Using the GRACE-loop system for computing the electroweak corrections to top-pair production

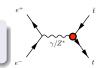
Tetiana Moskalets¹ Emi Kou²

¹Master student at V. N. Karazin Kharkiv National University, Kharkiv, Ukraine; intern at LAL, Orsay;

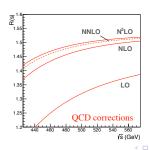
²LAL Orsay, France

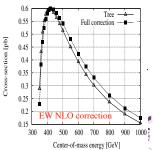
European Linear Collider Workshop 2016

- Top physics at ILC
- 2 Relative NLO electroweak corrections
 - Box diagram contribution
- Forward-backward asymmetry
- 4 Summary


- 1 Top physics at ILC
- Relative NLO electroweak correctionsBox diagram contribution
- Forward-backward asymmetry
- 4 Summary

Window for New Physics

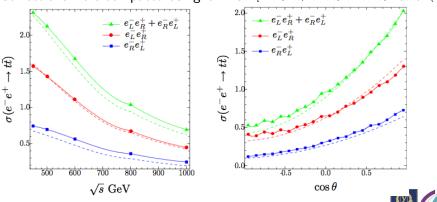

$t\bar{t}-Z\gamma$ anomalous coupling measurement — a way to search for New Physics at ILC



- QCD N³LO correction is $\sim 0.1\%$. Kiyo et al NPB **8** 23 ('09); Hoang et al NPB **8** 13 ('09)
- EW NLO correction is 5% for cross section, 10% for A_{FB}.
 Fleischer et al., EPJC 31 37 ('03): Khiem et al., EPJC 73 4 ('13)
- Experiment gives permil precision.

Amjad et al., EPJC 75 10 ('15)

 Beyond SM theories can give relative deviation > 5% for coupling.



Spin correlation as a tool for precision

EW corrections depend on the initial state polarization

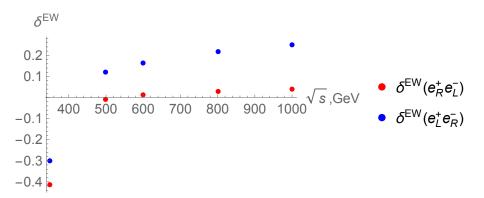
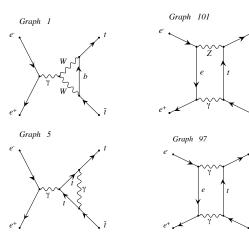
For $(e_L^-e_R^+)$ beam NLO EW correction is surprisingly small: $\lesssim 1\%$

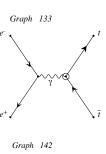
Corrections were computed using GRACE [Khiem, Kou, Kurihara, Le Diberder, EPJC 73 4 ('13)]

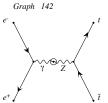
• Polarized beam option $(e^+e^-)=(\pm 0.8, \mp 0.3)$ is available

- Top physics at ILC
- 2 Relative NLO electroweak corrections
 - Box diagram contribution
- Forward-backward asymmetry
- 4 Summary

Closer look at NLO electroweak corrections


Figure 1: Center-of-mass energy dependence of the relative EW correction for different initial state polarizations.


Question:

Why $\delta^{EW}(e_R^+e_L^-)$ is so small?

Feynman diagrams to the $e^+e^- o tar t$ at 1-loop

Individual EW corrections: vertex corrections

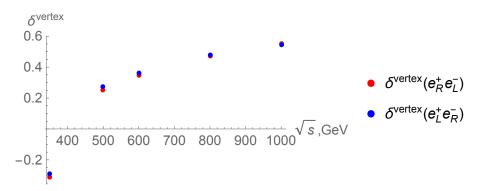


Figure 2: Relative vertex electroweak correction.

• Almost no dependence on polarization. The correction is positive.

Individual EW corrections: box corrections

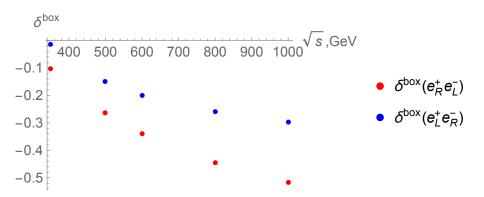


Figure 3: Relative EW correction coming from box diagrams.

Relative correction comes from both, vertex and box part, but... $% \label{eq:correction}%$

All dependence on initial polarization comes from box diagrams. The correction is negative.

