Departure from Yukawa coupling unification in SUSY GUTs

David M. Straub

ПШ

T31, Physik-Department, Technische Universität München

EuroFlavour '07 Paris, November 15, 2007

Based on collaboration with:
Wolfgang Altmannshofer and Diego Guadagnoli

Outline

Simultaneous fit to FCNC observables presents a serious problem for certain SUSY GUTs.

[Albrecht, Altmannshofer, Buras, Guadagnoli, DS (2007); see talk by Diego Guadagnoli]

Questions:

- How model-dependent are these issues?
 - A problem of all SUSY GUTs featuring $t-b-\tau$ Yukawa unification
- How can those problems be solved?
 - By breaking t-b unification but maintaining $b-\tau$ unification

Outline

- Yukawa unification in SUSY GUTs
- Impact on SUSY parameter space
- lacksquare Consequences for FCNC observables $B_{
 m s} o \mu^+ \mu^-$ and $B o X_{
 m s} \gamma$
- Numerical results

Yukawa unification in SO(10)

Minimal SO(10):

- Matter superfields of one generation contained in $\mathbf{16} = (Q, \bar{U}, \bar{D}, L, \bar{E}, \bar{\nu})$
- MSSM Higgs doublets $(H_u, H_d) \subset \mathbf{10_H}$
- 3rd generation Yukawa coupling
 16₃.10_H.16₃
 ⇒ y_t = y_b = y_T = y_{νT}

$$m_t = v_u y_t, m_b = v_d y_b,$$

$$\Rightarrow$$
 tan $\beta = \frac{v_u}{v_d} \approx 50$

Bottom-tau unification

- SU(5): $\overline{\bf 5}=(\bar{D},L),\,{\bf 10}=(\,{\sf Q},\bar{U},\bar{E})$
- Complete SO(10) models require additional representations (e.g. 16_H) which contain doublets
- Doublets can mix with $(H_u^{\mathbf{10_H}}, H_d^{\mathbf{10_H}})$

Example:

$$H_d = H_d^{10_{\text{H}}} \cos \gamma + H_d^{16_{\text{H}}} \sin \gamma$$

$$\Rightarrow y_b = y_t \cos \gamma$$

$$\Rightarrow \tan \beta < 50$$

Bottom-tau unification

- SU(5): $\overline{\bf 5} = (\bar{D}, L), \, {\bf 10} = (Q, \bar{U}, \bar{E})$
- Complete SO(10) models require additional representations (e.g. 16_H) which contain doublets
- Doublets can mix with $(H_u^{\mathbf{10_H}}, H_d^{\mathbf{10_H}})$

Example:

$$H_d = H_d^{10_{\text{H}}} \cos \gamma + H_d^{16_{\text{H}}} \sin \gamma$$

$$\Rightarrow y_b = y_t \cos \gamma$$

$$\Rightarrow \tan \beta < 50$$

Bottom-tau unification

- SU(5): $\overline{\bf 5}=(\bar{D},L),\,{\bf 10}=(\,{\sf Q},\bar{U},\bar{E})$
- Complete SO(10) models require additional representations (e.g. 16_H) which contain doublets
- Doublets can mix with $(H_u^{\mathbf{10_H}}, H_d^{\mathbf{10_H}})$

Example:

$$H_d = H_d^{10_{\text{H}}} \cos \gamma + H_d^{16_{\text{H}}} \sin \gamma$$

$$\Rightarrow y_b = y_t \cos \gamma$$

$$\Rightarrow \tan \beta < 50$$

- t-b unification can be broken by Higgs mixing
- This can occur even in models of minimal SO(10) breaking [Barr & Raby (1997), Albright & Barr (1998)]
- Higgs mixing preserves $b-\tau$ unification

Yukawa unification in the MSSM

Fix m_t, m_τ , require b- τ unification \Rightarrow predict m_b

[Arason et al. (1991), Carena et al. (1993), Ananthanarayan et al. (1994), ...]

Yukawa unification in the MSSM

Fix m_t, m_τ , require b- τ unification \Rightarrow predict m_b

[Arason et al. (1991), Carena et al. (1993), Ananthanarayan et al. (1994), ...]

Yukawa unification in the MSSM

Fix m_t, m_τ , require b- τ unification \Rightarrow predict m_b

[Arason et al. (1991), Carena et al. (1993), Ananthanarayan et al. (1994), ...]

