

Observation of $H \rightarrow \gamma \gamma$ at CMS using 2016 data at $\sqrt{s}=13$ TeV

Public analysis summary: CMS-PAS-HIG-16-020

Louie Corpe (Imperial College) on behalf of the CMS Collaboration.

31.08.16 Higgs Hunting 2016, Paris. Young Scientists Forum - Part 1

Louie Corpe, Imperial College

Introduction

- H→yy: key role in discovery of the Higgs.
- Clean final state: two highly energetic photons. However, low branching fraction (~0.2%) and large irreducible background.
- In a nutshell: Look for 'bump' on diphoton invariant mass (m_{γγ}) spectrum.
- General strategy: categorise events by resolution and production topology (using additional objects in the event).
- This talk presents first results with 12.9 fb⁻¹ of prompt data collected by CMS in 2016 at √s=13 TeV.
- Increased Higgs cross-section (XS): similar statistical sensitivity to Run 1 analysis.

Vertex ID and photon/diphoton ID

Vertex ID

- Vertex assignment important for m_{yy} resolution. $|z_{chosen} - z_{true}| < 1 \text{ cm} \Rightarrow$ angular contribution negligible wrt energy resolution.
- Vertex ID uses Multivariate approach (BDT): exploits tracks recoiling from γγ system and conversion tracks. Estimate of vertex probability extracted for use in diphoton classification.

Photon ID and diphoton pairs

- Photon ID selects prompt photons against π9/ η→γγ and electrons.
- Multivariate approach combining shower shape and isolation variables.
- A further BDT is used to identify signal-like diphoton pairs: kinematics, high photon ID scores, correct vertex probability and good mass resolution.

Event categorisation

- Events with additional objects characteristic of specific production modes are tagged, and remaining events are categorised using BDT_{yy} .
 - TTH: look for hadronic or leptonic decays of tops quarks.
 - VBF: Distinctive 2-jet + 2-photon signature, use BDTs to identify VBF jets and split VBF Tags by mass resolution.
 - Inclusive categories split by mass resolution using BDT_{YY} output.

Signal and Background Modelling

- Signal Model: For each category/process, fit sum of Gaussians to m_{yy} distribution, separately for:
 - Vertex correctly identified: mass resolution dominated by energy resolution.
 - Vertex incorrectly identified: mass resolution dominated by uncert. on vertex position.
 - Smooth parametric model in each process/ category. Interpolated between 7 mass points in the range 120-130 GeV.
- Background model: data-driven method. Sidebands used to determine background shape under signal peak in $m_{\chi\chi}$ distribution.
 - Treat choice of background function as discrete parameter in final minimisation.

5

Imperial CollegeDiphoton mass spectrumLondonAll categories summed

- Invariant mass spectrum. Background-only and signal-plus-background fits to the data are shown.
- **Clear Higgs signal,** visible by eye when background subtracted. Applying the weighting by sensitivity makes the peak even more obvious.

Imperial College
LondonP-value and signal strength

- We report an observation with significance 5.6σ where 6.2σ was expected for the SM Higgs boson at m_H=125.09 GeV. The maximum significance of 6.1σ is observed at 126 GeV.
- Best fit signal strength (XS*BR) relative to SM, for profiled M_H, is found to be:

 $\widehat{\mu} = 0.95 \pm 0.20 = 0.95 \pm 0.17$ (stat.) $^{+0.10}_{-0.07}$ (syst.) $^{+0.08}_{-0.05}$ (theo.).

CMS

Fiducial Cross-section measurement

- Measurement of fiducial cross section using different categorisation scheme.
- Consistency with SM observed.

Production rate modifier

• Best fit signal strength split into bosonic and fermionic production modes:

$$\mu_{ggH,t\bar{t}H} = 0.80^{+0.14}_{-0.18}$$
 and $\mu_{VBF,VH} = 1.59^{+0.73}_{-0.45}$

 Also split the signal strength by individual production mode: consistent with SM.

Imperial College

London

Imperial CollegeCoupling strength modifiersLondon

- κ_{g} , κ_{g} , κ_{V} , κ_{f} measure strength of Higgs coupling to particles relative to SM. For Higgs couplings via loops, an effective coupling is defined.
- Results consistent with SM expectation.

Imperial CollegeSummary and Conclusions

- CMS has prepared its first results using the 2016 13 TeV dataset with 12.9 fb⁻¹. Roughly equivalent to Run 1 dataset in terms of sensitivity.
- We report an observation of the Higgs boson with over 5σ significance in the diphoton decay channel.
- The measured signal strength is consistent with the SM expectation, with overall uncertainty of ~20%:

 $\widehat{\mu} = 0.95 \pm 0.20 = 0.95 \pm 0.17$ (stat.) $^{+0.10}_{-0.07}$ (syst.) $^{+0.08}_{-0.05}$ (theo.).

- Fiducial XS measurement performed in line with SM expectation.
- **Consistency with SM** when splitting signal strength into production modes.
- Best-fit values of Higgs coupling strength modifiers for gluons, photons, vector bosons and tops are found to be consistent with SM expectation.
- Higgs physics: begin transitioning from discovery to precision measurement era.

BACKUP

BACKUP

Louie Corpe, Imperial College

The CMS detector

Vertex ID

- Inputs to the vertex ID BDT.
 - ptasym
 - ptbal
 - sumpt2
 - pull
- correct vertex (dZ<1cm)
- incorrect vertex (dZ >1cm)

Photon ID

- Distribution of BDTy ID score for signal and background.
- Comparison of Distribution of BDT γ ID score in data and MC using Z \rightarrow ee events where electrons are reconstructed as photons.

