Prospects of combined measurements of Higgs boson properties

Dag Gillberg

Carleton University

2016-08-31

Outline

- Outline
- LHC Schedule
- Run-1 highlights of Higgs boson measurements
- Run-2 first Higgs results
- Projections of Higgs boson results
 - LHC and ATLAS detector upgrades
 - Mass
 - Couplings
 - Rare decays
 - Di-Higgs production

LHC Schedule

I. Run-1 highlights

based on ~25 fb-1 7-8 TeV data

Run-1 Higgs boson highlights

Weighted events after subtraction / 20.0

Run-1 Higgs boson results

- Precision of mass measurement: 0.2% 240 MeV
 - Statistically limited, especially for $ZZ^* \rightarrow 4l$: stat error $\approx 10 \times syst$ error
- Consistent with SM spin/CP expectation 0⁺ EPJC 75 (2015) 476
 Alternative models (spin 2, negative parity, etc.) excluded at at least 99.9% CL

Dag Gillberg (Carleton)

p_<300 GeV p_<125 GeV

p_<300 GeV

p_<125 GeV

Run-1 Higgs boson results

- The Higgs boson production and decay were studied using
 - Dedicated analyses in 7 different decay modes (γγ, ZZ*, WW*, bb, ττ, Zγ, μμ)
 - Full Run-1 dataset: ~25 fb⁻¹
- All results are consistent with the Standard Model expectation
- "Micro-anomalies": $H \rightarrow bb$ low by ~2.5 σ , *ttH* high by ~2.3 σ

Run-1 Higgs boson results

- **Differential cross sections** and normalized **shapes of kinematic distributions** measured both in individual channels (fiducial regions of $\gamma\gamma$, *ZZ**, *WW**) and combined ($\gamma\gamma$ +*ZZ**), correcting for acceptances and branching ratio
- Higgs boson p_{T} , jet multiplicity, m_{jj} , etc.
- "Micro-anomalies": *p*_{T,H} spectrum harder and more jets (see below)
 p-value for SM-agreement: 4% (8%) or better for norm+shape (shape-only)

II. Current Run-2 results

See talk by **Yusheng Wu** for details on the individual analyses

$pp \rightarrow H \operatorname{cross section} (\gamma \gamma + 4l)$

10

Run-2 Higgs boson couplings

- Targeting Higgs production mode with dedicated analysis event categories: **13** for $\gamma\gamma$, **5** for $ZZ \rightarrow 4l$.
 - Combined fits for cross sections and coupling parameters performed using these categories
- Global signal strength: ~10 σ (8.6 σ) significance $\mu = 1.13 + 0.18 - 0.17$
- Fitted production mode cross sections (below and right) consistent with SM expectation

Parameter value norm. to SM value

III. Projected results

- 120 fb⁻¹ @ 13-13.5 TeV by end or Run-2, 2018
- ~300 fb⁻¹ @ 13-14 TeV by end of Run-3, 2023
- ~3000 fb⁻¹ @ 14 TeV, HL-LHC, 2026-2037 (Runs 4&5)

Detector upgrades

HL-LHC

- During the HL-LHC beam intensity will increase to ×7.5 the design intensity
- Major detector detector upgrades needed
- Main detector improvements with implications on physics:
 - New all-silicon tracker with significantly improved fwd. coverage: $|\eta| < 4$ (now 2.5)
 - Improved granularity of forward calorimeter
 - Improved triggering capabilities
 - New high-granularity timing detector in the forward region
- Will improve capabilities to suppress pileup, in particular in the forward region:
 → enhanced precision to study events with VBF topology
- Projections for Run-3 (300 fb⁻¹) and HL-LHC (3000 fb⁻¹) derived using MC hadronlevel samples with detector smearing functions derived from full simulation of the expected upgraded detector and the correspond to the expected beam conditions

Projections

Goals for ATLAS Higgs physics program

- Improve precision on Higgs boson coupling and cross section measurements
- Establish rare Higgs decays
- Study Higgs self coupling
- Search for BSM signatures

Higgs boson mass

Run-1 result $\gamma\gamma: \pm 0.43 \text{ (stat)} \pm 0.27 \text{ (sys)} \text{ GeV}$ $ZZ^*: \pm 0.53 \text{ (stat)} \pm 0.04 \text{ (sys)} \text{ GeV}$ ATLAS comb: $\pm 0.36 \text{ GeV}$

due to smaller systematics, ZZ will drive the mass measurement by the **end of Run-2** (120 fb⁻¹): ~±0.20 GeV

