

ATLAS+CMS Higgs run 1 Combinations

Paolo Francavilla, on behalf of the ATLAS and CMS collaborations

7th Higgs Hunting 2016 August 31 - September 2, LPNHE Paris, France

Outline

- Higgs boson mass measurement \Rightarrow Completing the SM predictions
- Experimental inputs and combination procedure
- Most generic parametrisation
- Signal strengths for the production and decay modes
- Measurement of the coupling modifiers
- Up/down-type fermion and lepton/quark asymmetries
- Effective scaling factors and constrains on BR for BSM decay modes
- Conclusions

Measurement of the Higgs boson mass

- Higgs mass is the only parameter unconstrained by SM
- Crucial in SM prediction of production and decay modes
- Measurement based on $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$ final states, for which invariant mass can be reconstructed with high precision

Measurement of the Higgs boson mass

- Mass of Higgs boson measured with <0.2% precision
- $MH = 125.09 \pm 0.24 \text{ GeV} [\pm 0.21 \text{ (stat.)} \pm 0.11 \text{ (syst.)}]$
- Dominant systematics: energy or momentum scale and resolution for γ , e, μ

Knowing the mass....

 SM predictions for production mode cross sections and decay BR fully determined

 Combining measurements and searchers by ATLAS and CMS collaborations published in 17 individual publications

Analysis - Measurements in ATLAS and CMS

• Integrated luminosities per experiment: ~5 fb⁻¹ at $\sqrt{s} = 7$ TeV ~20 fb⁻¹ at $\sqrt{s} = 8$ TeV

• Why combining?

Doubling statistical power in measuring the Higgs boson production and decay rates Checks for tensions between experiments that are supposed to probe the same particle

Channel	References individual publ	for ications	Signal str from r	ength [µ] esults in this	Signal sig paper (Sect	inificance $[\sigma]$	off-shell analyses not in combinati	on
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS	Untagged VBF VH tt-	ł
$H \rightarrow \gamma \gamma$	[<mark>91</mark>]	[92]	$1.14^{+0.27}_{-0.25}$	$1.11^{+0.25}_{-0.23}$	5.0	5.6		
			$\begin{pmatrix} +0.26 \\ -0.24 \end{pmatrix}$	$\begin{pmatrix} +0.23 \\ -0.21 \end{pmatrix}$	(4.6)	(5.1)		
$H \rightarrow ZZ$	[93]	[94]	$1.52 \substack{+0.40 \\ -0.34}$	$1.04 \substack{+0.32 \\ -0.26}$	7.6	7.0	$H \rightarrow ZZ \rightarrow 4I$ \bigvee \bigvee \bigvee \bigvee	2
			$\begin{pmatrix} +0.32 \\ -0.27 \end{pmatrix}$	$\begin{pmatrix} +0.30 \\ -0.25 \end{pmatrix}$	(5.6)	(6.8)	_ H→WW→2l2v 🚫 🚫 🚫	
$H \rightarrow WW$	[95, 96]	[97]	$1.22^{+0.23}_{-0.21}$	0.90 +0.23 -0.21	6.8	4.8		
			$\begin{pmatrix} +0.21 \\ -0.20 \end{pmatrix}$	$\begin{pmatrix} +0.23 \\ -0.20 \end{pmatrix}$	(5.8)	(5.6)		
$H \rightarrow \tau \tau$	[98]	[99]	$1.41^{+0.40}_{-0.36}$	0.88 +0.30 -0.28	4.4	3.4		/
			$\begin{pmatrix} +0.37 \\ -0.33 \end{pmatrix}$	$\begin{pmatrix} +0.31 \\ -0.29 \end{pmatrix}$	(3.3)	(3.7)	H→μμ 🚫 📢 🔺 📌	
$H \rightarrow bb$	[100]	[101]	0.62 +0.37 -0.37	0.81 +0.45 -0.43	1.7	2.0	$H \rightarrow Z\gamma$ in AT_AS combination	
			$\begin{pmatrix} +0.39 \\ -0.37 \end{pmatrix}$	$\begin{pmatrix} +0.45 \\ -0.43 \end{pmatrix}$	(2.7)	(2.5)	- Hariny in CMS combination	
$H \rightarrow \mu \mu$	[102]	[103]	$-0.6^{+3.6}_{-3.6}$	$0.9^{+3.6}_{-3.5}$				
			$\binom{+3.6}{-3.6}$	$\binom{+3.3}{-3.2}$			overwhelming multijet BKG	
ttH production	[77, 104, 105]	[107]	1.9 +0.8	$2.9^{+1.0}_{-0.0}$	2.7	3.6		
-			$\begin{pmatrix} +0.7\\ -0.7 \end{pmatrix}$	$\begin{pmatrix} +0.9 \\ -0.8 \end{pmatrix}$	(1.6)	(1.3)	not yet in combination	
HiggsHunting2016 - Paris - P. Francavilla					extremely low $\sigma_i \times B^{\mu\mu}$	6		