Cancellation of vertex and box corrections for $e_R^+ e_L^-$

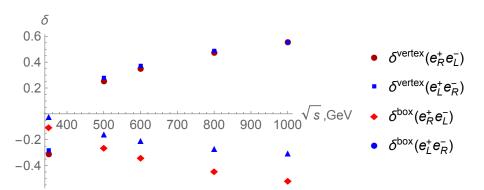
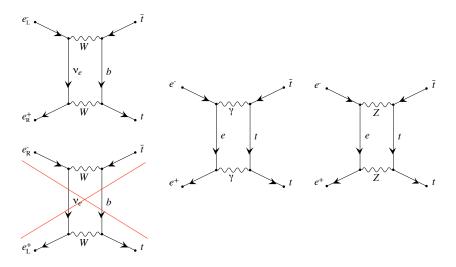


Figure 4: Box and vertex EW corrections.

Accidental cancellation of vertex and box corrections

At 500GeV for $(e_R^+e_I^-)$ the correction is $\delta \approx -0.8\%$.



- Top physics at ILC
- 2 Relative NLO electroweak corrections
 - Box diagram contribution
- 3 Forward-backward asymmetry
- 4 Summary

Box Feynman diagrams to the $e^+e^- o tar t$

- W box contribute only to $e_R^+ e_L^-$ but not $e_L^+ e_R^-$
- ullet The photon and Z boxes are the present for both $e_R^+e_L^-$ and e_L^+

Electroweak corrections coming from box diagrams

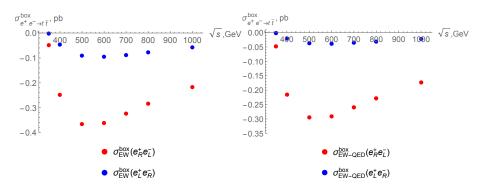


Figure 5: Total EW(on the left) and "weak" (on the right) box correction to the $e^+e^- \to t\bar{t}$ depending on the initial polarization.

- $e_R^+ e_I^-$: W and Z contribution
- $e_L^+ e_R^-$: only Z contribution

W boson contribution

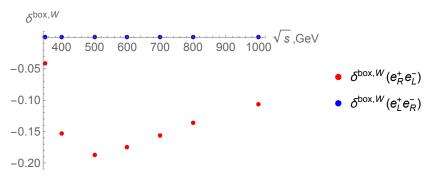


Figure 6: W box contribution to the $e^+e^- \to t\bar{t}$.

 $\delta^{EW}(e_R^+e_I^-)$ is larger principally because of W box contribution.

Parametrization of EW box corrections

Just for testing our result...

We will try to fit the σ^{box} energy dependence using existing theories.

Box diagrams contain double logarithms as a main contribution and single logarithms as subleading terms:¹

- Single logarithms In $\frac{s}{m_{Z,W}^2}$ come from the analogue of QED collinear divergencies.
- Double logarithms $\ln^2 \frac{s}{m_{Z,W}^2}$ come from the analogue of QED divergences that are of IR and collinear origin.

Parametrization of EW box corrections

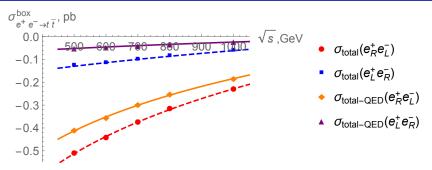


Figure 7: Total and weak box correction to the $e^+e^- \to t\bar{t}$ fitted with double log: $\sigma \sim const + \left(\ln\frac{s}{M_W^2}\right)^2$.

 The double-log-dependence fits well the box contributions computed with the GRACE program.

17/28

²Here we divided the cross-section by $\sqrt{1 - \frac{4m_t^2}{s}}$ in order to cancel phase space effects near $t\bar{t}$ threshold.

