$H \rightarrow WW^*$ in ATLAS

Young Scientist Forum

Pere Rados The University of Melbourne, CoEPP

31/8/2016

On behalf of the ATLAS Collaboration

Higgs Hunting 2016 August 31 - September 2, LPNHE Paris, France

Higgs production and decay

 $pp \rightarrow H (NNLO+NNLL QCD + NLC EW)$

→ ggH (NNLO QCD + NLO E)

pp → WH (NNLO QCD + NLO EV

pp → ZH (NNLO QCD +NLO EW $pp \rightarrow bbH$ (NNLO QCD in 5FS,

pp → ttH (NLO QCD)

122

124

CD in 4FS)

126

128

Phys. Rev. Lett. 114, 191803

لحووو $= 125.09 \pm 0.21(\text{stat}) \pm 0.11(\text{syst}) \text{ GeV}$ ggF 87% \sqrt{s} = 8 TeV **VBF** 7% WH/ZH 5% 130 132 M_H [GeV]

→ H+X) [pb]

o(pp

10

 10^{-1}

120

Higgs boson property

measurements are an

rare production modes

In parallel search for

essential test of SM validity

Search for evidence of more

additional high mass states

- *WW*^{*} decay channel plays an important role:
 - Large branching ratio
 - Good S/B in the di-lepton final state $H \rightarrow WW^* \rightarrow IvIv$

$H \rightarrow WW^*$ Signature

• Low jet multiplicity

- Large E_T^{miss} (3/2v)
- Low jet multiplicity

 <u>All channels</u>:
 2 leptons from Higgs tend to have small angular separation

- *H*→*WW*^{*}→*lvlv* final state cannot be fully reconstructed due to presence of neutrinos
 - The transverse mass (m_T) can be calculated without the unknown longitudinal neutrino momenta

$$m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + p_{\rm T}^{\nu\nu})^2 - |\boldsymbol{p}_{\rm T}^{\ell\ell} + \boldsymbol{p}_{\rm T}^{\nu\nu}|^2}$$

ggF/VBF analysis strategy

Phys. Rev, D 92, 012006 (2015)

- Categorize events according to jet multiplicity and lepton flavour
 - 0-jet and 1-jet are ggF dominated, while <a>2-jet is VBF dominated
 - *eμ* channel is cleanest and most sensitive, while *ee* and *μμ* have large Z/Drell-Yan background
- Reduce backgrounds with selections optimized for each category
- ggF-enriched analysis is cut-based, while VBF-enriched is BDT-based

ggF/VBF Backgrounds

Phys. Rev, D 92, 012006 (2015)

WW

- Dominant background in 0 and 1 jet categories
- Almost irreducible (larger $\Delta \phi_{\parallel}$ then signal process)
- m_{\parallel} used to define CRs for both 0 and 1 jet

Тор

- Large contribution, especially in ≥ 2 jet categories
- Entering via unidentified b-quark
- Extrapolated using several CRs with $N_{b\text{-jet}} \geq 1$

ggF/VBF Signal Strength

Phys. Rev, D 92,

012006 (2015)

VH Signal Strength

$WH \rightarrow 3$ leptons channel

- Major backgrounds are WZ/Wγ^{*}, ZZ^{*}, top and VVV
- 6 CRs to address bkg normalization
- Analysis split into two regions:
 - Z-depleted (ΔR_{II} shape analysis)
 - Z-enriched (BDT shape analysis)

ZH→ 4 leptons channel

- *ZZ*^{*} is the major background
- CR used to address ZZ* normalization
- Analysis split into two regions:
 - 1 SFOS (cut-and-count analysis)
 - 2 SFOS (cut-and-count analysis)

1 SFOS SR

2 SFOS SR $\Delta \phi_{\mu}$ of Higgs candidate leptons

Combining all *VH* channels (including also DFOS + SS di-lepton channels): **Significance of VH production is 2.5** σ (0.93 σ expected)

Combined Results

6.5 σ significance for $H \rightarrow WW^*$ (5.9 σ expected)

Not shown here are the run-1 spin/CP inputs (<u>Eur. Phys. J. C (2015</u>)) and differential fiducial cross-section measurements (<u>arXiv:1604.02997</u>). More details on these can be found in the backup.

JHEP 08 (2015) 137

High Mass $H \rightarrow WW^*$ Search

- Motivation: search for a potential extension of the SM with an extended Higgs Sector
- Signal scenarios:
 - "NWA": SM-like Higgs with narrow width (4 MeV)
 - "LWA": with large width (5, 10, 15% of m_H)
- Consider both ggF and VBF production modes, and $H \rightarrow WW^* \rightarrow ev\mu v$ final state
- Using Run 2 data with integrated luminosity of 13.2 fb⁻¹ at 13 TeV

Signal regions:

- For first time use two VBF SRs: ≥ 2 jets SR with large m_{ii} and $|\Delta y_{ii}|$ (standard), and 1-jet SR (new)
- ggF SR is then the quasi-inclusive rest

13 TeV High Mass Results

ATLAS-CONF-

2016-074

Summary

- H→WW^{*} plays an important role in Higgs boson property measurements, and searches for possible extended Higgs sectors
 - 4.2σ , 3.2σ and 2.5σ significance of ggF, VBF and VH production (6.5 σ overall)
 - Rates and couplings consistent with SM expectation:

 $\mu = 1.16^{+0.16}_{-0.15} (\text{stat.})^{+0.18}_{-0.15} (\text{sys.}) \qquad |\kappa_V| = 1.06^{+0.10}_{-0.10} \qquad |\kappa_F| = 0.85^{+0.26}_{-0.20}$

- Spin/CP and differential cross sections measurements are also consistent with SM (more info in the backup)
- 13 TeV high-mass search with no significant excess observed from 300 GeV 3 TeV
- Future results with the Run 2 data will allow for more precise measurements and therefore more stringent tests of the SM predictions
- So stay tuned!

BACKUP

Spin and CP with $H \rightarrow WW^*$

Arbitrary units

0.3

0.25

0.2

0.15

0.1

0.05

0

ATLAS

√s = 8 TeV, 20.3 fb⁻¹

 $H \rightarrow WW^*$, n = 0, e μ

1.5

0.5

- Follows closely the main ggF $H \rightarrow WW^* \rightarrow ev\mu v$ analysis
- Main spin/CP sensitive variables: m_{μ} , p^{T}_{μ} , $\Delta \phi_{\mu}$, m_{T}
- Different BDTs trained for different spin/CP models
- Construct test statistic (q) to test particular J^P hypothesis against SM spin/CP assignment (0⁺)

After combining WW^{*} with the other channels (ZZ, yy), the alternative spin/CP models are excluded at above 99% CL in favor of the 0⁺ hypothesis.

However a mixed state of CP-even and CP-odd is still allowed, with up to 30% mixing.

Eur. Phys. J. C (2015)

Background

2

2.5

3

J^P = 2⁺, k_g = k_q J^P = 2⁺, k_g = 0.5, k_q = 1 J^P = 2⁺, k_g = 1, k_g = 0

 $I^P = 0$

Differential Cross Section

- Possible to directly measure several kinematic distributions in a close to model independent way
- Analysis follows closely the main ggF $H \rightarrow WW^* \rightarrow ev\mu v$ analysis
- Unfolding corrects measured distribution for detector effects and brings it from the signal (reconstructed) to the fiducial (truth level) volume

$$\frac{d\sigma}{dX_{i}} = \frac{1}{\mathcal{L} * BR} \frac{M_{ji}^{-1} \epsilon_{fid,j}}{\epsilon_{truth,sel,i}} (N_{j} - B_{j})$$

arXiv:1604.02997

Production/decay rates and couplings

- Combination includes results from H→γγ, ZZ^{*}, WW^{*}, ττ, b5, μμ, Zγ analyses, and constraints on ttH and off-shell Higgs production.
 arXiv:1507.04548 (2015)
- <u>κ-framework</u>: search for deviations of SM Higgs coupling to other particles by introducing multipliers using *tree-level motivated benchmark model* following the LHC Higgs WG recommendations (<u>arXiv:1307.1347</u>)
- Assumptions:
 - Single, narrow, CP-even scalar resonance (tensor structure of couplings assumed to be those of SM)
 - Narrow width approximation is valid:

$$\sigma \mathcal{B}(i \to H \to f) = \frac{\sigma_i \Gamma_f}{\Gamma_H} = \frac{\sigma_i \Gamma_f}{\Gamma_H^{SM}} \cdot \frac{\kappa_i^2 \cdot \kappa_f^2}{\kappa_H^2}$$

Parameters of interest:

- > Signal strength $\mu = \sigma \times BR / (\sigma \times BR)_{SM}$
 - the multiplier for total yield (can be defined for each production mode and decay channel)

> Multipliers κ for a given coupling

- Different models tested by imposing different relations between multipliers
- κ allows more direct access to coupling than μ (complex interplay between prod./decay)

> In both cases, SM has μ = 1.0 and κ = 1.0

B3

1/8/2016

Benchmark Coupling Models

- Many test are possible, under different assumptions:
 - > Allow/don't allow invisible decays (contribution to total width)
 - > Allow/don't allow BSM particles in loops

arXiv:1507.04548 (2015)

Table 10: Summary of benchmark coupling models considered in this paper, where $\lambda_{ij} \equiv \kappa_i / \kappa_j$, $\kappa_{ii} \equiv \kappa_i \kappa_i / \kappa_H$, and the functional dependence assumptions are: $\kappa_V = \kappa_W = \kappa_Z$, $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_\mu$ (and similarly for the other fermions), $\kappa_g = \kappa_g(\kappa_b, \kappa_t)$, $\kappa_\gamma = \kappa_\gamma(\kappa_b, \kappa_t, \kappa_\tau, \kappa_W)$, and $\kappa_H = \kappa_H(\kappa_i)$. The tick marks indicate which assumptions are made in each case. The last column shows, as an example, the relative coupling strengths involved in the $qq \rightarrow H \rightarrow \gamma\gamma$ process.