Expected et	vent yields	After full analysis selection (rough approximation)				
\mathcal{L} [fb ⁻¹]	All	$H \rightarrow \gamma \gamma$	$H \rightarrow ZZ \rightarrow 4l$	$H \rightarrow WW^* \rightarrow lvlv$		
13.3	0.75M	600	20	400		
120	7M	6,000	200	4,000		
300	17M	14,000	500	10,000		
3000	170M	140,000	5,000	100,000		

Higgs coupling measurements

Di-Higgs and rare decays

Higgs cross sections

- Measurements of fiducial and differential cross sections will be done in individual channels
 - Back-of-the-envelope precision of $\sigma(p_{TH}>100 \text{ GeV})$ for $\gamma\gamma+ZZ$ combination: ~40%, ~14%, ~5% with 13.3 fb-1, 120 fb-1, 3000 fb⁻¹
- Simplified template cross sections provides natural way to combine different channels
 → cross sections extracted via global fit
 - "Stage-0" measurements already performed for ICHEP 2016
 - "Stage-1" measurements as outlined in Yellow Report 4 are in progress

Higgs cross sections

- Measurements of fiducial and differential cross sections will be done in individual channels
 - Back-of-the-envelope precision of $\sigma(p_{TH}>100 \text{ GeV})$ for $\gamma\gamma+ZZ$ combination: ~40%, ~14%, ~5% with 13.3 fb-1, 120 fb-1, 3000 fb⁻¹

Summary

- LHC Run-2 currently delivers data beyond expectation
 - High-quality data being recorded by the ATLAS detector
- In ICHEP dataset, the Higgs boson was observed in the $\gamma\gamma$ +ZZ channels with ~10 σ (8.6 σ) observed (expected) significance
 - Preliminary measurements of the Higgs boson cross section and couplings examined in first Run-2 and are consistent with SM expectations
- Significant detector upgrades and improvements will be installed for HL-LHC phase: 2026-2035, during with we expect to collect 3 ab⁻¹ data
 - In particular improvements will be made to the forward region: tracking extended to |eta|<4 + improved calorimetry and timing detector
 - \rightarrow increase acceptance for all physics objects
 - \rightarrow improve $E_{\mathrm{T}}^{\mathrm{miss}}$ resolution
 - \rightarrow in particular helpful for VBF topology
- Higgs physics remains a very important part of the LHC physics program
 - Improve precision of cross section and coupling measurements
 - Study Higgs self coupling
 - Search for rare decays and BSM signatures

References

- ATLAS Run-1 papers
 - $H \rightarrow \gamma \gamma, H \rightarrow ZZ \rightarrow 4l, H \rightarrow WW^*, H \rightarrow bb, H \rightarrow \tau \tau$
 - Mass (ATLAS+CMS), Spin/CP, couplings, differential, couplings (ATLAS+CMS)
- ATLAS Run-2 conference note for ICHEP 2016
 - ATLAS-CONF-2016-067, $H \rightarrow \gamma \gamma$
 - ATLAS-CONF-2016-079, $H \rightarrow 4l$
 - ATLAS-CONF-2016-081, $\gamma\gamma$ +*ZZ* combination
- ATLAS public projection, 300 and 3000 fb⁻¹
 - ATL-PHYS-PUB-2014-016, Higgs couplings
 - ATL-PHYS-PUB-2014-017, BSM Higgs
 - ATL-PHYS-PUB-2014-006, $H \rightarrow Z\gamma$
 - ATL-PHYS-PUB-2014-019, $HH \rightarrow bb\gamma\gamma$
- Full list: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults</u>

