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Grid scheduling

Soft real-time systems

I At arrival, jobs receives some utility as a function of its
completion time.

I Scheduling objective: Maximizing the total Utility Accrual
of the system.

Non-adaptive algorithm of scheduling soft real-time systems

I Based on the idea that the future is unpredictable.

I Greedy strategy: Scheduling as many high utility jobs as
early as possible1

1E.D. Jensen, 1985, A time driven scheduling model for real-time
operating systems
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Efficient scheduling policy for grid infrastructures

Design issues

I High-level scheduling goals formulation

I Fair share modeling

Technical issues

I Fault tolerance

I Arrival rate fluctuations

I Partial perception of the environment
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State of the art (1/2)

Model-based approaches

I Simple to sophisticated queuing models to predict the
performance of the ressources2.

I Based on richness of information obtained through online
measurement3.

Model-free approaches

I Build a relationship between state of the environment (e.g.
grid), available actions, (e.g. jobs to schedule) and expected
long term reward, (e.g.utility) 4.

I Reinforcement learning formalism.

2R.Doyle and al, 2003,Model-based resource provisioning in a web
service utility

3D. Vengerov, 2005,A reinforcement learning framework for utility-based
scheduling in resource-constrained systems

4G. Tesauro, 2005, Model-Based and Model-Free Approaches to
Autonomic Resource Allocation



8/25

State of the art (2/2)

Propositions for grid scheduling

I Goal : Maximizing the productivity, the average utility of
completed jobs per unit of time.

I Means: Approximation of a value function that gives
expected long-term productivity of each machine as a
function of its current state.

I Scheduling decisions: Modifying the existing state of each
machine with the goal of increasing its value function.
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Markov Decision Process (1/3)

Definition

I Set of states, S

I Set of actions, A

I Transition probabilities, Pa
ss′ = P{st+1 = s ′|st = s, at = a}

I Reward function, Ra
ss′ : S × A(s)× S+ → R

Goal
Finding a stationary policy π : S → A that maximizes the
long-term sum of rewards.
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Markov Decision Process (2/3)

Key idea

I Use of value function V π(s) to organize and structure the
search for good policy.

V π(s) = Eπ[rt+1 + γrt+2 + γ2rt+3 + ...|st = s]

= Eπ[rt+1 + γV π(st+1)|st = s, at = a]

=
∑

a π(s, a)
∑

s′ Pa
ss′ [Ra

ss′ + γV π(s ′)]
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Markov Decision Process (3/3)

If the environment’s dynamic (P and R) is known

I V is a system of |S | equations.

I In principle, its solution is a straightforward computation, but
tedious.

I In practice, iterative methods are most suitable: Dynamic
Programming

If the environment’s dynamic (P and R) is unknown

I V is learnt by interactions: Reinforcement Learning
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Grid scheduling problem

Grid state representation

I Avg utility expected for currently running jobs

I Remaining times before any running job is completed

I Number of currently idle CPUs

I Workload of the queue

Scheduling action

I Waiting jobs placed in the queues
I Expected utility
I Ressource requirements
I Execution time

Utility reward

I Sum of unit-utility function
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Reinforcement Learning paradigm (1/4)

Description

I Collection of algorithms that can be used to compute optimal
policy without any knowledge of the environment :

I Transition probabilities : Pa
ss′ = P{st+1 = s ′|st = s, a = at}

I Reward function : Ra
ss′ = S × A(s)× S+ → R

I Necessary when the number of states/actions is too large for
an exhaustive listing.

I Necessity of making a trade off between
exploration/exploitation during optimal policy search.
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Reinforcement Learning paradigm (2/4)

Off-policy learning algorithms

I Learning an optimal policy by exploring/sampling the
environment using a behaviour policy.

I Useful in small and easy-to-sample environments with strong
stationarity hypothesis.

On-policy learning algorithms

I Learning a unique policy that explores/samples the
environment while being improved.

I Useful for environment dynamics (P and R) without strong
stationarity hypothesis.

I Necessary if the training period is subject to minimal QoS
and the policy must be directly usable.
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Reinforcement Learning paradigm (3/4)

Key ideas

I Use of action-value function Qπ(s, a) to organize and
structure the search for good policy.

Qπ(s, a) = Eπ{Rt |st = s, at = a}

= Eπ{
∑∞

k=0 γ
k rt+k+1|st = s, at = a}
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Reinforcement Learning paradigm (4/4)

SARSA: On-policy Temporal-Difference Control Learning

Require: Q(s, a)← arbitrarily
repeat

Initialize s
Choose action a in s using policy derived from Q

4: repeat
Take action a, observe r , s ′

Choose a′ from A(s ′) using policy derived from Q
Q(s, a)← Q(s, a) + α[r + γQ(s ′, a′)− Q(s, a)]

8: s ← s ′; a← a′

until s is terminal
until forever
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Time utility function (1/2)
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Figure: Example of Time Utility function used by the jobs, where L is the
ideal execution time.
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Time utility function (2/2)

Modulation factors

I Initial utility value, ∈ [0, 1]

I Ideal Execution Time, L
I Descent form and associated coefs. :

I Linear
I Negative Exponential
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Simulation plateform (1/2)

Experimentation environment

I Developed in Matlab

I Multi-CPUs

I Simple/Multi Queues

I Job description, Utility functions

I Performance/Utility measures

Baseline algorithms

I Earliest Deadline First

I First In First Out

I Random
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Simulation plateform (2/2)

Policy learning algorithms

I SARSA: on-policy temporal-difference learning

Generalization methods

I K-Nearest Neighboors

I Neural Networks

I Gaussian Process regression
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First results
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Figure: Avg reward for 100 jobs on 20 CPUs.
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Perspectives

Grid perspectives

I Improving grid state description

I Implementation in a grid infrastructure

Learning perspectives

I New generalization algorithms:
I Deep Belief Network
I Echo State Machine

I Multi-objective reinforcement learning

I Distributed reinforcement learning
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