- To enhance the sensitivity, the experimental analysis uses event categories(k) also based on multi variate techniques
 - Sensitivity to different production modes

, UU

$$n_{\text{signal}}(k) = \mathcal{L}(k) \cdot \sum_{i} \sum_{f} \left\{ \overline{\sigma_{i}} \cdot A_{i}^{f,SM}(k) \cdot \varepsilon_{i}^{f}(k) \cdot B^{f} \right\}$$

Inclusive SM cross-section for production mode *i*
i.e. gluon-gluon fusion

- To enhance the sensitivity, the experimental analysis uses event categories(k) also based on multi variate techniques
 - Sensitivity to different production modes

$$n_{\text{signal}}(k) = \mathcal{L}(k) \cdot \sum_{i} \sum_{f} \left\{ \sigma_{i} \cdot A_{i}^{f,\text{SM}}(k) \cdot \varepsilon_{i}^{f}(k) \cdot \mathbb{B}^{f} \right\}$$
Branching Fractions
i.e.: $H \rightarrow ZZ$

$$\prod_{H \rightarrow K} H_{H} = \prod_{K,\mu} H_{H}$$
HogsHunting2016 - Paris - K trancavila
$$N_{K} = \frac{1}{2} \prod_{K} H_{K}$$

- To enhance the sensitivity, the experimental analysis uses event categories(k) also based on multi variate techniques
 - Sensitivity to different production modes

$$n_{\text{signal}}(k) = \mathcal{L}(k) \cdot \sum_{i} \sum_{f} \left\{ \sigma_{i} \cdot A_{i}^{f,\text{SM}}(k) \cdot \varepsilon_{i}^{f}(k) \cdot B^{f} \right\}$$

Acceptances and efficiencies, from MC assuming SM

Production	Event generator			
process	ATLAS	CMS		
<i>gg</i> F	Powheg [79-83]	Powheg		
VBF	Powheg	Powheg		
WH	Рутніл8 [84]	Рутніл6.4 [85]		
$ZH (qq \rightarrow ZH \text{ or } qg \rightarrow ZH)$	Рутніа8	Рутніа6.4		
$ggZH (gg \rightarrow ZH)$	Powheg	See text		
ttH	POWHEL [87]	Рутніа6.4		
$tHq (qb \rightarrow tHq)$	MadGraph [89]	AMC@NLO [78]		
$tHW (gb \rightarrow tHW)$	AMC@NLO	AMC@NLO		
bbH	Рутніа8	Pythia6.4, aMC@NLO		

- To enhance the sensitivity, the experimental analysis uses event categories(k) also based on multi variate techniques
 - Sensitivity to different production modes

