappa_Z \frac{m_Z^2}{v} h Z_{\mu} Z^{\mu} - \sum_f \frac{m_f}{v} h \bar{f} \left(\kappa_f + i\tilde{\kappa}_f \gamma_5\right) f \\ &+ \frac{\alpha}{4\pi v} \left(\kappa_{\gamma\gamma} h F_{\mu\nu} F^{\mu\nu} - \tilde{\kappa}_{\gamma\gamma} h F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2\kappa_{\gamma Z}}{s_W c_W} h F_{\mu\nu} Z^{\mu\nu} - \frac{2\tilde{\kappa}_{\gamma Z}}{s_W c_W} h F_{\mu\nu} \tilde{Z}^{\mu\nu}\right) \end{aligned}$$

blue terms: $\rightarrow 1$ in SM, **red terms**: $\rightarrow 0$ in SM!

 \rightarrow Provides a model independent analysis of NP effects in $h \rightarrow V \gamma$ decays!

The $h \to V \gamma$ decays

Several different diagram topologies:

JGU

We want to probe the **Higgs couplings to light fermions**. The indirect contributions however are **sensitive to many other couplings**, like $\kappa_{\gamma\gamma}$, $\kappa_{Z\gamma}$, κ_W , κ_f ...

In most cases, **these contributions dominate** over the direct contributions due to the small Yukawa couplings.

We normalize the branching ratio to the $h \rightarrow \gamma \gamma$ branching ratio, which also makes our prediction insensitive to the total Higgs width:

$$\frac{\mathrm{BR}(h \to V\gamma)}{\mathrm{BR}(h \to \gamma\gamma)} = \frac{\Gamma(h \to V\gamma)}{\Gamma(h \to \gamma\gamma)} = \frac{8\pi\alpha^2(m_V)}{\alpha} \frac{Q_V^2 f_V^2}{m_V^2} \left(1 - \frac{m_V^2}{m_h^2}\right)^2 \frac{|1 - \kappa_q \Delta_V|}{\sqrt{1 - \frac{m_V^2}{m_h^2}}}$$

 $\to \text{ only very weak sensitivity to the indirect contributions due to off-shellness}$

Assuming SM couplings of all particles, we find:

$$BR(h \to \rho^{0}\gamma) = (1.68 \pm 0.02_{f} \pm 0.08_{h \to \gamma\gamma}) \cdot 10^{-5}$$

$$BR(h \to \omega\gamma) = (1.48 \pm 0.03_{f} \pm 0.07_{h \to \gamma\gamma}) \cdot 10^{-6}$$

$$BR(h \to \phi\gamma) = (2.31 \pm 0.03_{f} \pm 0.11_{h \to \gamma\gamma}) \cdot 10^{-6}$$

$$BR(h \to J/\psi\gamma) = (2.95 \pm 0.07_{f} \pm 0.06_{direct} \pm 0.14_{h \to \gamma\gamma}) \cdot 10^{-6}$$

$$BR(h \to \Upsilon(1S)\gamma) = \left(4.61 \pm 0.06_{f} + \frac{1.75}{-1.21}_{direct} \pm 0.22_{h \to \gamma\gamma}\right) \cdot 10^{-9}$$

$$BR(h \to \Upsilon(2S)\gamma) = \left(2.34 \pm 0.04_{f} + \frac{0.75}{-0.99}_{direct} \pm 0.11_{h \to \gamma\gamma}\right) \cdot 10^{-9}$$

$$BR(h \to \Upsilon(3S)\gamma) = \left(2.13 \pm 0.04_{f} + \frac{0.75}{-1.12}_{direct} \pm 0.10_{h \to \gamma\gamma}\right) \cdot 10^{-9}$$

A general feature: $h \rightarrow V\gamma$ decays are rare.

But: What is wrong with the Υ -channels?

Allowing deviations of the κ_q and no *CP*-odd couplings:

Ratio of BR for J/ψ

Ratio of BR for $\Upsilon(1S)$

Usually, the indirect contributions are the dominant ones, however for the Υ , the direct contribution is comparable, leading to a cancellation between the two.

