Lattice WG Summary

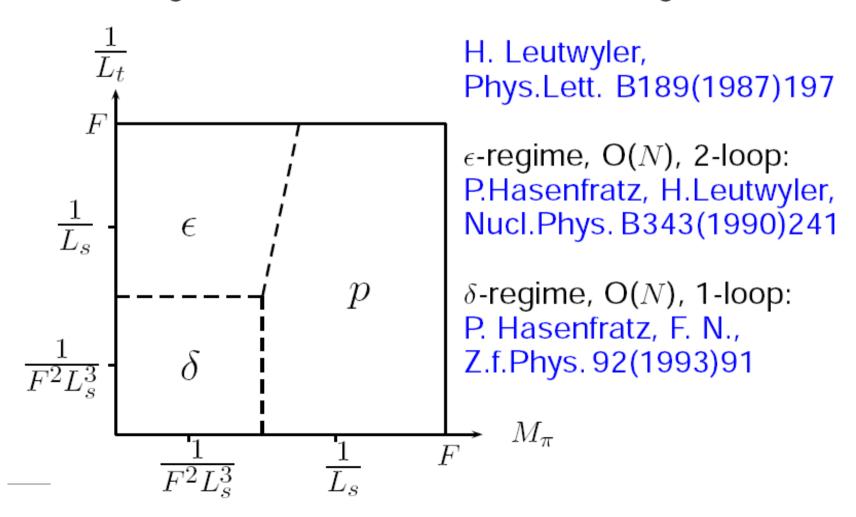
Gilberto Colangelo

EF07 - Orsay, 16. November 2007

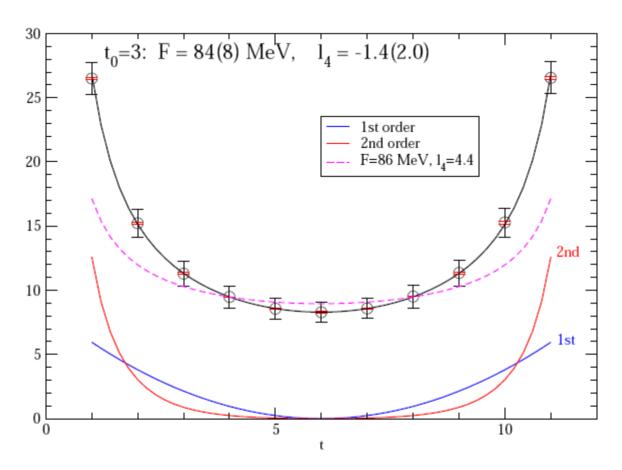
Parallel session talks

• Ferenc Niedermayer ϵ and δ regimes

Silvia Necco LECs from lattice

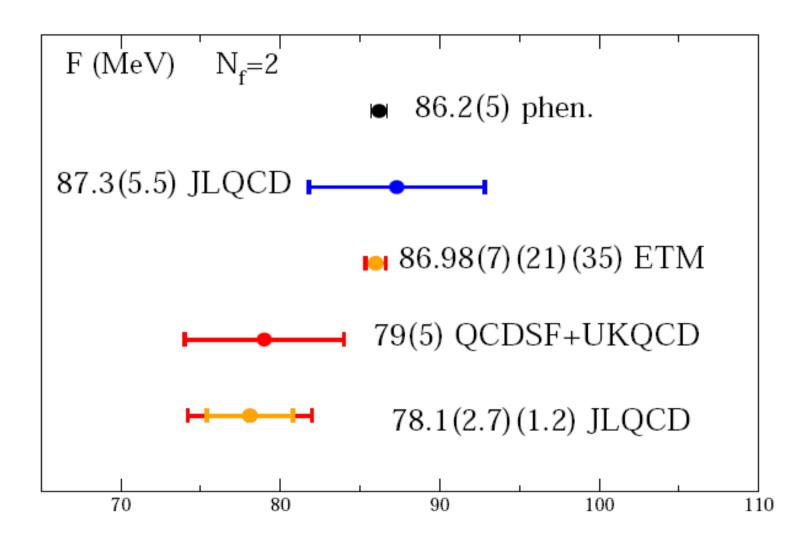

Fabio Bernardoni CHPT in mixed regime

Michele Della Morte HQET on the lattice

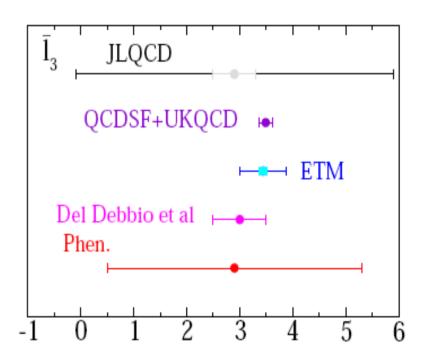

 + discussion on a Lattice Data Group and on a topical workshop in 2008

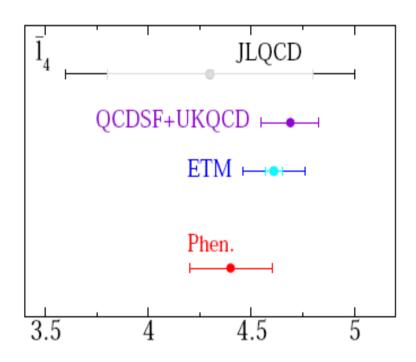
F. Niedermayer – ϵ and δ regimes

According to M_{π} , L_s , L_t one has different regimes of QCD.



F. Niedermayer – ϵ and δ regimes




$$C(t) = C_0 \left\{ a_0(\mathbf{F}L, \mathbf{\Lambda}_4 L) + \left[a_1(\mathbf{F}L)h_1(t) + \ldots + a_3(\mathbf{F}L)h_3(t) \right] \right\}$$

S. Necco – LECs from Lattice

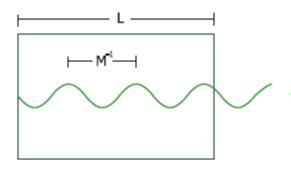
S. Necco – LECs from Lattice

S. Necco – LECs from Lattice

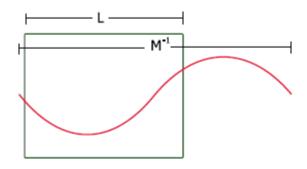
Recent results ('07):

Authors	Dirac op.	gauge action	a (fm)	L (fm)	M_{PS} (MeV)