Section in	Corresponding	Probed	Parameters of	Functional assumptions					Example: $gg \rightarrow H \rightarrow \gamma \gamma$
this paper	table in Ref.[11]	couplings	interest	κ_V	ĸ _F	κ _g	Ky	κ _H	
5.2.1	43.1		κ_V, κ_F	\checkmark	✓	1	1	√	$\kappa_F^2 \cdot \kappa_\gamma^2(\kappa_F,\kappa_V)/\kappa_H^2(\kappa_F,\kappa_V)$
5.2.2	43.2	Couplings to fermions and bosons	$\kappa_F, \kappa_V, BR_{i.,u.}$	≤ 1 -	-	√ √	√ √	\checkmark $\kappa_{\rm on} = \kappa_{\rm off}$	$\frac{\kappa_F^2 \cdot \kappa_y(\kappa_F,\kappa_V)^2}{\kappa_H^2(\kappa_F,\kappa_V)} \cdot (1 - \mathbf{BR}_{\mathrm{i.,u.}})$
5.2.3	43.3		$\lambda_{FV}, \kappa_{VV}$	\checkmark	✓	~	✓	-	$\kappa_{VV}^2 \cdot \lambda_{FV}^2 \cdot \kappa_{\gamma}^2(\lambda_{FV}, \lambda_{FV}, \lambda_{FV}, 1)$
5.3.1	46	Up-/down-type fermions	$\lambda_{du}, \lambda_{Vu}, \kappa_{uu}$	\checkmark	<i>к</i> и, <i>К</i> d	~	✓	-	$\kappa_{uu}^2 \cdot \kappa_g^2(\lambda_{du}, 1) \cdot \kappa_{\gamma}^2(\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu})$
5.3.2	47	Leptons/quarks	$\lambda_{\ell q}, \lambda_{Vq}, \kappa_{qq}$	\checkmark	κ_{ℓ}, κ_q	\checkmark	✓	-	$\kappa_{qq}^2 \cdot \kappa_{\gamma}^2(1, 1, \lambda_{\ell q}, \lambda_{Vq})$
5.4.1	48.1	Vertex loops +	$K_g, K_{\gamma}, K_{Z\gamma}$	=1	=1	-	-	~	$\kappa_g^2 \cdot \kappa_\gamma^2 / \kappa_H^2(\kappa_g,\kappa_\gamma)$
5.4.2	48.2	$H \rightarrow invisible/undetected$ decays	$\frac{\kappa_g, \kappa_\gamma,}{\kappa_{Z\gamma}, \mathrm{BR}_{\mathrm{i.,u.}}}$	=1	=1	_	-	~	$\kappa_g^2 \cdot \kappa_\gamma^2 / \kappa_H^2(\kappa_g, \kappa_\gamma) \cdot (1 - \mathrm{BR}_{\mathrm{i.,u.}})$
5.4.3	49		$\kappa_F, \kappa_V, \kappa_g, \kappa_{\gamma}, \\ \kappa_{Z\gamma}, BR_{i.,u.}$	≤ 1 _	-	-	-	\checkmark $\kappa_{\rm on} = \kappa_{\rm off}$	$\frac{\kappa_{F}^{2} \cdot \kappa_{\gamma}(\kappa_{F}, \kappa_{V})^{2}}{\kappa_{H}^{2}(\kappa_{F}, \kappa_{V}, \kappa_{g}, \kappa_{\gamma})} \cdot (1 - BR_{i,u.})$
5.5.1	51	Generic models with and	$\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_\tau, \kappa_\mu$	-	-	✓	~	~	$\frac{\kappa_g^2(\kappa_b,\kappa_t)\cdot\kappa_\gamma^2(\kappa_b,\kappa_t,\kappa_\tau,\kappa_\mu,\kappa_W)}{\kappa_H^2(\kappa_b,\kappa_t,\kappa_\tau,\kappa_\mu,\kappa_W,\kappa_Z)}$
		vertex loops and Γ_{tt}	$\kappa_W, \kappa_Z, \kappa_t, \kappa_b,$	≤1	-	-	-	 ✓ 	* ² ·* ²
5.5.2	50.2	vertex toops and T H	$K_{\tau}, K_{\mu}, K_{g}, K_{\gamma},$	-	-	-	-	~	$\frac{\frac{1}{\kappa_H^2(\kappa_b,\kappa_t,\kappa_\tau,\kappa_\mu,\kappa_W,\kappa_Z)} \cdot (1 - BR_{i.,u.})}{\kappa_H^2(\kappa_b,\kappa_t,\kappa_\tau,\kappa_\mu,\kappa_W,\kappa_Z)}$
			$\kappa_{Z\gamma}, \mathbf{BR}_{i.,u.}$	-	-	-	-	$\kappa_{\rm on} = \kappa_{\rm off}$	
5.5.3	50.3		$\lambda_{WZ}, \lambda_{tg}, \lambda_{bZ}$ $\lambda_{\tau Z}, \lambda_{gZ}, \lambda_{\gamma Z},$ $\lambda_{(Z\gamma)Z}, \kappa_{gZ}$	-	-	-	-	_	$\kappa_{gZ}^2\cdot\lambda_{\gamma Z}^2$

Triggers

TABLE II. Summary of the minimum lepton p_T trigger requirements (in GeV) during the 8 TeV data-taking. For single-electron triggers, the hardware and software thresholds are either 18 and 24i or 30 and 60, respectively. The "i" denotes an isolation requirement that is less restrictive than the isolation requirement imposed in the offline selection. For dilepton triggers, the pair of thresholds corresponds to the leading and subleading lepton, respectively; the " μ , μ " dilepton trigger requires only a single muon at level-1. The "and" and "or" are logical.

Name	Level-1 trigger	High-level trigger
Single lepton		
e	18 or 30	24i or 60
μ	15	24i or 36
Dilepton		
e, e	10 and 10	12 and 12
μ, μ	15	18 and 8
e, μ	10 and 6	12 and 8

MC samples

Process	Generator	$\sigma(\times Br)$ [pb]	Cross-section
		· · · · · · ·	normalisation
Higgs boson			
$VH (H \rightarrow WW^*)$	Pythia [25, 26] v8.165, v6.428	0.24, 0.20	NNLO $QCD + NLO EW$
$VH (H \rightarrow \tau \tau)$	Pythia v8.165, v6.428	0.07, 0.06	NNLO $QCD + NLO EW$
$gg \to H \ (H \to WW^*)$	POWHEG-BOX [27-30] v1.0 (r1655)+ PYTHIA v8.165, v6.428	4.1, 3.3	NNLO+NNLL QCD + NLO EW
$VBF (H \rightarrow WW^*)$	POWHEG-BOX [31] v1.0 (r1655)+ PYTHIA v8.165, v6.428	0.34, 0.26	NNLO $QCD + NLO EW$
$t\bar{t}H (\dot{H} \rightarrow WW^*)$	Pythia v8.165	0.028, 0.019	NLO
Single boson		,	
$Z/\gamma^* (\rightarrow \ell \ell) + \text{jets} \ (m_{\ell \ell} > 10 \text{ GeV})$	Alpgen [32] $v2.14 + Herwig$ [33] $v6.52$	16540, 12930	NNLO
HF $Z/\gamma^*(\rightarrow \ell\ell)$ +jets ($m_{\ell\ell} > 30$ GeV)	Alpgen v2.14 + Herwig v6.52	126, 57	NNLO
VBF $Z/\gamma^*(\to \ell\ell)$ $(m_{\ell\ell} > 7 \text{ GeV})$	Sherpa [34] v1.4.1	5.3, 2.8	LO
Top-quark			
$t\bar{t}$	Powheg-Box [35] v1.0 (r2129)+Pythia v6.428 MC@NLO [36] v4.03	250, 180	NNLO+NNLL
$t\bar{t}W/Z$	MADGRAPH [37] v5.1.5.2, v5.1.3.28 +Pythia v6.428	0.35, 0.25	LO
tąb	ACERMC [38] v3.8 +Pythia v6.428	88, 65	NNLL
$t\hat{b}, tW$	Powheg-Box [39, 40] v1.0 (r2092)+ Pythia v6.428	28, 20	NNLL
tZ	MadGraph v5.1.5.2, v5.1.5.11 + Pythia v6.428	0.035, 0.025	LO
Dibosons			
$WZ/W\gamma^*(\rightarrow \ell\ell\ell\nu)(m_{\ell\ell} > 7 \text{ GeV})$	Powheg-Box [41] v1.0 (r1508)+Pythia v8.165, v6.428	12.7, 10.7	NLO
$WZ/W\gamma^*(\rightarrow \ell\ell\ell\nu)$ (min. $m_{\ell\ell} < 7 \text{ GeV}$)	Sherpa v1.4.1	12.2, 10.5	NLO
other WZ	Powheg-Box [41] v1.0 (r1508) + Pythia v8.165	21.2, 17.2	NLO
$q\bar{q}/qg \rightarrow Z^{(*)}Z^{(*)}(\rightarrow \ell\ell\ell\ell,\ell\ell\nu\nu) \ (m_{\ell\ell} > 4 \text{ GeV})$	Powheg-Box [41] v1.0 (r1556) +Pythia v8.165, v6.428	1.24, 0.79	NLO
$q\bar{q}/qg \rightarrow Z^{(*)}Z^{(*)}(\rightarrow \ell\ell\ell\ell, \ell\ell\nu\nu)$ (min. $m_{\ell\ell} < 4 \text{ GeV}$)	Sherpa v1.4.1	7.3, 5.9	NLO
other $q\bar{q}/qg \rightarrow ZZ$	Powheg-Box [41] v1.0 (r1556) + Pythia v8.165	6.9, 5.7	NLO
$gg \rightarrow Z^{(*)}Z^{(*)}$	gg2ZZ [42] v3.1.2 + HERWIG v6.52 (8 TeV only)	0.59	LO
$q\bar{q}/qg \rightarrow WW$	Powheg-Box [41] v1.0 (r1556) + Pythia v6.428	54, 45	NLO
* *! **	Sherpa v1.4.1 (for 2ℓ-DFOS 8 TeV only)	54	NLO
$gg \rightarrow WW$	gg2WW [43] v3.1.2 + HERWIG v6.52	1.9, 1.1	LO
VBS WZ , $ZZ(\rightarrow \ell\ell\ell\ell, \ell\ell\nu\nu)$ ($m_{\ell\ell} > 7 \text{ GeV}$), WW	Sherpa v1.4.1	1.2, 0.88	LO
$W\gamma~(p_{ m T}^{\gamma}>8~{ m GeV})$	Alpgen v2.14 +Herwig v6.52	1140, 970	NLO
$Z\gamma~(p_{ m T}^{\gamma}>8~{ m GeV})$	Sherpa v1.4.3	960, 810	NLO
Tribosons			
$WWW^*, ZWW^*, ZZZ^*, WW\gamma^*$	MadGraph v5.1.3.33, v5.1.5.10 + Pythia v6.428	0.44, 0.18	NLO

