Mining the Logging and Bookeeping Data

X. Zhang, M. Sebag, and C. Germain

October 19,, 2007

Outline

- Goals
- Data Sampling
- Feature Learning
- Double Clustering
- Results and Interpretations
- Conclusion and Future work

Outline

- Goals
- Data Sampling
- Feature Learning
- Double Clustering
- Results and Interpretations
- Conclusion and Future work

Goals

self-healing (detect, diagnose and repair problems) grid system

modelling the behaviours of grid system

Mining the clusters of Logging and Bookkeeping (L&B) files

Goals

- Object: jobs submitted to grids
- Data: job traces from EGEE broker
- Short Goals:
 - characterize the jobs distribution
 - specify their failure modes

about 70% jobs failed for various reasons

Outline

- Goals
- Data Sampling
- Feature Learning
- Double Clustering
- Results and Interpretations
- Conclusion and Future work

EGEE L&B Data Structure

grid sub-service description:

→ **jobid**: -008HR9sLHRcSr7JWNR1dQ

→ **userid:** 38f1fd102b587230adc5dc309fc525df

→ **timestamp**: 2004-10-03 07:33:07

→ event code: 1 (Transfer) or 2 (Accepted)

→ **prog**: UserInterface or WorkloadManager

internals sub-components of an event:

→ From: UserInterface

→ **From_host**: egee-rb-01.cnaf.infn.it

→ **Destination**: NetworkServer

→ **Dest_host**: grid10.lal.in2p3.fr

→ **Result:** ok

Reason: Successfully Cancelled

event

event table

short fields

long fields

(undefined)

Property of the second of the

Abort

levent n

- First long fields table: re-describe the job (based on user's description):
- Following ones: add job services in the event
 - → **Requirements:** GlueHostMemorySize > 512
 - → Executable: "/usr/bin/wget"
 - MyProxyServer: lxn1179.cern.ch

Initial representation

- Job -----> numerical vector $\in \mathbb{R}^d$
 - > static attributes are chosen
 - numerical attributes: normalized
 - non-numerical attributes ---> boolean attributes

Attr. jobs	A1	A2
job 1	VA1_1	VA2_1
job 2	VA1_1	VA2_2
job 3	VA1_2	VA2_1
job 4	VA1_1	VA2_2

Attr. jobs	VA1_1	VA1_2	VA2_1	VA2_2
job 1	1	0	1	0
job 1 job 2	1	0	0	1
job 3	0	1	1	0
job 4	1	0	0	1

Initial representation

- Challenges
 - No natural distance
 - Prior knowledge
 - → rough classes
 - successfully finished (good jobs)
 - failed by various reasons (bad jobs): NAR, ABU, GNG
 - heterogeneous
 - users: experience and community are different
 - weeks: load of the grid varies along time

Sampling Training Set

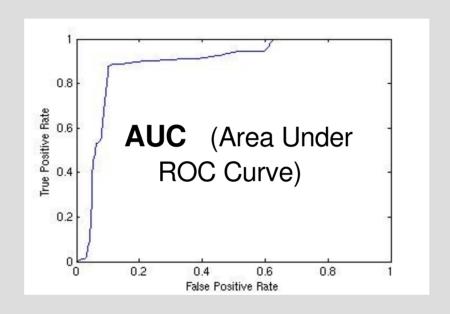
- Training Set (90% of all: 222, 500 jobs. 36% good and 73% bad)
 - Homogeneous subsets
 - → User subsets (34)
 - all jobs submitted by a given user
 - → Week subsets (45)
 - all jobs submitted during a given week
- Test Set (remaining 21512 jobs): Kept without changing

^{*} Kearns M., Li M.: Learning in the Presence of Malicious Errors. SIAM J. Comput. 22 (1993)

Outline

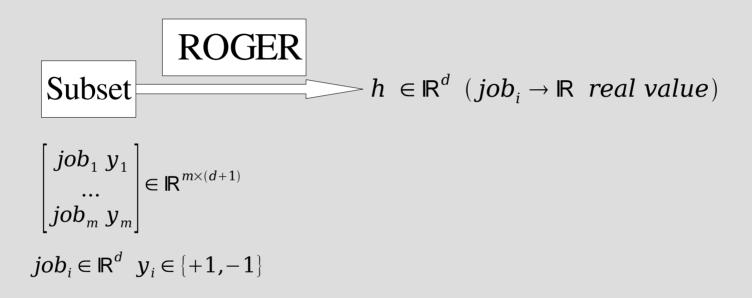
- Goals
- Data Sampling
- Feature Learning
- Double Clustering
- Results and Interpretations
- Conclusion and Future work