Finite threshold corrections

to m_b : [Hall, Rattazzi, Sarid 1994]

- (t-)b- τ unification requires $A_t \ll 0$, $m_{\tilde{t}} \ll m_{\tilde{b}}$, and small $m_{\tilde{q}}$
- EWSB requires $m_{H_u}(M_G) \neq m_{H_d}(M_G)$ (a.k.a. NUHM scenario)

- (t-)b-au unification requires $A_t \ll 0$, $m_{\tilde{t}} \ll m_{\tilde{b}}$, and small $m_{\tilde{q}}$
- EWSB requires $m_{H_u}(M_G) \neq m_{H_d}(M_G)$ (a.k.a. NUHM scenario)
- Fit prefers region with: $A_0 \approx -2 \, m_{16}, \; \mu, m_{1/2} \ll m_{16}$
- Leads to an inverted scalar mass hierarchy [Blažek, Dermíšek, Raby 2001]

- (t-)b-au unification requires $A_t \ll 0$, $m_{\tilde{t}} \ll m_{\tilde{b}}$, and small $m_{\tilde{q}}$
- EWSB requires $m_{H_u}(M_G) \neq m_{H_d}(M_G)$ (a.k.a. NUHM scenario)
- Fit prefers region with: $A_0 \approx -2 \, m_{16}, \; \mu, m_{1/2} \ll m_{16}$
- Leads to an inverted scalar mass hierarchy [Blažek, Dermíšek, Raby 2001]

Predictions of $(t-)b-\tau$ unification

- 1 stop, 1 neutralino, 1 chargino are light
- 1st and 2nd generation sfermions very heavy

- $(t-)b-\tau$ unification requires $A_t\ll 0$, $m_{\tilde{t}}\ll m_{\tilde{b}}$, and small $m_{\tilde{g}}$
- EWSB requires $m_{H_u}(M_G) \neq m_{H_d}(M_G)$ (a.k.a. NUHM scenario)
- Fit prefers region with: $A_0 \approx -2 m_{16}, \ \mu, m_{1/2} \ll m_{16}$
- Leads to an inverted scalar mass hierarchy [Blažek, Dermíšek, Raby 2001]

Predictions of $(t-)b-\tau$ unification

- 1 stop, 1 neutralino, 1 chargino are light
- 1st and 2nd generation sfermions very heavy

Sufficient to consider 3rd generation effects in FCNCs

- Only 3rd generation Yukawa couplings at the GUT scale
- RG running to the EW scale
- Use experimentally measured CKM matrix
- \bigcirc calculate FCNCs and t, b, τ masses
- $\begin{tabular}{ll} \hline \bullet & minimize χ^2 function \\ \hline \end{tabular}$

 $M_W, M_Z, G_\mu, \alpha_{em}, \alpha_{s}, M_t, M_b, M_\tau, B \rightarrow X_s \gamma, B \rightarrow X_s \ell^+ \ell^-, \Delta M_s / \Delta M_d$

- Only 3rd generation Yukawa couplings at the GUT scale
- RG running to the EW scale
- Use experimentally measured CKM matrix
- **o** calculate FCNCs and t, b, τ masses
- lacktriangledown minimize χ^2 function

 $M_W, M_Z, G_\mu, \alpha_{em}, \alpha_s, M_t, M_b, M_\tau, B \rightarrow X_s \gamma, B \rightarrow X_s \ell^+ \ell^-, \Delta M_s / \Delta M_d$

- Only 3rd generation Yukawa couplings at the GUT scale
- RG running to the EW scale
- Use experimentally measured CKM matrix
- \bigcirc calculate FCNCs and t, b, τ masses
- lacktriangledown minimize χ^2 function

 $M_W, M_Z, G_\mu, \alpha_{em}, \alpha_s, M_t, M_b, M_\tau, B \rightarrow X_s \gamma, B \rightarrow X_s \ell^+ \ell^-, \Delta M_s / \Delta M_d$

- Only 3rd generation Yukawa couplings at the GUT scale
- RG running to the EW scale
- Use experimentally measured CKM matrix
- o calculate FCNCs and t, b, τ masses
- lacktriangledown minimize χ^2 function

 $M_W, M_Z, G_\mu, \alpha_{em}, \alpha_s, M_t, M_b, M_\tau, B \rightarrow X_s \gamma, B \rightarrow X_s \ell^+ \ell^-, \Delta M_s / \Delta M_d$