HiggsHunting2016 - Paris - P. Francavilla

	$n_{signal}(k) =$	$\mathcal{L}(k) \cdot \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} k^{k}$	$\sum \{\sigma_i \cdot$	$A_i^{f,SM}(k)$	$(k) \cdot \boldsymbol{\varepsilon}_i^f(k)$	$k) \cdot \mathbf{B}$	f	
ants / 0.5 0005	CMS 19. ← data WW m _µ = − 100 x ggH DY+jets dilep − 100 x VBF top	4 fb ⁻¹ (8 TeV) i 125 GeV - ton 2-jets -	f	Example	e: ttH,	H→r	nultile	epton
<u>а</u> 1500	- 100 x VH Wγ ^(*)	-	-		Higg	s boson	decay n	node
1500	WZ+ZZ+VVV	-		Category	WW^*	au au	ZZ^*	Other
1000		-	-	$2\ell 0\tau_{\rm had}$	80%	15%	3%	2%
		1		3ℓ	74%	15%	7%	4%
500		-		$2\ell 1\tau_{\rm had}$	35%	62%	2%	1%
		·····		4ℓ	69%	14%	14%	4%
0	0 2 4	6		$1\ell 2\tau_{\rm had}$	4%	93%	0%	3%
	<u>JHEP 01 (2014) 096</u>	Δη _{jj}	=					

Physics Letters B 749 (2015) 519-541 10

- To enhance the sensitivity, the experimental analysis uses event categories(k) also based on multi variate techniques
 - Sensitivity to different production modes

$$n_{\text{signal}}(k) = \mathcal{L}(k) \cdot \sum_{i} \sum_{f} \left\{ \sigma_{i} \cdot A_{i}^{f,\text{SM}}(k) \cdot \varepsilon_{i}^{f}(k) \cdot \mathbf{B}^{f} \right\}$$

Full combination: ~600 signal regions & control regions Grand total of ~4200 nuisance parameters:

related to (systematic) uncertainties

Correlation scheme: strategy of nuisance parameters a delicate and complicated task (would deserve a separate talk)

- To enhance the sensitivity, the experimental analysis uses event categories(k) also based on multi variate techniques
 - Sensitivity to different production modes

$$n_{\text{signal}}(k) = \mathcal{L}(k) \cdot \sum_{i} \sum_{f} \left\{ \sigma_{i} \cdot A_{i}^{f,\text{SM}}(k) \cdot \varepsilon_{i}^{f}(k) \cdot \mathbf{B}^{f} \right\}$$

- What to measure?
- To reduce as much as possible the assumptions on the SM nature of the Higgs boson, we can measure $\sigma_i B^f$. SM assumption only on A ϵ and $\sigma_i(7\text{TeV})/\sigma_i(8\text{TeV})$

Cross Sections times Branching Ratios

As expected, correlations due to signal **mix** of **production modes** in the analysis categories:

 ggF VS VBF (in 2-jet selections) or WH VS ZH (V→hadrons) in H→γγ;

and decay modes:

• ττ VS WW in ttH (in multileptons)

Measuring ratios of production cross sections and BR $\sigma_i \cdot \mathbf{B}^f = \sigma(gg \to H \to ZZ) \cdot \left(\frac{\sigma_i}{\sigma_i}\right) \cdot \left(\frac{\mathbf{B}^f}{\mathbf{p}ZZ}\right)$

• p-value(SM) = 16% (~1 σ)

- Measuring ratios of production cross sections and BR $\sigma_i \cdot \mathbf{B}^f = \sigma(gg \to H \to ZZ) \cdot \left(\frac{\sigma_i}{\sigma_{ggF}}\right) \cdot \left(\frac{\mathbf{B}^f}{\mathbf{B}^{ZZ}}\right)$
- No additional SM assumption on these measurements
- p-value(SM) = 16% (~1 σ)

•
$$\sigma_{ZH}/\sigma_{ggF} \sim 3$$
, mainly due to ZH, H \rightarrow WW

- Measuring ratios of production cross sections and BR $\sigma_i \cdot \mathbf{B}^f = \sigma(gg \to H \to ZZ) \cdot \left(\frac{\sigma_i}{\sigma_{ggF}}\right) \cdot \left(\frac{\mathbf{B}^f}{\mathbf{B}^{ZZ}}\right)$
- No additional SM assumption on these measurements
- p-value(SM) = 16% (~1 σ)
- $\sigma_{ZH}/\sigma_{ggF} \sim 3$, mainly due to ZH, H \rightarrow WW
- $\sigma_{ttH}/\sigma_{ggF} \sim 3\sigma$ excess with respect to SM due to ttH, H \rightarrow multi lepton: WW/tt/(ZZ)