Using ROGER (ROC-based Genetic Learner)



- Roger: Evolution Strategy algorithm which maximizes the AUC (equivalent to Wilcoxon rank test)
- hypothesis maximizing AUC can be interpreted as a probability estimation

Using ROGER (ROC-based Genetic Learner)



- linear hypothesis h
 - provide an estimation of the classification probability $Pr(h(job_i) > h(job_j) | y_i > y_j)$
 - as new feature

Using ROGER (ROC-based Genetic Learner)

Subset
$$ROGER$$

$$\begin{bmatrix} h_1 \\ \dots \\ h_l \end{bmatrix} \in \mathbb{R}^{l \times d}$$

$$\begin{bmatrix} job_1 \ y_1 \\ \dots \\ job_m \ y_m \end{bmatrix} \in \mathbb{R}^{m \times (d+1)}$$

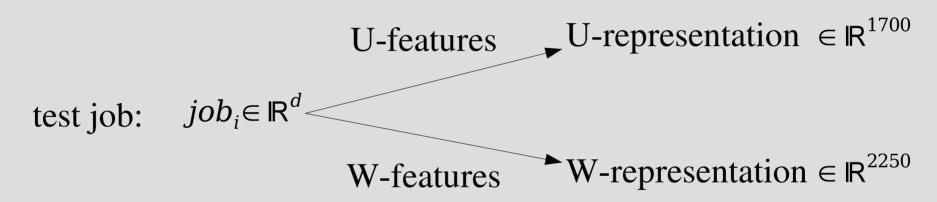
$$job_i \in \mathbb{R}^d \ y_i \in \{+1, -1\}$$

$$l = 50$$

- Hypotheses learned from User subsets: **U-features** $\in \mathbb{R}^{(34 \times 50) \times d}$
- Hypotheses learned from Week subsets: **W-features** $\in \mathbb{R}^{(45 \times 50) \times d}$

New Representation

Test Set New Representation



- Feature redundancy
 - from the same subset
 - redundancy of initial attributes

Outline

- Goals
- Data Sampling
- Feature Learning
- Double Clustering
- Results and Interpretations
- Conclusion and Future work

- * Slonim N., Tishby N. Document clustering using word clusters via the information bottleneck method. Research and Development in Information Retrieval. (2000)
- Information bottleneck method
- double clustering
 - word clusters ----> new representations of documents
 - document clustering on word-clusters
- perform excellently
 - > clustering by word-clusters is **better** than clustering by words

feature clustering

(Dimensionality reduction)

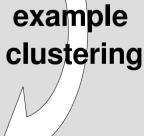
All test jobs **U-representation** (W-representation)

$$\begin{bmatrix} job_1 \\ \dots \\ job_i \\ \dots \\ job_m \end{bmatrix} = \begin{bmatrix} x_{1,1} & \dots & x_{1,i} & \dots & x_{1,1700} \\ \dots & \dots & \dots & \dots \\ x_{i,1} & \dots & x_{i,i} & \dots & x_{i,1700} \\ \dots & \dots & \dots & \dots \\ x_{m,1} & \dots & x_{m,i} & \dots & x_{m,1700} \end{bmatrix} \quad \begin{bmatrix} f_{1,1} & \dots & f_{1,T} \\ \dots & \dots & \dots \\ f_{i,1} & \dots & f_{i,T} \\ \dots & \dots & \dots \\ f_{m,1} & \dots & f_{m,T} \end{bmatrix}$$

$$\begin{bmatrix} f_{1,1} & \cdots & f_{1,T} \\ \cdots & \cdots & \cdots \\ f_{i,1} & \cdots & f_{i,T} \\ \cdots & \cdots & \cdots \\ f_{m,1} & \cdots & f_{m,T} \end{bmatrix}$$