SR event selections

		ggF-enriched		VBF-enriched	
Objective	$n_j = 0$	$n_{j} = 1$	$n_j \ge 2 \text{ ggF}$	$n_j \ge 2$ VBF	
Preselection	All n_j $\begin{cases} p_T^{\ell 1} > 22 \text{ for the leading left} \\ p_T^{\ell 2} > 10 \text{ for the subleading} \\ \text{Opposite-charge leptons} \\ m_{\ell\ell} > 10 \text{ for the } e\mu \text{ sample} \\ m_{\ell\ell} > 12 \text{ for the } e\ell/\mu\mu \text{ sam} \\ m_{\ell\ell} - m_Z > 15 \text{ for the } e\ell/\mu\mu \text{ sample} \end{cases}$	$ \begin{array}{l} \text{pton } \mathcal{\ell}_1 \\ \text{lepton } \mathcal{\ell}_2 \\ \\ \text{mple} \\ \\ /\mu\mu \text{ sample} \end{array} $			
	$p_{\rm T}^{\rm miss} > 20$ for $e\mu$ $E_{\rm T,rel}^{\rm miss} > 40$ for $ee/\mu\mu$	$p_{\mathrm{T,rel}}^{\mathrm{miss}} > 20 \text{ for } e\mu$ $E_{\mathrm{T,rel}}^{\mathrm{miss}} > 40 \text{ for } ee/\mu\mu$	$p_{\rm T}^{\rm miss} > 20$ for $e\mu$	No MET requirement for $e\mu$	
Reject backgrounds	$\mathrm{DY} \; \begin{cases} p_{\mathrm{T,rel}}^{\mathrm{miss(trk)}} > 40 \; \mathrm{for} \; ee/\mu\mu \\ f_{\mathrm{recoil}} < 0.1 \; \mathrm{for} \; ee/\mu\mu \\ p_{\mathrm{T}}^{\ell\ell} > 30 \\ \Delta\phi_{\ell\ell,\mathrm{MET}} > \pi/2 \end{cases}$	$p_{T,rel}^{miss(trk)} > 35 \text{ for } ee/\mu\mu$ $f_{recoil} < 0.1 \text{ for } ee/\mu\mu$ $m_{\tau\tau} < m_Z - 25$	$m_{\tau\tau} < m_Z - 25$	$p_{\rm T}^{\rm miss} > 40$ for $ee/\mu\mu$ $E_{\rm T}^{\rm miss} > 45$ for $ee/\mu\mu$ $m_{\tau\tau} < m_Z - 25$	
	Misid -	$m_{\mathrm{T}}^{\ell} > 50$ for $e\mu$	-	-	
	Top $\begin{cases} n_j = 0 \\ - \\ - \end{cases}$	$n_b = 0$	$n_b = 0$	$n_b = 0$ p_T^{sum} inputs to BDT $\Sigma m_{\ell j}$ inputs to BDT	
VBF topology	-	-	See Sec. IV D for rejection of VBF & VH $(W, Z \rightarrow jj)$, where $H \rightarrow WW^*$	m_{jj} inputs to BDT Δy_{jj} inputs to BDT ΣC_{ℓ} inputs to BDT $C_{\ell 1} < 1$ and $C_{\ell 2} < 1$ $C_{j3} > 1$ for j_3 with $p_T^{j3} > 2$ $O_{BDT} \ge -0.48$	
$H \to WW^* \to \ell \nu \ell \nu$ decay topology	$m_{\ell\ell} < 55$ $\Delta \phi_{\ell\ell} < 1.8$ No $m_{\rm T}$ requirement	$m_{\ell\ell} < 55$ $\Delta \phi_{\ell\ell} < 1.8$ No $m_{\rm T}$ requirement	$m_{\ell\ell} < 55$ $\Delta \phi_{\ell\ell} < 1.8$ No $m_{\rm T}$ requirement	$m_{\ell\ell}$ inputs to BDT $\Delta\phi_{\ell\ell}$ inputs to BDT $m_{\rm T}$ inputs to BDT	

m_T in ≥ 2 jet ggF SR

SR plots for VBF BDT analysis

VBF cross-check analysis

• Note: for VBF a cross-check analyses is performed in parallel to the BDT, using sequential selections (cut-based) on some of the variables used as inputs to the BDT.

TABLE VII. Event selection for the $n_j \ge 2$ VBF-enriched category in the 8 TeV cross-check data analysis (see Table V for presentation details). The N_{ggF} , N_{VBF} , and N_{VH} expected yields are shown separately. The expected yields for WW and $Z/\gamma^* \rightarrow \tau\tau$ are divided into QCD and electroweak (EW) processes, where the latter includes VBS or VBF production.

		S	ummary							Com	positio	n of A	/ _{bkg}			
Selection	$N_{\rm obs}/N_{\rm bkg}$	Nobs	N _{bkg}	NggF	N _{signal} N _{VBF}	N _{VH}	N_W N_{WW}^{QCD}	W N ^{EW} WW	$N_{t\bar{t}}$	op N _t	N_{wj}	nisid N _{jj}	N _{VV}	Ν N _{ee/μμ}	$N_{\rm Drell-Yan}^{\rm QCD}$	$N_{\tau\tau}^{\rm EW}$
$e\mu$ sample	1.00 ± 0.00	61434	61180	85	32	26	1350	68	51810	2970	847	308	380	51	3260	46
$n_b = 0$ $p_T^{sum} < 15$	1.02 ± 0.01 1.03 ± 0.01	5787	5630	63 46	26 23	16 13	993 781	43 38	3000 1910	367 270	313 216	193	273	35	2400 2010	29 23
$m_{\tau\tau} < m_Z - 25$	1.05 ± 0.02	3129	2970	40	20	9.9	484	22	1270	177	141	66	132	7.6	627	5.8
$m_{jj} > 600$ $\Delta y_{ij} > 3.6$	1.31 ± 0.12 1.33 ± 0.13	131	100 80	2.3	8.2 7.9	-	18 11.7	8.9 6.9	40 35	5.3	1.8 1.6	2.4	5.1	0.1	15 11.6	1.0
$C_{j3} > 1$	1.36 ± 0.18	58	43	1.3	6.6	-	6.9	5.6	14	3.0	1.3	1.3	2.0	-	6.8	0.6
$C_{\ell 1} < 1, C_{\ell 2} < 1$	1.42 ± 0.20	51	36	1.2	6.4	-	5.9	5.2	10.8	2.5	1.3	1.3	1.6	-	5.7	0.6
$m_{\ell\ell}, \Delta \varphi_{\ell\ell}, m_{\rm T}$	2.55 ± 0.71	26040	27100	21	4.7	-	504	27	22440	1220	220	0.5	127	600	670	16
$n_b, p_T^{sum}, m_{\tau\tau}$	0.99 ± 0.01 1.03 ± 0.03	1344	1310	13	8.0	4.0	229	12.0	633	86	250	0.9	45	187	76	1.5
$m_{jj}, \Delta y_{jj}, C_{j3}, C_{\ell}$	1.39 ± 0.28	26	19	0.4	2.9	0.0	3.1	3.1	5.5	1.0	0.2	0.0	0.7	3.8	0.7	0.1
$m_{\ell\ell}, \Delta\phi_{\ell\ell}, m_{\rm T}$	1.63 ± 0.69	6	3.7	0.3	2.2	0.0	0.4	0.2	0.6	0.2	0.2	. 0.0	0.1	1.5	0.3	0.1

VH channels

Figure 1. Tree-level Feynman diagrams of the $VH(H \rightarrow WW^*)$ topologies studied in this analysis: (a) 4ℓ channel (b) 3ℓ channel (c) opposite-sign 2ℓ channel and (d) same-sign 2ℓ channel. For charged lepton external lines, the directions of arrows refer to the superscripted sign. Relevant arrows are assigned to the associated neutrino external lines.

VH event selections

Channel	4	l		3ℓ			2ℓ	
Category	2SFOS	1SFOS	3SF	1SFOS	0SFOS	DFOS	SS2jet	SS1jet
Trigger	single-lept	on triggers	sing	le-lepton trig	ggers	single-le	pton & dileptor	1 triggers
Num. of leptons	4	4	3	3	3	2	2	2
$p_{\mathrm{T,leptons}}$ [GeV]	> 25, 20, 15	> 25, 20, 15	> 15	> 15	> 15	> 22, 15	> 22, 15	> 22, 15
Total lepton charge	0	0	±1	± 1	± 1	0	± 2	± 2
Num. of SFOS pairs	2	1	2	1	0	0	0	0
Num. of jets	≤ 1	≤ 1	≤ 1	≤ 1	≤ 1	≥ 2	2	1
$p_{\mathrm{T,jets}} \; [\mathrm{GeV}]$	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)
Num. of b-tagged jets	0	0	0	0	0	0	0	0
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 20	> 20	> 30	> 30		> 20	> 50	> 45
$p_{\mathrm{T}}^{\mathrm{miss}}~\mathrm{[GeV]}$	> 15	> 15	> 20	> 20		—	_	—
$ m_{\ell\ell} - m_Z $ [GeV]	$< 10 \ (m_{\ell_2 \ell_3})$	$< 10 \ (m_{\ell_2 \ell_3})$	> 25	> 25			> 15	> 15
Min. $m_{\ell\ell}$ [GeV]	$> 10 \ (m_{\ell_0 \ell_1})$	$> 10 \ (m_{\ell_0 \ell_1})$	> 12	> 12	> 6	> 10	$> 12 \; (ee, \mu\mu)$	$> 12 \ (ee, \mu\mu)$
							$> 10 \ (e\mu)$	$> 10 \ (e\mu)$
Max. $m_{\ell\ell}$ [GeV]	$< 65 \ (m_{\ell_0 \ell_1})$	$< 65 \ (m_{\ell_0 \ell_1})$	< 200	< 200	< 200	< 50		—
$m_{4\ell}$ [GeV]	> 140	_						—
$p_{\mathrm{T},4\ell} \; [\mathrm{GeV}]$	> 30	_						—
$m_{\tau\tau}$ [GeV]		_				$< (m_Z - 25)$		—
$\Delta R_{\ell_0 \ell_1}$	—	_	< 2.0	< 2.0		_		—
$\Delta \phi_{\ell_0 \ell_1}$ [rad]	$< 2.5 \ (\Delta \phi_{\ell_0 \ell_1}^{\mathrm{boost}})$	$< 2.5 \ (\Delta \phi_{\ell_0 \ell_1}^{\text{boost}})$				< 1.8	_	—
$m_{\rm T} ~[{\rm GeV}]$						< 125	_	$> 105 \ (m_{ m T}^{ m lead})$
Min. $m_{\ell_i j(j)}$ [GeV]		_				_	< 115	< 70
Min. $\phi_{\ell_i j}$ [rad]							< 1.5	< 1.5
Δy_{jj}	—	_	—			< 1.2		—
$ m_{jj} - 85 $ [GeV]	—	—	—	_		< 15	—	—