Signal strengths

• Measurements of signal strengths μ for each production mode and for each decay mode by fixing the relative B^f or the σ_i to the SM prediction.

$$n_{\text{signal}}(k) = \mathcal{L}(k) \cdot \sum_{i} \sum_{j} \mu_{i} \mu^{f} \left\{ \sigma_{i}^{\text{SM}} \cdot A_{i}^{f,\text{SM}}(k) \cdot \varepsilon_{i}^{f}(k) \cdot \mathbf{B}_{\text{SM}}^{f} \right\}$$

Production process	Measured significance (σ)	Expected significance (σ)
VBF	5.4	4.6
WH	2.4	2.7
ZH	2.3	2.9
VH	3.5	4.2
ttH	4.4	2.0
Decay channel		
$H \rightarrow \tau \tau$	5.5	5.0
$H \rightarrow bb$	2.6	3.7

 By fixing all the B^f and σ_i to the SM prediction, and allowing for only one global signal strength, one gets:

$$u = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07}$$
 (stat) $^{+0.04}_{-0.04}$ (expt) $^{+0.03}_{-0.03}$ (thbgd) $^{+0.07}_{-0.06}$ (thsig),
HiggsHunting2016 - Paris - P. Francavilla

Coupling modifiers

 $\sigma_i \cdot \mathbf{B}^f = \frac{\sigma_i(\vec{\kappa}) \cdot \Gamma^f(\vec{\kappa})}{\Gamma_H}$

$$\kappa_j^2 = \sigma_j / \sigma_j^{\text{SM}}$$
 or $\kappa_j^2 = \Gamma^j / \Gamma_{\text{SM}}^j$

- · Information on Higgs couplings with the other particles using the κ framework
- σ_{i} and Γ_{SM} are calculated using the status of art theoretical SM predictions
 - recovered with κ=1
- NLO QCD corrections essentially factorise with respect to κ rescaling, used where there is a non-trivial relationship between κ and σ i, Γ f **Example: ggF \rightarrow H \rightarrow WW (or ZZ)**

Resolving the loops and assuming coupling with only SM particles

- Interferences help to resolve the sign (*NB*: κ_{τ} and κ_{μ})
- NB: in this fit model, low measured value of κb
 reduces total width Γ_H => all κ_i measured low

			Resolved
Production	Loops	Interference	scaling factor
$\sigma(ggF)$	~	t-b	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$
σ (VBF)	-	-	$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$
$\sigma(WH)$	-	-	κ_W^2
$\sigma(qq/qg \rightarrow ZH)$	-	-	κ ² _Z
$\sigma(gg \rightarrow ZH)$	~	t–Z	$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	-	-	κ_t^2
$\sigma(gb \rightarrow tHW)$	-	t–W	$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qq/qb \rightarrow tHq)$	-	t-W	$3.40 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	-	-	ĸ _b ²
Partial decay width			
Γ ^{ZZ}	-	-	κ ² _Z
Γ^{WW}	-	-	κ_W^2
Γγγ	~	t-W	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$
Γ ^{rr}	-	-	κ_r^2
Γ^{bb}	-	-	κ_b^2
T ³⁴⁴	-	_	κ_{μ}^2
Total width (B _{BSM} =	0)		
			$(0.57 \cdot \kappa_b^2) + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_a^2 +$
Γ_H	~	-	$0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_{Z}^2 + 0.03 \cdot \kappa_{c}^2 +$
			$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{(Z_{\gamma})}^2 +$
			$0.0001 \cdot \kappa_s^2 + 0.00022 \cdot \kappa_\mu^2$

HiggsHunting2016 - Paris - P. Francavilla

Fermions and bosons

- Testing the intrinsic difference between couplings to
 - W/Z: EW Symmetry Breaking $\kappa_Z = \kappa_W = \kappa_V$
 - fermions: Yukawa couplings $\kappa_t = \kappa_\tau = \kappa_b = \kappa_F$
- Sensitivity to the relative sign between κ_V and κ_F through interference terms
- Large asymmetry between the positive and negative coupling ratios for H→γγ

 $\Gamma^{\gamma\gamma}$ t-W 1.59 $\cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$