MILC	impr. staggered	Sym. 1 loop	0.06-0.15	2.4-3.4	200
RBC-UKQCD	Domain Wall	Iwasaki	0.11	1.8-2.6	330
PACS-CS	Wilson $O(a)$ impr.	Iwasaki	0.09	2.9	210

Authors	$(2L_8-L_5)\cdot 10^3$	$(2L_6-L_4)\cdot 10^3$	$L_4 \cdot 10^3$	$L_5 \cdot 10^3$
MILC	0.3(1)(1)	$0.3(1)\binom{+2}{-3}$	$0.1(3)\binom{+3}{-1}$	$1.4(2)\binom{+2}{-1}$
RBC-UKQCD	0.247(45)	-0.002(42)	0.136(80)	0.862(99)
PACS-CS	-0.23(5)	0.10(4)	-0.02(11)	1.47(13)


Phenomenogical determinations:

$$L_4 \equiv 0$$
; $L_6 \equiv 0$; $10^3 \cdot L_5 = 1.46$; $10^3 \cdot L_8 = 1.00$


F. Bernardoni – Mixed regime

In a finite volume there are two regimes:

• p-regime $(m_q \Sigma V \gg 1, L \Lambda_\chi \gg 1)$

- χ PT predicts L, m_q scaling
 - m_q scaling relevant
 - finite size scaling $\sim e^{-LM_{\pi}}$
 - up to 12 LECs at NLO
- ϵ -regime $(m_q \Sigma V \lesssim 1, L \Lambda_\chi \gg 1)$ [Gasser & Leutwyler 1987]

- χ PT predicts L, m_q, ν scaling (ν is the topological sector)
 - L, ν scaling relevant
 - m_q scaling is usually less relevant
 - only F and Σ at NLO _