Clusters of test jobs

$$K < m$$
 C_K



T < < 1700

- Clustering method: K-means
- Job clustering results:
 - > U-representation: U-clusters
 - W-representation: W-clusters

* Note: U-clusters are not clusters of users
W-clusters are not clusters of weeks

Clustering Stability

- Clustering is an ill defined problem
 - different clustering tasks leads to different clustering paradigms
- attempts to revisit clustering *,**
- ideas
 - Compare Clustering and PCA
 - Examine the stability of clusters
- * Shai Ben-David, Ulrike von Luxburg, John Shawe-Taylor and Naftali Tishby. Theoretical Foundations of Clustering. Workshop NIPS 2005.
- ** Meila M. The uniqueness of a good optimum for K-means. ICML 2006

Clustering Stability

Example:

Data set = {A B C D a b c d}

Case 1:

Clustering C: C_1 {A B C D} C_2 {a b c d}

Stable

Clustering C': C'_1 {a b c d} C'_2 {A B C D}

Case 2:

Clustering C: C_1 {A B C D} C_2 {a b c d}

Non Stable

Clustering C': C'_1 {A B a b} C'_2 {C D c d}

Clustering Stability

• A clustering C represented by matrix $\hat{C} = \{C_{1,...}, C_K\} \in \mathbb{R}^{m \times K}$

$$\hat{C}_{ik} = \begin{cases} 1/\sqrt{n_k} & \text{if the } i^{th} \text{ example belongs to } C_k \\ 0 & \text{otherwise} \end{cases}$$

where n_k is the size of C_k $\sum_k n_k = m$

• Stability of two clustering (\hat{c} and \hat{c})

$$S(\hat{C},\hat{C}') = \|\hat{C}^T\hat{C}'\|_{Frobenius}^2 = \sum_{i,j=1}^K n_{i,j}^2 \frac{1}{n_i n_j^2}$$

where $n_{i,j}$ is the number of jobs in $C_i \cap C'_j$, n_i and n'_j are size of C_i and C'_j

Clustering Stability

• Theorem: bound of $s(\hat{c}, \hat{c}')$

$$K \geq S(\hat{C}, \hat{C}') \geq \frac{m}{(m-K+1)} \frac{1}{K}$$

when
$$K << m$$
, $S(\hat{C}, \hat{C}') \rightarrow 1/K$

Stability index

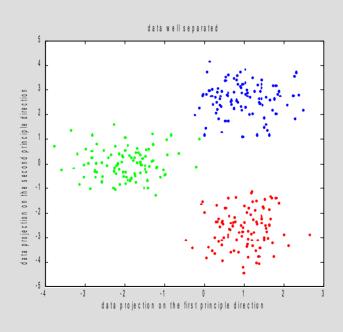
$$D(\hat{C},\hat{C}') = S(\hat{C},\hat{C}')/K$$

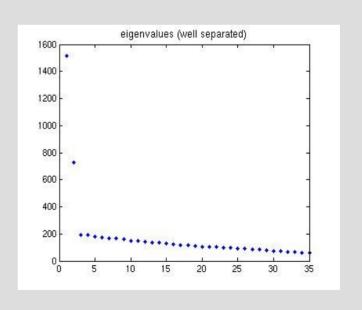
Assess the quality of clustering

- well-separateness assumption:
 - data do NOT live in a manifold of dimension less than K-1

$$\sigma_{K-1} - \sigma_K >> \sigma_K - \sigma_{K+1} \qquad \sigma_K - \sigma_{K+1} > \sigma_{K+1} - \sigma_{K+2}$$

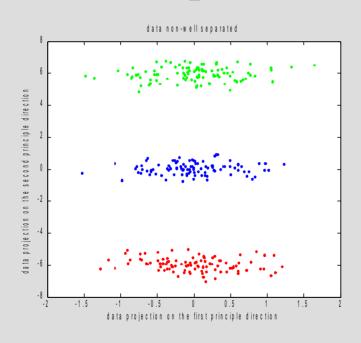
$$\sigma_K - \sigma_{K+1} > \sigma_{K+1} - \sigma_{K+2}$$