- Fits on individual channels have slight preference for negative κ_F
- Combined result converges to positive κ_F

up/down-type fermion and lepton/quark asymmetries

Asymmetries in Higgs couplings

- between up-type and down-type fermion •
- between lepton and quark ٠

predicted by several BSM physics models (notably 2HDM)

Parameterise model in terms of ratios of coupling strength modifiers

$$\begin{aligned} \lambda_{du} &= \kappa_d / \kappa_u \\ \lambda_{Vu} &= \kappa_V / \kappa_u \\ \kappa_{uu} &= \kappa_u \cdot \kappa_u / \kappa_H. \end{aligned}$$

Effective couplings and BSM BR

 What if we have new particles in the loops?

 Specific fit not resolving the loops, but use effective couplings κg and κγ

• Fix all tree-level Higgs couplings to SM $(\kappa_W, \kappa_Z, \kappa_b, \kappa_t, \kappa_\mu, \kappa_\tau = 1)$ and $B_{BSM} = 0$

Effective couplings and BSM BR

- What if we have new particles in the loops?
- Specific fit not resolving the loops, but use effective couplings κg and κγ

Effective couplings and BSM BR

- What if we have new particles in the loops?
- Specific fit not resolving the loops, but use effective couplings κg and κγ
- And if the Higgs boson decays in some other mode we did not detect yet?
 - Constrain $B_{BSM} \ge 0$ and $|\kappa_V| \le 1$

Conclusions

- ATLAS and CMS Higgs boson mass and coupling results have been combined
- Higgs to ττ and VBF production established at more than 5σ level
- The most precise results on Higgs production and decay and constraints on its couplings have been obtained at O(10%) precision
- All results are consistent with the SM predictions within uncertainties: SM pvalue of all combined fits in range 10%-88%

Parameter value norm. to SM value

• SM still resists!

•

- Precision will be improved during the coming years...
 - ...but we have giants with solid shoulders to stay on, while seeing further with the coming data.

Backup

SM Predictions

Production	Cross so	tion [nh]	Order of	Decay mode	Branching fraction [%]
Production			Order of	U hh	57.5 ± 1.0
process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	calculation	$H \rightarrow bb$	37.3 ± 1.9
ggF	15.0 ± 1.6	19.2 ± 2.0	NNLO(QCD) + NLO(EW)	$H \rightarrow WW$	21.6 ± 0.9
VBF	1.22 ± 0.03	1.58 ± 0.04	NLO(QCD+EW) + APPROX. NNLO(QCD)	$H \rightarrow gg$	8.56 ± 0.86
WH	0.577 ± 0.016	0.703 ± 0.018	NNLO(QCD) + NLO(EW)	$H \rightarrow \tau \tau$	6.20 ± 0.36
ZH	0.334 ± 0.013	0.414 ± 0.016	NNLO(OCD) + NLO(EW)	$H \rightarrow \mathcal{U}$	0.50 ± 0.50
[aa7H]	0.023 ± 0.007	0.032 ± 0.010	NLO(OCD)	$H \rightarrow cc$	2.90 ± 0.35
[ggZH]	0.025 ± 0.007	0.052 ± 0.010	NLO(QCD)		0 (7 . 0 11
ttH	0.086 ± 0.009	0.129 ± 0.014	NLO(QCD)	$H \rightarrow ZZ$	2.67 ± 0.11
tH	0.012 ± 0.001	0.018 ± 0.001	NLO(QCD)	$H \rightarrow \gamma \gamma$	0.228 ± 0.011
bbH	0.156 ± 0.021	$0.203 \ \pm 0.028$	5FS NNLO(QCD) + 4FS NLO(QCD)	$H \rightarrow Z \gamma$	0.155 ± 0.014
Total	17.4 ± 1.6	22.3 ± 2.0		·····	0.100 ± 0.011
				$H \rightarrow \mu \mu$	0.022 ± 0.001

1 or more Higgs Bosons?