More Run-2 coupling results

Projected signal strengths uncertainties

ATL-PUB-2014-016	$\Delta \mu / \mu$	300 fb ⁻¹		3000 fb ⁻¹	
		All unc.	No theory unc.	All unc.	No theory unc.
	$H \rightarrow \gamma \gamma \text{ (comb.)}$	0.13	0.09	0.09	0.04
	(0j)	0.19	0.12	0.16	0.05
	(1j)	0.27	0.14	0.23	0.05
	(VBF-like)	0.47	0.43	0.22	0.15
	(WH-like)	0.48	0.48	0.19	0.17
	(ZH-like)	0.85	0.85	0.28	0.27
	(<i>ttH</i> -like)	0.38	0.36	0.17	0.12
	$H \rightarrow ZZ \text{ (comb.)}$	0.11	0.07	0.09	0.04
	(VH-like)	0.35	0.34	0.13	0.12
	(<i>ttH</i> -like)	0.49	0.48	0.20	0.16
	(VBF-like)	0.36	0.33	0.21	0.16
	(ggF-like)	0.12	0.07	0.11	0.04
	$H \rightarrow WW$ (comb.)	0.13	0.08	0.11	0.05
	(0j)	0.18	0.09	0.16	0.05
	(1j)	0.30	0.18	0.26	0.10
	(VBF-like)	0.21	0.20	0.15	0.09
	$H \rightarrow Z\gamma$ (incl.)	0.46	0.44	0.30	0.27
	$H \rightarrow b\bar{b} \text{ (comb.)}$	0.26	0.26	0.14	0.12
	(WH-like)	0.57	0.56	0.37	0.36
	(ZH-like)	0.29	0.29	0.14	0.13
	$H \rightarrow \tau \tau \text{ (VBF-like)}$	0.21	0.18	0.19	0.15
	$H \rightarrow \mu\mu \text{ (comb.)}$	0.39	0.38	0.16	0.12
	(incl.)	0.47	0.45	0.18	0.14
	(<i>ttH</i> -like)	0.74	0.72	0.27	0.23

Expected precision on Higgs couplings

ATL-PUB-2014-016

Nr.	Coupling	300 fb^{-1}			3000 fb^{-1}		
		Theory unc.:			Theory unc.:		
		All	Half	None	All	Half	None
1	К	4.2%	3.0%	2.4%	3.2%	2.2%	1.7%
	$\kappa_V = \kappa_Z = \kappa_W$	4.3%	3.0%	2.5%	3.3%	2.2%	1.7%
2	$\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_\mu$	8.8%	7.5%	7.1%	5.1%	3.8%	3.2%
	КZ	4.7%	3.7%	3.3%	3.3%	2.3%	1.9%
3	κ _W	4.9%	3.6%	3.1%	3.6%	2.4%	1.8%
	К _F	9.3%	7.9%	7.3%	5.4%	4.0%	3.4%
	KV	5.9%	5.4%	5.3%	3.7%	3.2%	3.0%
4	K _u	8.9%	7.7%	7.2%	5.4%	4.0%	3.4%
	К _d	12%	12%	12%	6.7%	6.2%	6.1%
	KV	4.3%	3.1%	2.5%	3.3%	2.2%	1.7%
5	κ_q	11%	8.7%	7.8%	6.6%	4.5%	3.6%
	Kl	10%	9.6%	9.3%	6.0%	5.3%	5.1%
	KV	4.3%	3.1%	2.5%	3.3%	2.2%	1.7%
6	κ_q	11%	9.0%	8.1%	6.7%	4.7%	3.8%
	Kτ	12%	11%	11%	9.2%	8.4%	8.1%
	κ_{μ}	20%	20%	19%	6.9%	6.3%	6.1%
	КZ	8.1%	7.9%	7.8%	4.3%	3.9%	3.8%
	κ _W	8.5%	8.2%	8.1%	4.8%	4.1%	3.9%
7	K _t	14%	12%	11%	8.2%	6.1%	5.3%
	К _b	23%	22%	22%	12%	11%	10%
	Kτ	14%	13%	13%	9.8%	9.0%	8.7%
	Κμ	21%	21%	21%	7.3%	7.1%	7.0%
	КZ	8.1%	7.9%	7.9%	4.4%	4.0%	3.8%
	κ_W	9.0%	8.7%	8.6%	5.1%	4.5%	4.2%
	K _t	22%	21%	20%	11%	8.5%	7.6%
	КЪ	23%	22%	22%	12%	11%	10%
8	κ _τ	14%	14%	13%	9.7%	9.0%	8.8%
	κ_{μ}	21%	21%	21%	7.5%	7.2%	7.1%
	Кg	14%	12%	11%	9.1%	6.5%	5.3%
	κγ	9.3%	9.0%	8.9%	4.9%	4.3%	4.1%
	$\kappa_{Z\gamma}$	24%	24%	24%	14%	14%	14%