Table 2. Definition of each signal region in this analysis. $m_{\rm T}^{\rm lead}$ is the transverse mass of the leading lepton and the $\mathbf{E}_{\rm T}^{\rm miss}$ (see section 5.2.4 for the definition of $m_{\rm T}^{\rm lead}$). For $p_{\rm T,leptons}$ in the 4 ℓ channel the three values listed above refer to the leading, sub-leading, and to the two remaining leptons, respectively. For $p_{\rm T,leptons}$ in the 2 ℓ channel the two values listed above refer to the leading and sub-leading leptons, respectively. For $p_{\rm T,leptons}$ in the 2 ℓ channel the two values listed above refer to the leading and sub-leading leptons, respectively. For $p_{\rm T,leptons}$ the value in parentheses refers to forward jets ($|\eta| > 2.4$).

BDT output in 3SF and 1SFOS SRs

Variable definitions

$$m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + p_{\rm T}^{\nu\nu})^2 - |\boldsymbol{p}_{\rm T}^{\ell\ell} + \boldsymbol{p}_{\rm T}^{\nu\nu}|^2}, \qquad (1)$$

where $E_{\rm T}^{\ell\ell} = \sqrt{(p_{\rm T}^{\ell\ell})^2 + (m_{\ell\ell})^2}$, $p_{\rm T}^{\nu\nu}$ ($p_{\rm T}^{\ell\ell}$) is the vector sum of the neutrino (lepton) transverse momenta, and $p_{\rm T}^{\nu\nu}$ ($p_{\rm T}^{\ell\ell}$) is its modulus. The distribution has a kinematic upper edge at m_H, but in practice can exceed it because of detector resolution.

$$E_{\rm T,rel}^{\rm miss} = \begin{cases} E_{\rm T}^{\rm miss} \sin \Delta \phi_{\rm near} & \text{if } \Delta \phi_{\rm near} < \pi/2\\ E_{\rm T}^{\rm miss} & \text{otherwise,} \end{cases}$$
(3)

where $\Delta \phi_{\text{near}}$ is the azimuthal separation of the $E_{\text{T}}^{\text{miss}}$ and the nearest high- p_{T} lepton or jet. A similar calculation defines $p_{\text{T,rel}}^{\text{miss}}$ and $p_{\text{T,rel}}^{\text{miss}(\text{trk})}$.

The central-jet veto uses jets with $p_{\rm T} > 20$ GeV, and this requirement is applied in both the BDT and cross-check analyses. The selection can be expressed in terms of jet centrality, defined as

$$C_{j3} = \left| \eta_{j3} - \frac{\Sigma \eta_{jj}}{2} \right| / \frac{\Delta \eta_{jj}}{2}, \qquad (6)$$

$$m_{\rm T}^{\ell_i} = \sqrt{2p_{\rm T}^{\ell_i} \cdot p_{\rm T}^{\rm miss} \cdot (1 - \cos \Delta \phi)}, \qquad (5)$$

where $\Delta \phi$ is the angle between the lepton transverse momentum and p_{T}^{miss} . This quantity tends to have small

suppress such mismeasured DY events, jets with $p_{\rm T}^j > 10$ GeV, within a $\pi/2$ wedge in ϕ (noted as \wedge) centered on $-p_{\rm T}^{\ell\ell}$, are used to define a fractional jet recoil relative to the dilepton transverse momentum:

$$f_{\text{recoil}} = \left| \sum_{\text{jets } j \text{ in } \wedge} \text{JVF}_{j} \cdot \boldsymbol{p}_{\text{T}}^{j} \right| / p_{\text{T}}^{\text{\ell}\ell}.$$
(4)

WW background

- Same selections as SR but without $\Delta \varphi_{II}$ cut
- For $N_i = 0$: CR with 55 < $m_{II} < 110 \text{ GeV}$
- For $N_i = 1$: CR with $m_{\parallel} > 80$ GeV
- For $N_i \ge 2$: taken from MC (with validation region)
- NFs from the fit:

$$\beta_{WW}^{0j} = 1.22 \pm 0.03 (\text{stat}) \pm 0.10 (\text{syst})$$

 $\beta_{WW}^{1j} = 1.05 \pm 0.05 (\text{stat}) \pm 0.24 (\text{syst})$

• WW theory uncert. on extrapolation factor

	$n_j = 0$						
SR category	Scale	PDF	Gen	EW	UE/PS	Total	Total
SR $e\mu$, 10 < $m_{\ell\ell}$ < 30							
$p_{\rm T}^{\ell^2} > 20$	0.7	0.6	3.1	-0.3	-1.9	3.8	7.1
$15 < p_{\rm T}^{\ell^2} \le 20$	1.2	0.8	0.9	0.7	1.7	2.6	3.9
$10 < p_{\rm T}^{\ell^2} \le 15$	0.7	1.0	0.4	1.2	2.2	2.8	5.4
SR $e\mu$, 30 < $m_{\ell\ell}$ < 55							
$p_{\rm T}^{\ell^2} > 20$	0.8	0.7	3.9	-0.4	-2.4	4.8	7.1
$15 < p_{\rm T}^{\ell^2} \le 20$	0.8	0.7	1.0	0.5	1.0	2.0	4.5
$10 < p_{\rm T}^{\ell 2} \le 15$	0.7	0.8	0.5	0.8	1.5	2.1	4.5
SR $ee/\mu\mu$, $12 < m_{\ell\ell} < 55$							
$p_{\rm T}^{\ell^2} > 10$	0.8	1.1	2.4	0.1	-1.2	2.9	5.1

Top background (1)

- For N_i = 0: using CR (jet inclusive)
 - Extrapolated factor from MC (SR and jet inclusive CR) corrected using data in sample with $N_b \ge 1$

$$B_{\text{top},0j}^{\text{est}} = N_{\text{CR}} \cdot \underbrace{B_{\text{SR}}/B_{\text{CR}}}_{\alpha_{\text{MC}}^{0j}} \cdot \underbrace{(\alpha_{\text{data}}^{1b}/\alpha_{\text{MC}}^{1b})^2}_{\gamma_{1b}} \qquad \text{correction factor}$$

• Uncertainties on extrapolation procedure:

Uncertainty source	$lpha_{ m MC}^{0j}/(lpha_{ m MC}^{1b})^2$	$\epsilon_{\rm rest}$	Total
(a) $n_j = 0$			
Experimental	4.4	1.2	4.6
Non-top-quark subtraction	-	-	2.7
Theoretical	3.9	4.5	4.9
Statistical	2.2	0.7	2.3
Total	6.8	4.7	7.6

• Resulting NFs and correction factor:

$$\beta_{\rm top}^{0j} = 1.08 \pm 0.02 ({\rm stat})$$

$$(\alpha_{\rm data}^{1b}/\alpha_{\rm MC}^{1b})^2 = 1.006$$

Top background (2)

- For $N_i = 1$: normalized using CR ($N_b = 1$)
 - In order to reduce large b-tagging uncertainties, the b-tagging efficiency is estimated from data (ε_{1i})

$$B_{\text{top},1j}^{\text{est}} = N_{\text{CR}} \cdot \underbrace{\left(\frac{1 - \epsilon_{1j}^{\text{est}}}{\epsilon_{1j}^{\text{est}}}\right)}_{\alpha_{\text{data}}^{1j}}.$$

• Resulting NF:

$$\beta_{\mathrm{top}}^{1j} = 1.06 \pm 0.03(\mathrm{stat})$$

• Theory uncert. on extrapolation procedure:

Regions		Scale	PDF	Gen	UE/PS	Total					
(b) $n_j = 1$. See the caption	of Tabl	e XII fo	or colu	imn head	dings.					
Signal region											
eμ	$(10 < m_{\ell\ell} < 55)$	-1.1	-0.12	-2.4	2.4	3.6					
ee/µµ	$(12 < m_{\ell\ell} < 55)$	-1.0	-0.12	-2.0	3.0	3.7	_				
WW control region											
eμ	$(m_{\ell\ell} > 80)$	0.6	0.08	2.0	1.8	2.8					

Extrapolation factor from Top CR \rightarrow SR

Extrapolation factor from Top CR \rightarrow WW CR

Top background (3)

- For $N_i > 2$ (VBF-enriched): normalized using CR ($N_b = 1$)
 - 1 b-jet CR mimcs top in SR (light-quark jet from ISR, and misidentified b-jet)
 - normalization (β) and extrapolation (α)
 factors evaluated for each BDT bin
 - Uncertainties below:

O _{BDT} bins	$\Delta lpha / lpha$	$\Delta\beta$ statistical	$\Delta\beta$ systematic	β
SR bin 0 (unused)	0.04	0.02	0.05	1.09
SR bin 1	0.10	0.15	0.55	1.58
SR bin 2	0.12	0.31	0.36	0.95
SR bin 3	0.21	0.31	0.36	0.95

- For N_j > 2 (ggF-enriched): normalized using CR (N_b = 0, m_µ > 80 GeV)
 - To reduce b-tagging systematics CR defined instead for $N_b = 0$, with large m_{\parallel} (to keep orthogonal to SR and minimize signal)
 - Resulting NF:

Misidentified leptons background

- W+jets (one mis-id lepton) or multijet (two mis-id lepton)
- Estimated using fake-factor method (data-driven)

fake factor

- Extrapolation factor ("fake factor") measured in data from Z+jets enriched region.
- Extrapolate to SR from a W+jets CR (both OS and SS)

	То	tal	Corr.	factor			
SR $p_{\rm T}$ range	OC	SC	OC	SC	Stat	Other bkg	
Electrons							
10-15 GeV	29	32	20	25	18	11	
15-20 GeV	44	46	20	25	34	19	
20-25 GeV	61	63	20	25	52	25	
≥25 GeV	43	45	20	25	30	23	
Muons							
10-15 GeV	25	37	22	35	10	03	
15-20 GeV	37	46	22	35	18	05	
20-25 GeV	37	46	22	35	29	09	
≥25 GeV	46	53	22	35	34	21	

• Composition of associated jets (fraction of heavy flavour quark, light flavour quark, gluon initiated) may be different from Z+jets to W+jets sample.