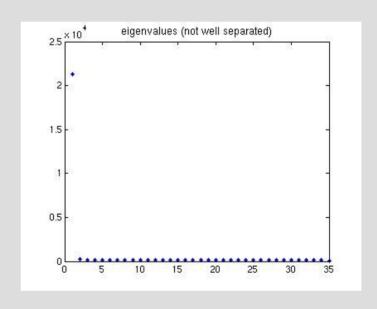




Assess the quality of clustering

Not well-separateness assumption:





- Sufficient condition
- Not necessary condition

Assess the quality of clustering

- good clustering is close to principal components of the data
 - good clusterings are stable
- measure the distance between clustering and principal components

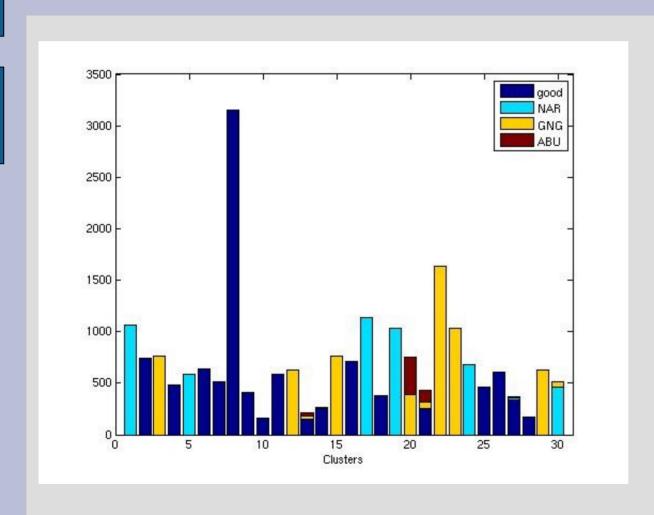
$$d(C, C^{opt}) \leq 2p_{max} \delta(1 - \delta/(K - 1))$$
where $p_{max} = max\{\frac{n_k}{m}\}$ and $\delta = \frac{D(C) - \sum_{k=K}^{d} \sigma_k}{\sigma_{k-1} - \sigma_k}$

$$D(C) = \sum_{k=1}^{K} \sum_{i \in C_k} ||x_i - \mu_k||^2 \quad \text{(K-means cost function)}$$

Outline

- Goals
- Data Sampling
- Feature Learning
- Double Clustering
- Results and Interpretations
- Conclusion and Future work

Clustering Results



• good:

jobs terminated successfully

• NAR:

jobs failed because of No Adequate Resource

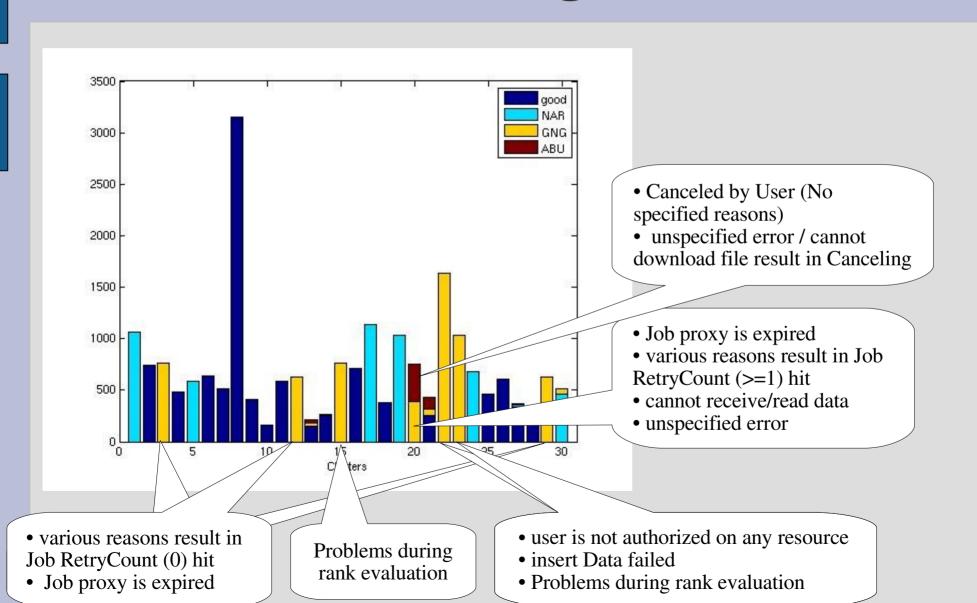
• GNG:

Generic and Non Generic errors

• ABU:

Aborted by Users

Clustering Results

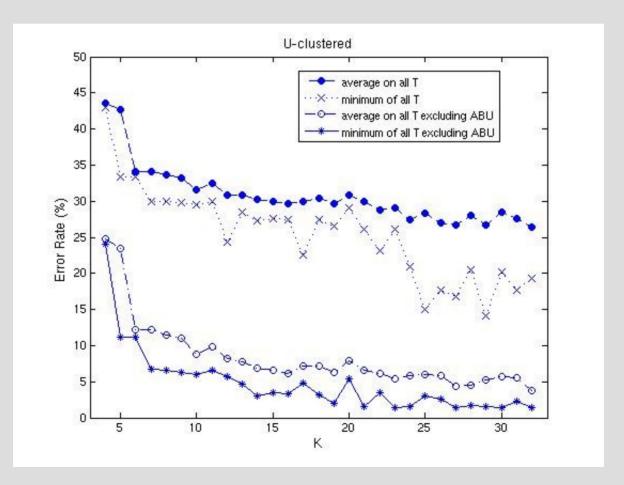


Experimental settings

- the purity of the clusters
 - representation errors: all jobs which do not belong to the majority class of the clusters they are in.
- Self-stability:
 - Both for W-clusters and U-clusters
 - \triangleright Compute with same K, average on all different pairs of T
- Mutual-stability:
 - Between W-clusters and U-clusters
 - > for given K, average on all pairs of W- and U-clusters with same T
 - > for given T, average on all pairs of W- and U-clusters with same K

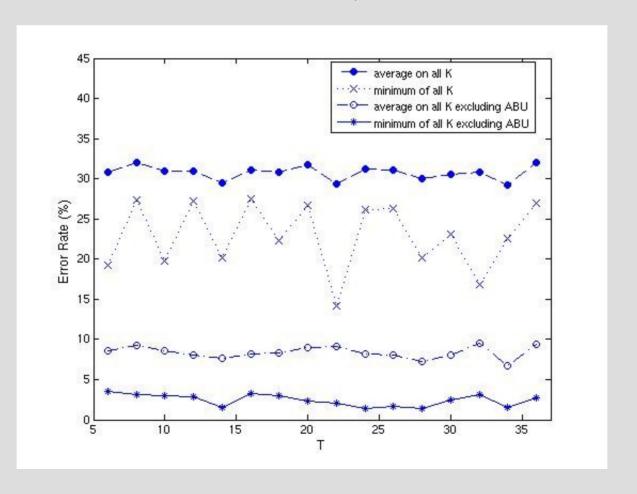
Error Rate

• U-clustered error rate versus *K* (the number of example clusters)



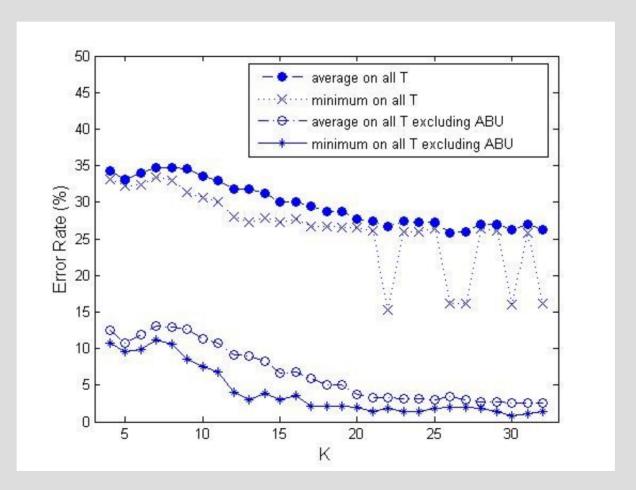
Error Rate

• U-clustered error rate versus T (the number of feature clusters)