- Top physics at ILC
- Relative NLO electroweak correctionsBox diagram contribution
- Forward-backward asymmetry
- 4 Summary

Forward-backward asymmetry at NLO

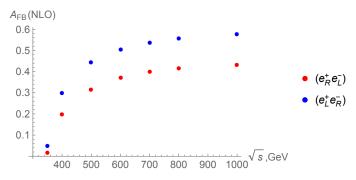


Figure 8: Forward-backward asymmetry at NLO for different initial polarizations

$$A_{FB} = \frac{\sigma(0^{\circ} \leq \theta_t \leq 90^{\circ}) - \sigma(90^{\circ} \leq \theta_t \leq 180^{\circ})}{\sigma(0^{\circ} \leq \theta_t \leq 90^{\circ}) + \sigma(90^{\circ} \leq \theta_t \leq 180^{\circ})}$$

Forward-backward asymmetry at NLO

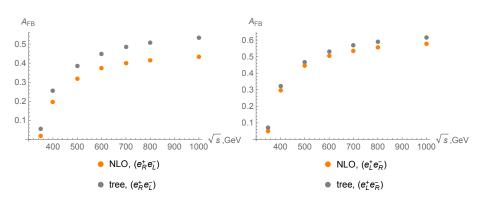


Figure 9: A_{FB} at NLO compared to the tree level result

• Correction to the A_{FB} for $(e_R^+e_L^-)$ initial state becomes much larger with energy than for $(e_L^+e_R^-)$.

◆□▶◆률▶◆불▶◆불▶ 불階 釣९○

Separate contributions to A_{BF}

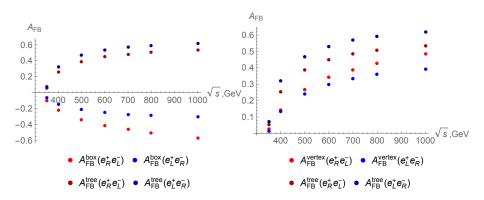


Figure 10: Box and vertex correction contribution to A_{FB} , compared to the tree asymmetry.

Total correction

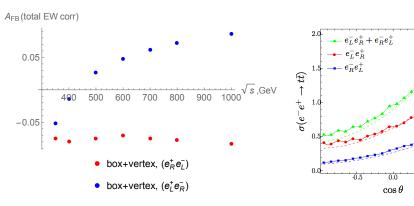


Figure 11: Total EW correction contribution to forward–backward asymmetry

[Khiem, Kou, Kurihara, Le Diberder, EPJC **73** 4 ('13)]

• Almost no energy dependence for $(e_R^+e_L^-)$ initial state.

0.5

- Top physics at ILC
- Relative NLO electroweak correctionsBox diagram contribution
- Forward-backward asymmetry
- 4 Summary

Summary

- EW NLO correction strongly depends on polarization.
 - We found in this work, the main reason seems to be the different W contributions to box diagrams.
- For $(e_R^+e_L^-)$ initial state, especially, at 500 GeV the NLO correction accidentally cancel, which results in a very small NLO contribution: $\delta \sim 1\%$ level
- Vertex and box corrections are both large ($\gtrsim 20\%$), but for $(e_R^+e_L^-)$ they cancel each other.
 - Because of extra W contribution.
- $\delta^{EW}_{e_R^+e_L^-}(500 {\rm GeV}) \approx 0.8\% \sim$ polarized beam is useful at ILC since New Physics might be at $\gtrsim 5\%$.
 - \bullet Note that QCD corrections up to N³LO and experimental precision are $\sim 0.1\%$
- Although for $(e_R^+e_L^-)$ the δ^{EW} is tiny, there is a significant contribution to A_{ER} .

Here I presented preliminary results, work is still in progress!

Backup: What is GRACE?

GRACE is an automatic computation system for calculating High Energy Physics processes at tree and one-loop level.

- One can obtain full set of the Feynman diagrams for the specific process.
- Wide range of kinematics is available for computation.
- Using the generated fortran code one can calculate amplitudes and cross-sections.
- The gauge invariance can be checked.
- The cross section is computed by Monte Carlo integration package BASES.
- The events are simulated by event generation package SPRING.

Backup: Algorithm

For getting the values of physical observables of the specific process we have to...

- 1 Create an input file: initial & final state, kinematics type.
- Generate the fortran code.
- Modify the fortran files if setting the specific kinematic parameters, polarization, ... is needed.
- Compile the fortran code.
- Output of generated executables gives cross-section, check of the the gauge independence, and generated events.

Backup: In the result

NLO cross-section of the $e_R^+e_L^- o t \bar t$ process.

Convergency Behavior for the Integration Step

```
<- Result of each iteration -> <- Cumulative Result -> < CPU time > IT Eff R.Neg Estimate Acc \% Estimate(+- Error )order Acc \% ( H: M: Sec )
```

```
1 100100.00 -6.647E-01 0.027 -6.647040(+-0.001819)E-01 0.027 0:07:08.26
```