Other diboson background

- 'VV' background include $W\gamma$, $W\gamma^*$, WZ and ZZ
- For eu: one NF from data (same-sign CR) for all VV
- <u>For ee/μμ</u>: taken from simulation
- Wy validated in region with reversed γ 0conversion criteria
- $W\gamma^*$ validated in the 3-lepton region

100

m_⊤ [GeV]

50

150

Z/DY background (1)

$Z/DY \rightarrow \tau \tau$

- Normalization from CRs
- 0j CR: $e\mu$, m_{\parallel} < 80 GeV, $\Delta \phi_{\parallel}$ > 2.8
- 1j CR: $e\mu$, $m_{\tau\tau} > m_7 25$ GeV, $m_{\parallel} < 80$ GeV
- 2j CR ggF: eµ, m_µ < 70 GeV, Δ $\phi_{µ}$ > 2.8
- 2j CR VBF: eµ(+ee+µµ), m_{II} < 80 (75) GeV, $|m_{\tau\tau} - m_{\tau}| < 25 \text{ GeV}$

 $\beta_{0j} = 1.00 \pm 0.02$ (stat) $\beta_{1i} = 1.05 \pm 0.04$ (stat) $\beta_{2i} = 1.00 \pm 0.09$ (stat) $\beta = 0.9 \pm 0.3$ (stat)

Regions	Scale	PDF	Gen	$p_{\mathrm{T}}^{Z/\gamma^*}$
Signal regions				
$n_i = 0$	-1.6	1.4	5.7	19
$n_{j} = 1$	4.7	1.8	-2.0	-
$n_j \ge 2 \text{ ggF}$	-10.3	1.1	10.4	-
WW control regio	ons			
$n_j = 0$	-5.5	1.0	-8.0	16
$n_{j} = 1$	-7.2	2.1	3.2	-

Z/DY background (2)

Entries normalised to

10

ATLAS Preliminary

 $v_s = 8$ TeV, simulation

 $H \rightarrow WW^{(^{\circ})} \rightarrow evev/\mu \nu \mu \nu + 0$ jets

Z+jets

 $p_{T}(recoiling jets)$

0.5

0.6

Z/DY→ee/μμ in 0/1j:

- Data-driven via so-called "Pacman" method
- f_{recoil} has clear shape difference with signal and Z/DY $\rightarrow \tau \tau$
- Method is based on measurement of selection efficiency of cut on f_{recoil} from data, and then estimating the remaining DY→ee/µµ after such a cut

$$\epsilon = N_{\rm pass} / (N_{\rm pass} + N_{\rm fail})$$

- Analytically equivalent to inverting the matrix:

$$\begin{bmatrix} N_{\text{pass}} \\ N_{\text{pass}} + N_{\text{fail}} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1/\varepsilon_{\text{DY}} & 1/\varepsilon_{\text{non-DY}} \end{bmatrix} \cdot \begin{bmatrix} B_{\text{DY}} \\ B_{\text{non-DY}} \end{bmatrix}$$

- ε_{DY} mesured in the ee/µµ sample, while ε_{non-DY} measured in eµ sample that followins the selections of the ee/µµ analysis
- Solving for B_{DY} gives the fully data-driven yield for $DY \rightarrow ee/\mu\mu$ in the SR

• $Z/DY \rightarrow ee/\mu\mu$ in 2 jet:

- Data-driven ABCD method
- A, B, C and D regions defined in MET-m_{II} plane

t _{recoil}

VH Control Regions

Channel	4ℓ			3ℓ		
CR	ZZ	WZ	ZZ	Zjets	Top	$Z\gamma$
Number of leptons	4	3	3	3	3	3
Total lepton charge	0	± 1	±1	± 1	± 1	± 1
Number of SFOS	2	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1
			$(ee\mu \text{ or } \mu\mu\mu)$			$(\mu\mu e \text{ or } eee)$
Number of jets	≤ 1	≤ 1	≤ 1	≤ 1	≥ 1	≤ 1
Number of <i>b</i> -jets	0	0	0	0	\geq 1	0
$E_{\mathrm{T}}^{\mathrm{miss}}$ (and/or) $p_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	_	>30 and >20	$< 30 \ \mathrm{or} < 20$	< 30 and < 20	$>30~{\rm and}>20$	< 30 or < 20
$ m_{\ell\ell} - m_Z $ [GeV]	$< 10(m_{\ell_2 \ell_3})$	< 25		< 25	> 25	
$ m_{\ell\ell\ell} - m_Z $ [GeV]	_	_	< 15	> 15	_	< 15
Min. $m_{\ell\ell}$ [GeV]	$> 65(m_{\ell_0\ell_1})$	> 12	> 12	> 12	> 12	> 12
Max. $m_{\ell\ell}$ [GeV]	_	< 200	< 200	< 200	_	< 200
$\Delta R_{\ell_0 \ell_1}$	_	< 2.0	< 2.0	< 2.0	_	< 2.0

Table 5. Definition of control regions in the 4ℓ and 3ℓ analyses. Selections indicated in boldface font are designed to retain the CR orthogonal to the relevant SR.

VH NFs and CRs

(a) 8 TeV data sample

Channel	4ℓ	3ℓ
Category	2SFOS, 1SFOS	3SF, 1SFOS, 0SFOS
Process		
$WZ/W\gamma^*$	_	$1.08\substack{+0.08\\-0.06}$
ZZ^*	$1.03\substack{+0.11 \\ -0.10}$	$1.28\substack{+0.22\\-0.20}$
OS WW	—	_
$W\gamma$		—
$Z\gamma$	_	$0.62\substack{+0.15 \\ -0.14}$
Z/γ^*	_	$0.80^{+0.68}_{-0.53}~(\mu ext{-misid})$
		$0.33^{+0.12}_{-0.11} \ (e ext{-misid})$
Top	_	$1.36\substack{+0.34 \\ -0.30}$

50 60

20 30 40

80 90

100

 m_{l_0, l_2} [GeV]

70

4lep ZZ CR

Signal theory uncertainties

FIG. 18 (color online). Efficiencies of the veto of the (a) first jet and (b) second jet in inclusive ggF production of the Higgs boson, as a function of the veto-threshold $p_{\rm T}$.

TABLE X. Signal-yield uncertainties (in %) due to the modeling of the gluon-fusion and vector-boson-fusion processes. For the $n_j = 0$ and $n_j = 1$ categories the uncertainties are shown for events with same-flavor leptons; for events with different-flavor leptons the uncertainties are evaluated in bins of $m_{\ell\ell}$ and $p_T^{\ell 2}$. For the $n_j \ge 2$ VBF category the uncertainties are shown for the most sensitive bin of BDT output (bin 3).

Uncertainty source	$n_j = 0$	$n_j = 1$	$n_j \ge 2$ ggF	$n_j \ge 2$ VBF
Gluon fusion				
Total cross section	10	10	10	7.2
Jet binning or veto	11	25	33	29
Acceptance				
Scale	1.4	1.9	3.6	48
PDF	3.2	2.8	2.2	-
Generator	2.5	1.4	4.5	-
UE/PS	6.4	2.1	1.7	15
Vector-boson fusion				
Total cross section	2.7	2.7	2.7	2.7
Acceptance				
Scale	-	-	-	3.0
PDF	-	-	-	3.0
Generator	-	-	-	4.2
UE/PS	-	-	-	14

Systematic uncertainties: signal

TABLE XXII. Sources of systematic uncertainty (in %) on the predicted signal yield (N_{sig}) and the cumulative background yields (N_{bkg}). Entries marked with a dash (-) indicate that the corresponding uncertainties either do not apply or are less than 0.1%. The values are postfit and given for the 8 TeV analysis.

	$n_j = 0$	$n_j = 1$	$n_j \ge 2 \text{ ggF}$	$n_j \ge 2 \text{ VBF}$
(a) Uncertainties on N _{sig} (in %)				
ggF H, jet veto for $n_i = 0, e_0$	8.1	14	12	-
ggF H, jet veto for $n_i = 1, e_1$	-	12	15	-
ggF H, $n_j \ge 2$ cross section	-	-	-	6.9
ggF H, $n_j \ge 3$ cross section	-	-	-	3.1
ggF H , total cross section	10	9.1	7.9	2.0
ggF H acceptance model	4.8	4.5	4.2	4.0
VBF H , total cross section	-	0.4	0.8	2.9
VBF H acceptance model	-	0.3	0.6	5.5
$H \rightarrow WW^*$ branching fraction	4.3	4.3	4.3	4.3
Integrated luminosity	2.8	2.8	2.8	2.8
Jet energy scale & resolution	5.1	2.3	7.1	5.4
$p_{\rm T}^{\rm miss}$ scale & resolution	0.6	1.4	0.1	1.2
f_{recoil} efficiency	2.5	2.1	-	-
Trigger efficiency	0.8	0.7	-	0.4
Electron id., isolation, reconstruction eff.	1.4	1.6	1.2	1.0
Muon id., isolation, reconstruction eff.	1.1	1.6	0.8	0.9
Pile-up model	1.2	0.8	0.8	1.7

- Dominant uncertainties on the signal yield are theoretical
- Dominant experimental uncertainties are jet energy scale and resolution, and b-tagging efficiency.