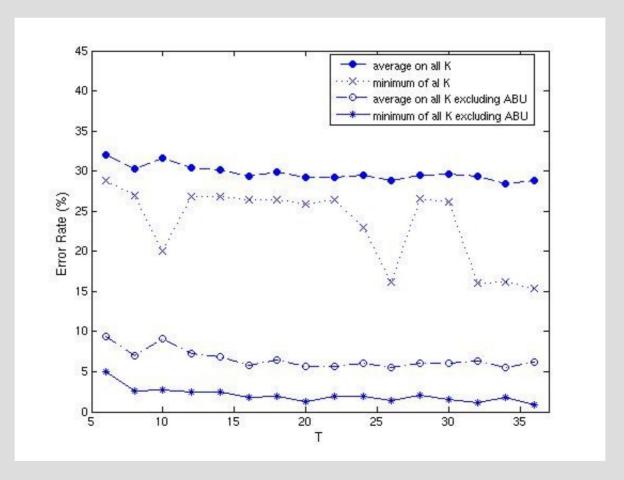
Error Rate

• W-clustered error rate versus *K* (the number of example clusters



Error Rate

• W-clustered error rate versus *T* (the number of feature clusters)

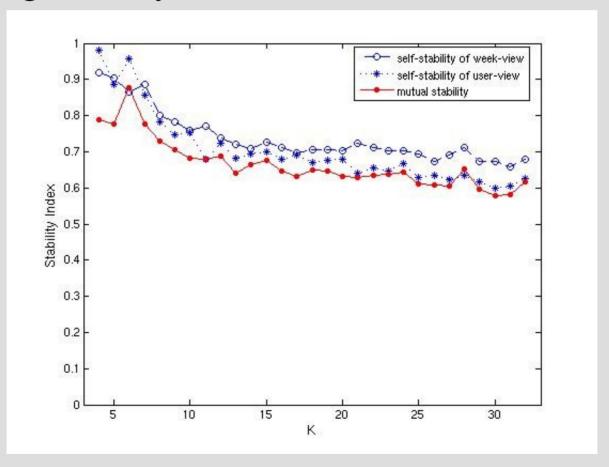


Error Rate

- Summary on Error Rate
 - \rightarrow decrease with K (K > 20)
 - ABU is difficult to classify
 - not depend much on T
 - feature clustering (dimensionality reduction) has no impact on clustering results
 - better performance on ABU when K and T are chosen in agreement with each other

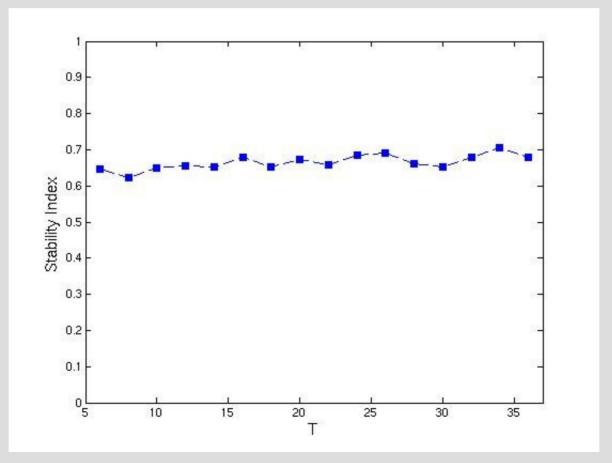
Clustering Stability

• Clustering Stability versus *K* (the number of example clusters)



Clustering Stability

Mutual Clustering Stability between U- and W-clustered versus T



Clustering Stability

- Summary on Clustering Stability
 - \rightarrow excellent on small K (K = 6)
 - quite good when error rate is low
 - slightly increase with T
 - feature clustering (dimensionality reduction) does not significantly affect clustering stability

Outline

- Goals
- Data Sampling
- Feature Learning
- Double Clustering
- Results and Interpretations
- Conclusion and Future work

Conclusion and Future work

Conclusion

- Re-description the data
 - sampling the data by two different protocols
 - remove the heterogeneity
 - learn new features
 - two new representations

Conclusion and Future work

Conclusion

- Stable clustering
 - feature clustering (dimensionality reduction)
 - stable clustering on grid jobs
 - identify classes unknown to learning algorithm
 - NAR, ABU, GNG
 - find finer subclasses

Conclusion and Future work

Future work

- Construct user / job profiles
 - find clusters of users (physicist, biologist ...)
 - find evolution of users (beginner, mastery)
 - usages of communities
- Similar on weeks
 - work load on days

Thank you!

Question?