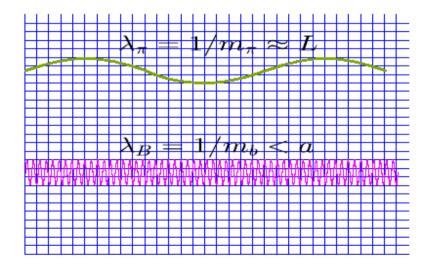
F. Bernardoni – Mixed regime

It is necessary to consider the mixed regime: ie. some quarks in the p and some in the ϵ -regime, in the following situations:

 \bullet Split the s and u/d quarks in full theory computations:

$$m_s \Sigma V \gg 1$$
 $m_{u,d} \Sigma V \lesssim 1$

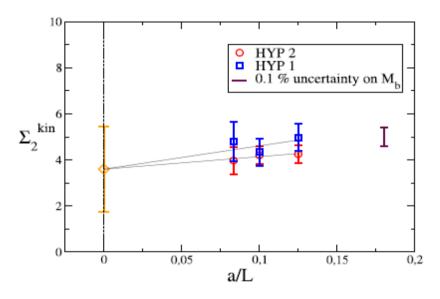
② Split of valence and sea quarks in Partially Quenched simulations with mixed actions [Baer, Rupak, Shoresh]:


$$m_{sea}\Sigma V\gg 1$$
 $m_{valence}\Sigma V\lesssim 1$

M. Della Morte – Lattice HQET

Lattice HQET

Why HQET on the lattice? The reason is mainly practical:


- finite volume effects are mainly triggered by the light degrees of freedom. The usual requirement is $m_{PS}L > 4$ and m_{PS} is typically around the kaon mass in real lattice simulations $\Rightarrow L \simeq 2 \text{ fm}$.
- cutoff effects are tuned by the heavy quark mass. $a << 1/m_b \simeq 0.03~{
 m fm}$.
- \Rightarrow $L/a \simeq 100$ is needed to have those systematics under control !! Integrating out the heavy quark mass in this case is useful !!

M. Della Morte – Lattice HQET

$$m_{B^{av}} = m_B^{stat} + m_B^1$$

with m_B^1 in terms of E^{kin} , SSF and $\Phi_k(L_1, M_B^{stat})$, eg (notice a/L now):

and $M_B^1 = -\frac{m_B^1}{S}$

In the $\overline{\mathrm{MS}}$ scheme at the scale m_b

$$m_b(m_b) = 4.347(48) \; GeV$$

A Lattice Data Group? (L. Lellouch)

- For certain quantities, many (partially-quenched) calculations, using different actions, different approaches to renormalization, etc.
- More recent does not necessarily mean more reliable or accurate: we try new approaches
- ⇒ situation can be very confusing for non-experts (even for experts!)
- ⇒ central values and errors used in phenomenological analyses can vary substantially for no objective reason
 - Help non-experts by providing them with a succint and reliable summary of the state of the art
 - Make the best possible use of the results and experience that we have accumulated

A Lattice Data Group? (L. Lellouch)

Came to a grinding halt when actual work had to be done!

A few reasons for this failure

- most of us would rather push forward original research than review past work
- → hard to fight against
- discomfort with producing an LDG booklet which would contain mostly (partially-)quenched results
- \leftrightarrow more and more $N_f = 2 + 1$ results now
- "It is too Euro-centric"and US colleagues were reluctant to get involved
- → people like Claude Bernard have recently expressed interest

A Lattice Data Group? (L. Lellouch)

- "It is a great way to make enemies"
- → cite everyone, but only include in an "average" those results which satisfy a number of scientific criteria

Flavianet Lattice Data Group

- GC
- S. Dürr
- A. Jüttner
- L. Lellouch
- H. Leutwyler

- V. Lubicz
- S. Necco
- C. Sachrajda
- T. Vladikas
- H. Wittig

Lattice Workshop in 2008

- Two options have been discussed:
 - CERN (Giusti and Lüscher)
 - Groningen (Pallante)

Final decision/consensus not yet reached