- What if we have more particles?
- if they couple in different way, ranking of matrix here is bigger than 1.
- · Testing it with test statistics

 $q_{\lambda} = -2 \ln \frac{L(\text{data}|\lambda_i^j = \hat{\lambda}_i, \hat{\mu}_{ggF}^j)}{L(\text{data}|\hat{\lambda}_i^j, \hat{\mu}_{ggF}'^j)},$

p-value 1 boson: (29±2)%,

	General	matrix parar	meterisation:	$rank(\mathcal{M}) = 5$	5
	$H \rightarrow \gamma \gamma$	$H \rightarrow ZZ$	$H \to WW$	$H \to \tau\tau$	$H \rightarrow bb$
ggF	$\mu_{ggF}^{\gamma\gamma}$	μ_{ggF}^{ZZ}	μ_{ggF}^{WW}	$\mu_{ggF}^{\tau\tau}$	μ_{ggF}^{bb}
VBF	$\lambda_{\rm VBF}^{\gamma\gamma}\mu_{aaF}^{\gamma\gamma}$	$\lambda_{\rm VBF}^{ZZ} \mu_{ggF}^{ZZ}$	$\lambda_{VBF}^{WW} \mu_{aaF}^{WW}$	$\lambda_{\rm VBF}^{\tau\tau} \mu_{aaF}^{\tau\tau}$	$\lambda_{\rm VBF}^{bb} \mu_{ggF}^{bb}$
WH	$\lambda_{WH}^{\gamma\gamma} \mu_{qqF}^{\gamma\gamma}$	$\lambda_{WH}^{ZZ} \mu_{gqF}^{ZZ}$	$\lambda_{WH}^{WW} \mu_{qqF}^{WW}$	$\lambda_{WH}^{\tau\tau} \mu_{qqF}^{\tau\tau}$	$\lambda_{WH}^{bb} \mu_{gqF}^{bb}$
ZH	$\lambda_{ZH}^{\gamma\gamma} \mu_{aaF}^{\gamma\gamma}$	$\lambda_{ZH}^{ZZ} \mu_{aaF}^{ZZ}$	$\lambda_{ZH}^{WW} \mu_{aaF}^{WW}$	$\lambda_{ZH}^{\tau\tau} \mu_{aaF}^{\tau\tau}$	$\lambda_{ZH}^{bb} \mu_{aaF}^{bb}$
ttH	$\lambda_{ttH}^{\gamma\gamma} \mu_{qqF}^{\gamma\gamma}$	$\lambda_{ttH}^{ZZ} \mu_{ggF}^{ZZ}$	$\lambda_{ttH}^{WW} \mu_{aaF}^{WW}$	$\lambda_{ttH}^{\tau\tau} \mu_{ggF}^{\tau\tau}$	$\lambda_{ttH}^{bb} \mu_{ggF}^{bb}$
	Single-sta	te matrix par	rameterisation	n: rank(\mathcal{M}) =	= 1
	Single-sta $H \rightarrow \gamma \gamma$	te matrix par $H \rightarrow ZZ$	rameterisation $H \rightarrow WW$	$\begin{array}{c} \text{n: rank}(\mathcal{M}) = \\ H \to \tau\tau \end{array}$	$= 1$ $H \to bb$
ggF	Single-sta $H \rightarrow \gamma \gamma$ $\mu_{ggF}^{\gamma\gamma}$	te matrix par $H \rightarrow ZZ$ μ_{ggF}^{ZZ}	rameterisation $\frac{H \to WW}{\mu_{ggF}^{WW}}$	h: rank(\mathcal{M}) = $\frac{H \to \tau \tau}{\mu_{ggF}^{\tau \tau}}$	$ 1 = 1 $ $ \frac{H \to bb}{\mu_{ggF}^{bb}} $
ggF VBF	Single-sta $H \rightarrow \gamma \gamma$ $\mu_{ggF}^{\gamma \gamma}$ $\lambda_{VBF} \mu_{ggF}^{\gamma \gamma}$	te matrix par $H \rightarrow ZZ$ μ_{ggF}^{ZZ} $\lambda_{VBF} \mu_{ggF}^{ZZ}$	rameterisation $H \rightarrow WW$ μ_{ggF}^{WW} $\lambda_{VBF} \mu_{ggF}^{WW}$	h: rank(\mathcal{M}) = $H \rightarrow \tau \tau$ $\mu_{ggF}^{\tau\tau}$ $\lambda_{\text{VBF}} \mu_{ggF}^{\tau\tau}$	$ \begin{array}{c} = 1 \\ \hline H \to bb \\ \hline \mu_{ggF}^{bb} \\ \lambda_{VBF} \mu_{ggF}^{bb} \end{array} \end{array} $