Systematic uncertainties: bkg

	$n_j = 0$	$n_j = 1$	$n_j \ge 2 \text{ ggF}$	$n_j \ge 2$ VBF
(b) Uncertainties on N _{bkg} (in %)				
WW theoretical model	1.4	1.6	0.7	3.0
Top theoretical model	-	1.2	1.7	3.0
VV theoretical model	-	0.4	1.1	0.5
$Z/\gamma^* \rightarrow \tau \tau$ estimate	0.6	0.3	1.6	1.6
$Z/\gamma^* \rightarrow ee, \mu\mu$ estimate in VBF	-	-	-	4.8
W j estimate	1.0	0.8	1.6	1.3
jj estimate	0.1	0.1	1.8	0.9
Integrated luminosity	-	-	0.1	0.4
Jet energy scale & resolution	0.4	0.7	0.9	2.7
$p_{\rm T}^{\rm miss}$ scale & resolution	0.1	0.3	0.5	1.6
b-tagging efficiency	-	0.2	0.4	2.0
Light- and c-jet mistag	-	0.2	0.4	2.0
$f_{\rm recoil}$ efficiency	0.5	0.5	-	-
Trigger efficiency	0.3	0.3	0.1	-
Electron id., isolation, reconstruction eff.	0.3	0.3	0.2	0.3
Muon id., isolation, reconstruction eff.	0.2	0.2	0.3	0.2
Pile-up model	0.4	0.5	0.2	0.8

• Dominant experimental uncertainties are jet energy scale and resolution, and b-tagging efficiency.

Systematic uncertainties: VH channels

(a) Oncertainties on the $V H(H \rightarrow WW^{-})$ process (70)									
Channel	4	l		3ℓ			2ℓ		
Category	2SFOS	1SFOS	3SF	1SFOS	0SFOS	DFOS	SS2jet	SS1jet	
Theoretical uncertainties									
VH acceptance	9.2	9.3	9.9	9.9	9.9	10	10	9.9	
Higgs boson branching fraction	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	
QCD scale	3.1	3.0	1.2	1.0	1.0	1.3	1.0	1.0	
PDF and α_S	1.0	1.1	2.1	2.2	2.2	1.9	2.3	2.2	
VH NLO EW corrections	1.7	1.8	1.9	1.9	1.9	1.9	1.9	1.9	
Experimental uncertainties									
Jet	2.0	3.1	2.5	2.5	2.9	3.2	8.9	5.8	
$E_{\rm T}^{\rm miss}$ soft term	0.2	0.3	_	_	_	0.3	0.6	0.2	
Electron	2.6	2.8	1.6	2.2	2.2	1.5	2.1	1.7	
Muon	2.6	2.4	2.2	1.8	1.7	0.8	1.8	1.9	
Trigger efficiency	0.2	_	0.4	0.3	0.3	0.5	0.6	0.5	
b-tagging efficiency	0.9	0.9	0.9	0.8	0.8	2.9	3.5	2.4	
Pile-up	1.9	0.7	2.0	1.4	0.8	1.7	1.0	2.4	
Luminosity	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	

(a) Uncertainties on the $VH(H \rightarrow WW^*)$ process (%)

(b) Uncertainties on the total background (%)

Theoretical uncertainties								
QCD scale	0.2	0.1	1.0	0.9	_	3.7	13	2.3
PDF and α_S	0.2	2.4	0.3	0.3	1.6	1.4	0.5	0.6
VVV K-factor	2.8	8.1	1.1	1.9	0.5	_	_	0.3
MC modelling	5.3	4.3	7.0	6.6	_	4.1	0.8	1.4
Experimental uncertainties								
Jet	3.1	2.4	3.2	1.8	4.1	7.2	5.0	3.4
$E_{\rm T}^{\rm miss}$ soft term	2.3	0.6	1.8	1.9	0.5	1.1	0.2	0.7
Electron	1.0	1.4	1.0	0.4	1.1	0.7	1.1	0.8
Muon	1.1	1.2	0.4	0.7	0.2	0.2	0.4	0.8
Trigger efficiency	_	0.2	0.2	_	_	0.1	_	_
b-tagging efficiency	0.6	0.8	0.6	0.8	2.6	0.7	1.4	0.3
Fake factor		_	_	_	_	2.8	10	10
Charge mis-assignment	_	_	_	_	1.4	_	0.7	0.8
Photon conversion rate	_	_	_		_	_	1.1	0.9
Pile-up	1.2	1.1	1.4	0.3	1.2	0.9	1.0	1.0
Luminosity	0.4	0.8	0.1	0.2	0.7	_	0.7	0.3
MC statistics	5.3	8.0	3.8	3.2	5.5	3.1	7.3	3.9
CR statistics	8.1	6.6	4.2	3.9	8.8	2.5	2.8	3.5

Table 9. Theoretical and experimental uncertainties, in %, on the predictions of the (a) signal and (b) total background for each category. Fake factor refers to the data-driven estimates of the W+jets and multijet backgrounds in the 2ℓ channels. The dash symbol (-) indicates that the corresponding uncertainties either do not apply or are negligible. The values are obtained through the fit and given for the 8 TeV data sample. Similar values are obtained for the 7 TeV data sample.

Fit procedure (1)

• Regions that enter the fit:

1. Signal regions catagories

- 7 and 8 TeV
- $N_i = 0, 1, and \ge 2 jets VBF/ggF$
- ee, μμ, eμ, μe
- m_{II} slices (typically 1 or 2 depending on category)
- $p_T^{l_2}$ slices (typically 1, 2 or 3 depending on category)

2. Control regions

- See next slide for exact profiled regions / non-profiled regions
- Profiled CRs determine the normalization of corresponding backgrounds through Poisson term in the likelihood
- Nonprofieled CRs do not have explicit termins in the likelihood, and enter the fit in other ways
- Fit variables are m_T in the ggF-enriched categories, and BDT output in VBF-enriched category.
- Exact binning schemes in above two variables chosen to maximize expected significance while stabilizing the stat fluctuations associated to subtraction of backgrounds.

Fit procedure (2)

CR	Profiled?	Sample	Notable differences vs. SR
(b) Control regions that	are profiled (•) and nonprofi	led (0)	
$n_i = 0$			
WW		еµ	$55 < m_{\ell\ell} < 110, \ \Delta \phi_{\ell\ell} < 2.6, \ p_T^{\ell/2} > 15$
Тор	0	eμ	$n_i = 0$ after presel., $\Delta \phi_{\ell\ell} < 2.8$
Wj	0	same	one anti-identified ℓ
jj	0	same	two anti-identified ℓ
ν̈́ν	•	еµ	same-charge ℓ (only used in $e\mu$)
DY, ee/μμ	•	ee/µµ	$f_{\rm recoil} > 0.1$ (only used in $ee/\mu\mu$)
DY, ττ	•	eμ	$m_{\ell\ell} < 80, \ \Delta \phi_{\ell\ell} > 2.8$
$n_{j} = 1$			
WW	•	eµ	$m_{\ell\ell} > 80, m_{\tau\tau} - m_Z > 25, p_T^{\ell 2} > 15$
Top	•	еµ	$n_b = 1$
Wj	0	same	one anti-identified ℓ
jj	0	same	two anti-identified ℓ
VV	•	еµ	same-charge ℓ (only used in $e\mu$)
DY, ee/μμ	•	ee/µµ	$f_{\rm recoil} > 0.1$ (only used in $ee/\mu\mu$)
DY, ττ	•	eμ	$m_{\ell\ell} < 80, \ m_{\tau\tau} > m_Z - 25$
$n_j \ge 2 \text{ ggF}$			
Top	•	еµ	$m_{\ell\ell} > 80$
Wj	0	same	one anti-identified ℓ
jj	0	same	two anti-identified ℓ
DY, ττ	•	eμ	$m_{\ell\ell} < 70, \ \Delta \phi_{\ell\ell} > 2.8$
$n_i \ge 2$ VBF			
Top	•	both	$n_b = 1$
Wj	0	same	one anti-identified ℓ
jj	0	same	two anti-identified ℓ
DY, <i>ee</i> /μμ	0	ее/µµ	$E_{\rm T}^{\rm miss} < 45$ (only used in $ee/\mu\mu$)
DY, ττ	0	both	$m_{\ell\ell} < 80, \ m_{\tau\tau} - m_Z < 25$

Fit procedure (3)

• Likelihood function is defined to simultaneously model or 'fit' the yields of the various subsample, and is maximized

$$\mathcal{L} = \underbrace{\prod_{i,b}^{\text{Table}} f\left(N_{ib} \middle| \mu \cdot S_{ib} \prod_{r}^{\text{Syst in}} v_{br}(\theta_{r}) + \sum_{k}^{\text{Table}} \beta_{k} \cdot B_{kib} \prod_{s}^{\text{Syst in}} v_{bs}(\theta_{s})\right)}_{\text{Poisson for SR with signal strength } \mu; \text{ predictions } S, B} \underbrace{\prod_{s}^{\text{Syst in}} v_{bs}(\theta_{s})}_{\text{Poisson for profiled CRs}} \underbrace{\prod_{k}^{\text{Table}} f\left(N_{l} \middle| \sum_{k}^{\text{Table}} \beta_{k} \cdot B_{kl}\right)}_{\text{Gauss. for syst}} \underbrace{\prod_{k}^{\text{Table}} f(\xi_{k} \mid \zeta_{k} \cdot \theta_{k})}_{\text{Poiss. for MC stats}}$$

 Profile likelihood-ratio test statistics used to test the background-only or background-and-signal hypothesis

$$q(\mu) = -2 \ln rac{\mathcal{L}(\mu, oldsymbol{ heta})}{\mathcal{L}_{\max}}\Big|_{oldsymbol{ heta}=\hat{oldsymbol{ heta}}_{\mu}},$$

3. Combined fit

The combined results for the 7 and 8 TeV data samples account for the correlations between the analyses due to common systematic uncertainties.

The correlation of all respective nuisance parameters is assumed to be 100% except for those that are statistical in origin or have a different source for the two data sets. Uncorrelated systematics include the statistical component of the jet energy scale calibration and the luminosity uncertainty. All theoretical uncertainties are treated as correlated.

Impact of nuisance parameters on μ

TABLE XXIV. Impact on the signal strength $\hat{\mu}$ from the prefit and postfit variations of the nuisance parameter uncertainties, Δ_{θ} . The + (-) column header indicates the positive (negative) variation of Δ_{θ} and the resulting change in $\hat{\mu}$ is noted in the entry (the sign represents the direction of the change). The right-hand side shows the pull of θ and the data constraint of Δ_{θ} . The pulls are given in units of standard deviations (σ) and Δ_{θ} of ± 1 means no data constraint. The rows are ordered by the size of a change in $\hat{\mu}$ due to varying θ by the postfit uncertainty Δ_{θ} .