 \Rightarrow This leads to a strong sensitivity to NP effects!

Possible future scenarios:

Blue circles: direct measurements of $h \to q\bar{q}$ constrain $\kappa_q^2 + \tilde{\kappa}_q^2$ Red circles: measurements of $h \to \Upsilon\gamma$ constrain $(1 - \kappa_q)^2 + \tilde{\kappa}_q^2$

 \Rightarrow From the **overlap** one can find information on the *CP*-odd coupling, **even the sign** of the *CP*-even coupling!

Hadronic Higgs decays Weak radiative hadronic Higgs decays

Higgs decay to a meson and a Z-boson

For select mesons, literature exists on these modes.

[Isidori, Manohar, Trott (2014), Phys.Lett. B728 131-135]

[Gao (2014), Phys.Lett. B737 366-368] [Modak, Srivastava (2014), 1411.2210]

There are three contributions:

While the diagrams $h \to Z(\gamma^* \to V)$ are **loop-suppressed**, the photon is off-shell only by m_V^2 , **lifting** the **suppression**.

The indirect diagrams interfere destructively, enhancing the sensitivity to the effective coupling $\kappa_{\gamma Z}$. $(\mathcal{O} \sim h F_{\mu\nu} Z^{\mu\nu})$

The direct contributions are only important for heavy quarkonia.

Higgs decay to a meson and a Z-boson

The bound on $\kappa_{\gamma Z}$ from CMS is:

$$\sqrt{|\kappa_{\gamma Z} - 2.395|^2 + |\tilde{\kappa}_{\gamma Z}|^2} < 7.2$$

From this we get (for SM and for saturated bounds):

Mode	SM Branching ratio $[10^{-6}]$					NP range
$h \to \pi^0 Z$	(2.30)	±	0.01_{f}	\pm	$0.09_{\Gamma})$	
$h \to \eta Z$	(0.83)	\pm	0.08_{f}	\pm	$0.03_{\Gamma})$	
$h \to \eta' Z$	(1.24)	\pm	0.12_{f}	\pm	$0.05_{\Gamma})$	
$h ightarrow ho^0 Z$	(7.19)	\pm	0.09_{f}	\pm	$0.28_{\Gamma})$	1.83 – 53.3
$h \to \omega Z$	(0.56)	\pm	0.01_{f}	\pm	$0.02_{\Gamma})$	0.06 - 4.56
$h \to \phi Z$	(2.42)	\pm	0.05_{f}	\pm	$0.09_{\Gamma})$	1.77 – 9.12
$h \rightarrow J/\psi Z$	(2.30)	\pm	0.06_{f}	\pm	$0.09_{\Gamma})$	1.59 - 13.10
$h \to \Upsilon(1S)Z$	(15.38)	\pm	0.21_{f}	\pm	$0.60_{\Gamma})$	13.7 – 20.8
$h \to \Upsilon(2S)Z$	(7.50)	\pm	0.14_{f}	\pm	$0.29_{\Gamma})$	
$h \to \Upsilon(3S)Z$	(5.63)	\pm	0.10_{f}	\pm	$0.22_{\Gamma})$	

Conclusions

Conclusions

Exclusive hadronic decays of heavy electroweak bosons are an interesting application of the QCD factorization approach in a theoretically clean environment due to the high factorization scale (power corrections tiny, RGE suppresses hadronic parameters).

JG U

- Hadronic decays of the Higgs exhibit interesting dependences on Higgs couplings, due to the interplay of different diagrams.
- Radiative decays $h \to M\gamma$ can probe Yukawa couplings along with CP phases and not just the absolute value.
- Weak radiative decays $h \to MZ$ are sensitive to the coupling of the effective operator $hF_{\mu\nu}Z^{\mu\nu}$.
- The downside are the small branching ratios which make these modes challenging. But HL-LHC should be able to see some of them and we don't know what kind of machine the future brings...