ggF VBF WH	Single-sta $H \rightarrow \gamma \gamma$ $\mu_{ggF}^{\gamma \gamma}$ $\lambda_{VBF} \mu_{ggF}^{\gamma \gamma}$ $\lambda_{WH} \mu_{ggF}^{\gamma \gamma}$	te matrix par $H \rightarrow ZZ$ μ_{ggF}^{ZZ} $\lambda_{VBF} \mu_{ggF}^{ZZ}$ $\lambda_{WH} \mu_{ggF}^{ZZ}$	rameterisation $H \rightarrow WW$ μ_{ggF}^{WW} $\lambda_{VBF} \mu_{ggF}^{WW}$ $\lambda_{WH} \mu_{ggF}^{WW}$	h: rank(\mathcal{M}) = $H \rightarrow \tau \tau$ $\mu_{ggF}^{\tau\tau}$ $\lambda_{VBF} \mu_{ggF}^{\tau\tau}$ $\lambda_{WH} \mu_{ggF}^{\tau\tau}$	$= 1$ $H \rightarrow bb$ μ_{ggF}^{bb} $\lambda_{VBF} \mu_{ggF}^{bb}$ $\lambda_{WH} \mu_{ggF}^{bb}$
ggF VBF WH ZH	Single-sta $H \rightarrow \gamma \gamma$ $\mu_{ggF}^{\gamma \gamma}$ $\lambda_{VBF} \mu_{ggF}^{\gamma \gamma}$ $\lambda_{WH} \mu_{ggF}^{\gamma \gamma}$ $\lambda_{ZH} \mu_{ggF}^{\gamma \gamma}$	te matrix par $H \rightarrow ZZ$ μ_{ggF}^{ZZ} $\lambda_{VBF} \mu_{ggF}^{ZZ}$ $\lambda_{WH} \mu_{ggF}^{ZZ}$ $\lambda_{ZH} \mu_{ggF}^{ZZ}$	rameterisation $H \rightarrow WW$ μ_{ggF}^{WW} $\lambda_{VBF} \mu_{ggF}^{WW}$ $\lambda_{WH} \mu_{ggF}^{WW}$ $\lambda_{ZH} \mu_{ggF}^{WW}$	h: rank(\mathcal{M}) = $H \rightarrow \tau \tau$ $\mu_{ggF}^{\tau\tau}$ $\lambda_{VBF} \mu_{ggF}^{\tau\tau}$ $\lambda_{WH} \mu_{ggF}^{\tau\tau}$ $\lambda_{ZH} \mu_{ggF}^{\tau\tau}$	$= 1$ $H \rightarrow bb$ μ_{ggF}^{bb} $\lambda_{VBF} \mu_{ggF}^{bb}$ $\lambda_{WH} \mu_{ggF}^{bb}$ $\lambda_{ZH} \mu_{ggF}^{bb}$

Fitting the couplings

Systematics in the mass determination

Systematic Correlation

- Correlation strategy of nuisance parameters a delicate and complicated task
 - Detector systematic uncertainties à follow strategy of ATLAS and CMS internal combinations (generally correlated within, not between experiments)
 - Signal theory uncertainties (QCD scales, PDF, UEPS) on inclusive cross-sections generally correlated between experiments.
 - Signal theory uncertainties on acceptance and selection efficiency are uncorrelated between experiments, as these are small and estimation procedures are generally different.
 - PDF uncertainties on signal cross-sections uncorrelated between channels, except WH/ZH = correlated (effect of ignoring other correlations is ≤1%)
 - No correlations assumed between Higgs BRs (except for WW/ZZ).
- Effect of ignoring correlations shown to be generally small, except for a few specific measurements, in which case full correlation structure is retained