			μ	Imp	act on $\hat{\theta}$		
	Prefi	tΔ ₀	Postf	it Δ ₀	Plot of postfit $\pm \Delta_0$	Pull,	Constraint,
Systematic source	+	<u>-</u>	+	-		$\hat{\theta}(\sigma)$	Δ_{θ}
ggF H, PDF variations on cross section	-0.06	+0.06	-0.06	+0.06		-0.06	±1
ggF H , QCD scale on total cross section	-0.05	+0.06	-0.05	+0.06		-0.05	± 1
WW, generator modeling	-0.07	+0.06	-0.05	+0.05		0	± 0.7
Top quarks, generator modeling on α_{top} in ggF cat.	+0.03	-0.03	+0.03	-0.03		-0.40	± 0.9
Misid of μ , OC uncorrelated corr factor α_{misid} , 2012	-0.03	+0.03	-0.03	+0.03		0.48	± 0.8
Integrated luminosity, 2012	-0.03	+0.03	-0.03	+0.03		0.08	± 1
Misid of e, OC uncorrelated corr factor α_{misid} , 2012	-0.03	+0.03	-0.02	+0.03		-0.06	± 0.9
ggF H, PDF variations on acceptance	-0.02	+0.02	-0.02	+0.02		-0.03	± 1
Jet energy scale, η intercalibration	-0.02	+0.02	-0.02	+0.02	+	0.45	± 0.95
VBF H, UE/PS	-0.02	+0.02	-0.02	+0.02	+	0.26	± 1
ggF H, QCD scale on ϵ_1	-0.01	+0.03	-0.01	+0.03	-	-0.10	± 0.95
Muon isolation efficiency	-0.02	+0.02	-0.02	+0.02	+	0.13	± 1
VV, QCD scale on acceptance	-0.02	+0.02	-0.02	+0.02	+	0.09	± 1
ggF H, UE/PS	-	-0.02	-	-0.02	-	0	± 0.9
ggF H, QCD scale on acceptance	-0.02	+0.02	-0.02	+0.02	+	0	± 1
Light jets, tagging efficiency	+0.02	-0.02	+0.02	-0.02	+	0.21	± 1
ggF H, generator modeling on acceptance	+0.01	-0.02	+0.01	-0.02	+	0.10	± 1
ggF H, QCD scale on $n_i \ge 2$ cross section	-0.01	+0.02	-0.01	+0.02	+	-0.04	± 1
Top quarks, generator modeling on α_{top} in VBF cat.	-0.01	+0.02	-0.01	+0.02	+	-0.16	± 1
Electron isolation efficiency	-0.02	+0.02	-0.02	+0.02	+	-0.14	± 1
					-0.1-0.05 0 0.05 0.1		

Impact on μ: *VH* channels

Uncertainties on the signal strength μ	Uncertainties on the signal strength μ_{VH} (%)							
Signal theoretical uncertainties	$\Delta \mu_{VH}$	$/\mu_{VH}$						
	+	-						
VH acceptance	11	7						
Higgs boson branching fraction	7	4						
QCD scale	1.6	0.7						
PDF and α_S	3.2	1.5						
VH NLO EW corrections	2.5	1.2						
Background theoretical uncertainties								
QCD scale	10	9						
PDF and α_S	2.3	2.0						
VVV K-factor	3.0	3.0						
MC modelling	7.5	6.9						
Experimental uncertainties								
Jet	14	9						
E_{T}^{miss} soft term	3.4	2.3						
Electron	4.8	2.9						
Muon	4.8	3.2						
Trigger efficiency	1.7	0.9						
b-tagging efficiency	4.7	3.2						
Fake factor	14	12						
Charge mis-assignment	1.1	1.0						
Photon conversion rate	0.8	0.7						
Pile-up	3.0	1.9						
Luminosity	5.4	3.3						
MC statistics	8	8						
CR statistics	18	15						
ggF SR statistics	5.5	4.4						
VBF SR statistics	1.9	1.5						
ggF+VBF CR statistics	10	9						

Table 14. Percentage theoretical and experimental uncertainties on the observed VH signal strength μ_{VH} . The contributions from signal-related and background-related theoretical uncertainties are specified. The "VH acceptance" is evaluated using both the $qq \rightarrow (W/Z)H$ and the $gg \rightarrow ZH$ production. The statistical uncertainty due to the ggF and VBF subtraction measured in the categories of the ggF and VBF analysis are indicated with "ggF SR statistics" and "VBF SR statistics", for the contribution from the signal regions, and "ggF+VBF CR statistics" for the contribution from the control regions. The row "MC statistics" shows the uncertainty due to the statistics of the simulated samples. The values are obtained from the combination of the 8 TeV and 7 TeV data samples.

Significance and μ measurements

	5	Signal si	gnificance Z_0					Observ	ved	signa	al st	ren	$_{\mathrm{gth}}$	μ					
Category	Exp.	Obs.	Obs.	μ	Tot.	err.	Syst	. err.						μ	ι				
	Z_0	Z_0	Z_0		+	_	+	-											
ggF	4.4	4.2		0.98	0.29	0.26	0.22	0.18		+									
VBF	2.6	3.2		1.28	0.55	0.47	0.32	0.25		+									
VH	0.93	2.5		3.0	1.6	1.3	0.95	0.65			_	-	_	-					
WH only	0.77	1.4	—	2.1	1.9	1.6	1.2	0.79		_			-	-					
ZH only	0.30	2.0		5.1	4.3	3.1	1.9	0.89			-								
ggF+VBF+VH	5.9	6.5		1.16	0.24	0.21	0.18	0.15		+									
			0 1 2 3 4 5	6 7					0	1	2	3	4	5	6	7	8	9	10

Significance and μ : VH channels

	Si	ignal sig	nificance Z_0					Observed	signal strength μ
Category	Exp.	Obs.	Obs.	μ	Tot	err.	Syst	. err.	μ
	Z_0	Z_0	Z_0		+	-	+	-	
4ℓ	0.41	1.9		4.9	4.6	3.1	1.1	0.40	
2SFOS	0.19	0	1	-5.9	6.8	4.1	0.33	0.72	
1SFOS	0.36	2.5		9.6	8.1	5.4	2.1	0.64	
3ℓ	0.79	0.66	—	0.72	1.3	1.1	0.40	0.29	+
1SFOS and 3SF	0.41	0	1	-2.9	2.7	2.1	1.2	0.92	
0SFOS	0.68	1.2	—	1.7	1.9	1.4	0.51	0.29	
2ℓ	0.59	2.1	—	3.7	1.9	1.5	1.1	1.1	
DFOS	0.54	1.2	—	2.2	2.0	1.9	1.0	1.1	
SS2jet	0.17	1.4		7.6	6.0	5.4	3.2	3.2	
SS1jet	0.27	2.3		8.4	4.3	3.8	2.3	2.0	
			0 1 2	3				-10	-8 -6 -4 -2 0 2 4 6 8 10 12 14 16

$$\mu_{WH} = 2.1^{+1.5}_{-1.3} \,(\text{stat.})^{+1.2}_{-0.8} \,(\text{sys.}),$$

$$\mu_{VH} = 3.0^{+1.3}_{-1.1} \,(\text{stat.})^{+1.0}_{-0.7} \,(\text{sys.}).$$

$$\mu_{ZH} = 5.1^{+3.8}_{-3.0} \,(\text{stat.})^{+1.9}_{-0.9} \,(\text{sys.}),$$

Likelihood curves for signal strength

High-mass: object definitions

Primary vertex (PV) = 1

• \geq 2 associated tracks with $p_T > 400 \text{ MeV}$

• if > 1 vertex meet the requirement above, the largest track $\sum p_T^2$ chosen as PV

Electron

- ◆ MediumLH for pT > 25 GeV or TightLH for 15 < pT < 25GeV
- |η| < 2.47, except for 1.37 < |η| < 1.52</p>

Muon

- Medium for pT > 25 GeV or Tight for 15 < pT < 25GeV</p>
- |η| < 2.5

Jet

- ♦ p_T > 30 GeV, |η| < 4.5</p>
- JVT > 0.59 for $p_T < 60 \text{ GeV}$
- Overlap removal with electrons and muons

B-tagged jet

Identified using the MV2c10 b-tagging algorithm, with an efficiency of 85%

• p_T > 20 GeV, |η| < 2.5</p>

High-mass: object definitions

MET: missing transverse momentum

E_T^{miss}: calorimeter-based

Negative vectorial sum of the transverse momenta of all calibrated selected objects Tracks compatible with the primary vertex but not matched to the objects also included

p_T^{miss}: track-based

negative sum of the momenta of ID tracks, satisfying:

- \succ d₀ < 1.5mm, d₀/σ(d₀) < 3
- ▶ |η|< 2.5, p_T > 500 MeV

Calorimeter electron p_T used instead of track p_T

High-mass: transverse mass

Transverse missing momentum:

Negative vectorial sum of the transverse momenta

- **E**_T^{miss}: based on calorimeter objects
- **p**_T^{miss}: based on charged tracks

Transverse invariant mass:

$$M_T = \sqrt{(E_T^{ll} + E_T^{miss})^2 - |\mathbf{p}_T^{ll} + \mathbf{E}_T^{miss}|^2}$$

where
$$E_T^{ll} = \sqrt{|\mathbf{p}_T^{ll}| + m_{ll}^2}$$

 \rightarrow Discriminating variable

High-mass: event selection optimization

- Developed a simple and general optimization procedure
 - 1. Select the most discriminating variables from the BDT training

Remove duplicated variables that highly correlated

2. Choose cut values for each variable by maximizing the signal significance

Scanning on leading lepton p_T

High-mass: SR event selections

Event selection in signal regions(SRs) :

• VBF 1J phase space: $N_{jet} = 1$: $|\eta_j| > 2.4$ and $min(|\Delta \eta_{j\ell}|) > 1.75$

• VBF 2J phase space: $N_{jet} \ge 2$: $m_{jj} > 500 \text{ GeV and } |\Delta y_{jj}| > 4$