Energy Reconstruction

data vs MC comparison for invariant mass of Z→ee electrons reconstructed as photons.

Events split into $|\eta|$ and R_9 categories. (R9 is the ratio of the amount of energy in a 3x3 array of ECAL crystals around the seed divided by the total energy in the supercluster. High R_9 (>0.94) photons are likely to be unconverted, while Low R_9 photons are likely to have undergone $\gamma \rightarrow e^+e^-$).

Imperial College

London

Diphoton MVA

- Distribution of BDTyy score for signal and background.
- Comparison of Distribution of BDTyy score in data and MC using Z→ee events where electrons are reconstructed as photons.

- Diphotons split into categories, exploiting different S/B ratios and mass resolution => maximum sensitivity:
 - TTH categories: make cuts on photon quality and requirements on bTags, Jets and absence/presence of leptons .
 - VBF categories: use an MVA to identify VBF-like events with dijets. A further MVA using the diphoton and dijet MVAs as inputs is used to classify VBF events by sensitivity into VBFTags 0 and 1.
 - Untagged categories: mostly populated by ggH, bring the largest contribution to analysis' sensitivity. Category boundaries defined by Diphoton MVA.
- Event tagging sequence is defined as follows:

ttHLeptonic ttHHadronic VBF0-1 Untagged0-3

Background Model Plots Unblinded

CMS Preliminary

12.9 fb⁻¹ (13 TeV)

m_{yy} (GeV)

- Data and Signal + Background
 Fits shown, in the scenario where m_H is profiled.
- Figures also show the Background-subtracted distributions.
- Uncertainty bands achieved by throwing toys from the post-Fit distributions and finding locations of relevant quantiles.

(c)

Background Model Plots Unblinded

12.9 fb⁻¹ (13 TeV)

- Data and Signal + Background
 Fits shown, in the scenario where m_H is profiled.
- Figures also show the Background-subtracted distributions.

Imperial College

London

 Uncertainty bands achieved by throwing toys from the post-Fit distributions and finding locations of relevant quantiles.

±1σ

B component subtracted

m_{γγ} (GeV)

±2 σ

(c)

CMS Preliminary

Louie Corpe, Imperial College

London Weighted S/S+B and P-Value

Unweighted

Weighted

• Shown here is the total invariant mass distribution where we reweight using the factor S/(S+B) in a 1GeV window around the point.

Signal Model

Event Categories	SM 125GeV Higgs boson expected signal								Bkg
Event Categories	Total	ggh	vbf	wh	zh	tth	σ_{eff}	σ_{HM}	(GeV^{-1})
Untagged Tag 0	11.92	79.10 %	7.60 %	7.11 %	3.59 %	2.60 %	1.18	1.03	4.98
Untagged Tag 1	128.78	85.98 %	7.38 %	3.70 %	2.12 %	0.82 %	1.35	1.20	199.14
Untagged Tag 2	220.12	91.11 %	5.01 %	2.18 %	1.23 %	0.47 %	1.70	1.47	670.44
Untagged Tag 3	258.50	92.35 %	4.23 %	1.89 %	1.06 %	0.47 %	2.44	2.17	1861.23
VBF Tag 0	9.35	29.47 %	69.97 %	0.29 %	0.07 %	0.20 %	1.60	1.33	3.09
VBF Tag 1	15.55	44.91 %	53.50 %	0.86 %	0.38 %	0.35 %	1.71	1.40	22.22
TTH Hadronic Tag	2.42	16.78 %	1.28 %	2.52 %	2.39 %	77.02 %	1.39	1.21	1.12
TTH Leptonic Tag	1.12	1.09 %	0.08 %	2.43 %	1.06 %	95.34 %	1.61	1.35	0.42
Total	647.77	87.93 %	7.29 %	2.40 %	1.35 %	1.03 %	1.88	1.52	2762.65

Signal Model

Signal Model

Louie Corpe, Imperial College

Fiducial XS measurement

µggH,ttH VS µvbF,vH Run1 vs Run2

Run 1 Run 2 CMS Preliminary 12.9 fb⁻¹ (13 TeV) $\textbf{CMS} ~ \textbf{H} \rightarrow \gamma \gamma$ 19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV) 3.5 10 , ^ИVBF,VH Η→γγ μvbf,vh $q(\mu_{ggH,t\bar{t}H},\mu_{VBF,VH})$ Best Fit Best fit 3 3 ♦ SM 8 **—** 1σ 2σ 2.5 2.5 --- 2σ SM 2 6 1.5 1.5 4 1 0.5 0.5 2 0 0 m_H Profiled -0.5 <u>. . .</u> . | 0 ل 0.5 1.5 2.5 3.5 -0.5 3 2 0 -0.5 0.5 0 1.5 2 2.5 3 μ $\mu_{ggH,t\bar{t}H}$ ggH,ttH

Figures shows with same axis ranges

Imperial CollegeKg VS KgLondonRun1 vs Run2

κ_g vs κ_γ Run1 vs Run2

Louie Corpe, Imperial College

Imperial College

London

Analysis Flowchart

Mass Measurement

• Observed best fit is at m_H=126.0 GeV.

- Obtained from prompt-reconstructed data.
- Statistical uncertainty ~0.3 GeV.
- Systematic uncertainty ~0.2-0.4 GeV.
- Details of the systematic uncertainties on the mass require further refinement and are still under study.