Preselection cuts: $p_{\rm T}^{\rm lead} > 25 \text{GeV}, p_{\rm T}^{\rm sublead} > 15 \text{GeV}, 3rd$ lepton veto, $m_{\ell\ell} > 10 \text{GeV}$					
SR _{ggF}	SR _{VBF1J}	SR _{VBF2J}			
$N_{b-\text{jet}} = 0$					
$ \Delta \eta_{\ell\ell} < 1.8$					
$m_{\ell\ell} > 55 \mathrm{GeV}$					
$p_{\rm T}^{\rm lead} > 45 { m GeV}$					
	$p_{\rm T}^{\rm sublead} > 30 {\rm G}$	eV			
$\max(m_T^W) > 50 \text{GeV}$					
Inclusive in N_{jet} but $N_{jet} = 1$ $N_{jet} \ge 2$					
excluding VBF1J $ \eta_j > 2.4$ $m_{jj} > 500 \text{GeV}$					
and VBF2J phase space $\min(\Delta \eta_{j\ell}) > 1.75$ $ \Delta y_{jj} > 4$					

$$m_{\rm T}^W = \sqrt{2p_{\rm T}^\ell E_{\rm T}^{\rm miss}} (1 - \cos(\phi^\ell - \phi^{E_{\rm T}^{\rm miss}}))$$

High-mass: acceptance * efficiency

Selection efficiency (not including pre-selection cuts)

Acceptane*efficiency (namely the <u>overall efficiency</u> after all selections in SR)

1500

2000

VBF @ VBF 1J SR

VBF @ VBF 2J SR

VBF @ quasi-inclusive ggF SR-

2500

3000

H mass[GeV]

High-mass: CR event selections

Event selection in control regions(CRs) :

• VBF 1J phase space: $N_{jet} = 1$: $|\eta_j| > 2.4$ and $min(|\Delta \eta_{j\ell}|) > 1.75$

• VBF 2J phase space: $N_{jet} \ge 2$: $m_{jj} > 500 \text{ GeV and } |\Delta y_{jj}| > 4$

WW CRggF	WW CR _{ggF} Top CR _{ggF}		Top CR _{VBF}	
$N_{b-\text{jet}} = 0$	$N_{b\text{-jet}} = 0$ $N_{b\text{-jet}} = 1$		$N_{b-\text{jet}} \ge 1$	
$ \Delta \eta_{\ell\ell} > 1.8$	$ \Delta\eta_{\ell\ell} < 1.8$	$(\Delta \eta_{\ell \ell} > 1.8 \text{ or})$	_	
$m_{\ell\ell} > 55 \mathrm{GeV}$		$m_{\ell\ell} < 55 \mathrm{GeV})$	-	
$p_{\rm T}^{\rm lead} > 45 {\rm GeV}$		$p_{\rm T}^{\rm lead} > 25 {\rm GeV}$	$p_{\rm T}^{\rm lead} > 25 {\rm GeV}$	
$p_{\rm T}^{\rm sublead} > 30 {\rm GeV}$		$p_{\rm T}^{\rm sublead} > 25 {\rm GeV}$	$p_{\rm T}^{\rm sublead} > 15 {\rm GeV}$	
$\max(m_{\rm T}^W) > 50 {\rm GeV}$		-	-	
Excluding VBF		VBF1J	VBF1J or VBF2J	
VBF1J and VBF2J		phase space	phase space	

High-mass: top CR plots

VBF Top CR

ggF Top CR

High-mass: WW CR plots

ggF WW CR

VBF WW 1J CR

High-mass: fake factor method

235 6.3 W+jets background

The background contribution is estimated using the fake-factor based data-driven method developed for 236 the SM $H \rightarrow WW$ analysis [31]. The relevant information used for this analysis is shown here. The 237 W+ jets background contribution is estimated using a sample of events satisfying all selection criteria but 238 in which one of the two lepton candidates satisfies the identification and isolation criteria used to define 239 the signal samples (these lepton candidates are denoted as "fully identified"), and the other lepton fails 240 to meet these criteria and satisfies a less restrictive selection denoted as "anti-identified" (anti-id) lepton. 241 From this data sample the non-W+ jets contribution based on MC predictions is subtracted. The purity 242 of the samples is 55%, 64% and 38% for the quasi-inclusive ggF, $N_{iet} = 1$ and $N_{iet} \ge 2$ VBF categories, 243 respectively. 244

The W+ jets contamination in the signal region is determined by scaling the number of events in the selected data sample by an extrapolation factor (fake-factor), which is measured in a data sample of di-jets events. The fake-factor is the ratio of the number of fully identified leptons to the number of antiidentified leptons, measured in bins of anti-identified lepton $p_{\rm T}$ and η . The systematic errors associated with the fake factor evaluation are described in Section 7.3.

High-mass: NFs and event yields

Normalization factors(NFs)

 $NF_{ggFCR}^{Top} = 0.96_{-0.08}^{+0.09} NF_{VBFCR}^{Top} = 0.96_{-0.14}^{+0.12}$ $NF_{ggFCR}^{WW} = 1.3_{-0.1}^{+0.1} NF_{VBF1JCR}^{WW} = 1.2_{-0.3}^{+0.5}$

Event yields (statistical and systematic uncertainties combined)

	SR_{ggF}	Top $\mathrm{CR}_{\mathrm{ggF}}$	$WW CR_{ggF}$
WW	5300±400	430±90	1430 ± 120
Top-quark	4200 ± 400	20560 ± 210	900 ± 100
Z/γ^*	557±25	46±12	10.7 ± 1.0
W+jets	450±120	260 ± 80	105 ± 30
VV	323±12	37±4	88.5±3.4
Backgrounds	10790 ± 110	21330 ± 180	2530±40
Data	10718	21333	2589

	SR _{VBF1J}	SR_{VBF2J}	Top CR_{VBF}	WW CR _{VBF1J}
WW	197±31	53±15	37±4	117±21
Top-quark	141 ± 26	124 ± 19	2650 ± 80	65 ± 14
Z/γ^*	Z/γ^* 20±7		40 ± 17	27±5
W+jets	22±6	7.5±2.2	95 ± 25	24±6
VV	9.5 ± 1.0	5.7±0.8	5.2 ± 2.2	11.0 ± 1.5
Backgrounds	389±22	202±14	2830±70	247±16
Data	384	203	2825	253

High-mass: fitting procedure

Likelihood function defined using MT distributions, as a product of

Poisson functions over following 7 regions:

♦ ggF SR: 26 bins

- ◆ VBF 1J, 2J SRs: 10 bins
- ◆ ggF Top, WW and VBF Top, WW 1J CRs: 1 bin
- Profiled likelihood method was used

For the observed limits for ggF(VBF), VBF(ggF) cross section treated as a nuisance parameter, and profiled using a flat prior

High-mass: dominant systematics

Main experimental uncertainties

- Dominant Top uncertainties from jets: 9.8%, 12% for VBF1J, 2J SRs
- Dominant WW uncertainties from jets: 16%, 23% for VBF1J, 2J SRs

Main theoretical uncertainties on backgrounds

- Dominant Top uncertainties from generator modelling: 17%, 48% in VBF 1J, 2J SRs. Also 35%, 48% for WW uncertainties
- Similar in CRs, so the extrapolation uncertainties from CRs to SRs remain small

Main theoretical uncertainties on signals

Dominant scale uncertainties on category migration: 30% increased to 90% from 300 GeV to 3 TeV for VBF 1J, 25% increased to 40% from 300 GeV to 3 TeV

High-mass: systematics (1)

Total luminosity uncertainty: 2.9% (data15: 2.1%, data16: 3.7%)
Main experimental uncertainties (in %):

	Top-quark			WW		
Source	SRggF	SR _{VB1J}	SR _{VBF2J}	SRggF	SR _{VBF1} J	SR _{VBF2J}
Jet	4.6	9.8	12	1.3	16	23
b-tag	17	6.2	13	1.7	0.99	3.3
MET	0.09	0.03	0.37	0.22	0.18	0.46
JVT	2.1	0.73	2.2	1.0	0.45	1.8
MC Stat.	0.42	2.4	2.5	0.58	2.7	4.8

Top background theoretical uncertainties

- Dominating uncertainties from ME: 17%, 48% for VBF 1J, 2J SRs
- Similar in CRs, so the extrapolation uncertainties from CRs to SRs remain small

Error source ME PS Radiation (radHi) Radiation (radLo) $Wt - t\bar{t}$ interference Relative variation of $\sigma_{st}(\pm 20\%)$ PDF (down/up)

High-mass: systematics (2)

- WW background theoretical uncertainties
- Dominating uncertainties from ME+PS: 35%, 48% for VBF 1J, 2J SRs
- Extrapolation uncertainties still small

- ➢ NLO EW correction in the dominant qq→WW process was considered as normalization and shape uncertainty
- ➤ Addtional k-factor of 1.7 as higher order correction in gg→(h*)→WW process with 60% uncertainty

Error source ME+PS Renormalisation scale (0.5) Renormalisation scale (2) Factorisation scale (0.5) Factorisation scale (2) Qsf scale (0.5) Qsf scale (2) CKKW matching (down) CKKW matching (up) PDF (down/up)

For both Top and WW, shape uncertainties also considered

High-mass: systematics (3)

Dominating W+jets fake-factor estimation uncertainties

• EW contribution: 15% for both e and μ in VBF 1J and 2J SR

• Sample composition uncertainties, in ggF SR, VBF 1J and 2J SR respectively:

e: 26%, 21% and 21%

- μ: 12%, 16% and 16%
- Statistical uncertainty: < 1%</p>

Dominating signal theory uncertainties

Scale uncertainties on category migration

- ggF: 10% over full mass range
- VBF 1J: 30% increased to 90% from 300 GeV to 3 TeV
- > VBF 2J: 25% increased to 40% from 300 GeV to 3 TeV
- Scale uncertainties on acceptance: relatively small
- PS, underlying event and PDF uncertainties: relatively small

For signal, we also have a correction on VBF due to PowHeg mismodelling

High-mass: top p_T^{lead} shape correction

Mis-modelling found in ggF inclusive Top CR

- This mis-modelling was less pronounced with DS1 data samples, and consistent with the NNLO QCD correction.
- No such mis-modelling observed in the VBF categories 31/8/2016

High-mass: top p_T^{lead} shape correction

The correction used a reweighting with linear fit function in ggF Top CR

- ➢ No discrepency between em and me
- DEtall cut has no effect on the correction
- Applied to ggF SR, WW and Top CRs
- Shape uncertainties also considered