- Only 3rd generation Yukawa couplings at the GUT scale
- RG running to the EW scale
- Use experimentally measured CKM matrix
- **a** calculate FCNCs and t, b, τ masses
- minimize χ^2 function

 $M_W, M_Z, G_\mu, \alpha_{\text{em}}, \alpha_{\text{s}}, M_t, M_b, M_\tau, B \to X_{\text{s}} \gamma, B \to X_{\text{s}} \ell^+ \ell^-, \Delta M_{\text{s}} / \Delta M_{\text{d}}$

$$B_s \rightarrow \mu^+ \mu^-$$

$$\mathsf{BR}(B_{\mathsf{S}} \to \mu^+ \mu^-)$$

SM
$$(3.35 \pm 0.32) \times 10^{-9}$$
 exp. $< 5.8 \times 10^{-8}$ [CDF]

- Decay is helicity suppressed in the SM
- SUSY contribution potentially large, dominated by Higgs penguin

$$\mathsf{BR}(B_s \to \mu^+ \mu^-)^{\mathsf{HP}} \propto A_t^2 \frac{\tan^6 \beta}{M_A^4}$$

[Buras, Chankowksi, Rosiek, Sławianoska (2002)]

- With tan $\beta = 50$ (*t-b-\tau* unification!), very heavy A^0, H^0, H^+ required
- Smaller $\tan \beta$ allows lighter Higgs spectrum

$B \rightarrow X_s \gamma$

- $\bullet \ \mathsf{BR} \sim |C_7^{\mathsf{SM}}|^2 + 2\mathsf{Re}(C_7^{\mathsf{SM}}C_7^{\mathsf{SUSY}})$
- ullet $C_7^{H^+} \propto +1/M_{H^+}^2, \ C_7^{ ilde{\chi}^+} \propto A_t \mu an eta$
- $\tilde{\chi}^+$ and H^+ contributions tend to cancel each other for $\mu > 0$

$B \rightarrow X_s \gamma$

- $\bullet \ \mathsf{BR} \sim |C_7^{\mathsf{SM}}|^2 + 2\mathsf{Re}(C_7^{\mathsf{SM}}C_7^{\mathsf{SUSY}})$
- ullet $C_7^{H^+} \propto +1/M_{H^+}^2, \ C_7^{ ilde{\chi}^+} \propto A_t \mu an eta$
- $\tilde{\chi}^+$ and H^+ contributions tend to cancel each other for $\mu > 0$

$$\tan \beta = 50$$

- large $\tan \beta \Rightarrow \text{large } \mathbf{C}_{7}^{\tilde{\chi}^{+}}$
- heavy Higgses ⇒ small C₇^{H+}

$B \rightarrow X_s \gamma$

• BR
$$\sim |C_7^{\text{SM}}|^2 + 2\text{Re}(C_7^{\text{SM}}C_7^{\text{SUSY}})$$

$$ullet$$
 $C_7^{H^+} \propto +1/M_{H^+}^2, \ C_7^{\tilde{\chi}^+} \propto A_t \mu an eta$

• $\tilde{\chi}^+$ and H^+ contributions tend to cancel each other for $\mu > 0$

$$\tan\beta=50$$

- large $\tan \beta \Rightarrow \text{large } \mathbf{C}_{7}^{\tilde{\chi}^{+}}$
- heavy Higgses ⇒ small C₇^{H+}

$\tan \beta \approx 40$

- $\tan \beta \searrow \Rightarrow |\mathbf{C}_7^{\tilde{\chi}^+}| \searrow$
- $\bullet M_{H^+} \searrow \Rightarrow |C_7^{H^+}| \nearrow$

Overview

 $\tan eta \gtrsim$ 45

- Combined $B_s \to \mu^+\mu^-$ and $B \to X_s \gamma$ constraints impossible to fulfill

Overview

 $\tan \beta \approx 40$

- b-τ unification possible
- $B_s \to \mu^+ \mu^-$ and $B \to X_s \gamma$ compatible with experiment

 $\tan \beta \gtrsim 45$

- t-b-τ unification possible, but:
- Combined $B_s \to \mu^+\mu^-$ and $B \to X_s \gamma$ constraints impossible to fulfill

Overview

 $\tan \beta \lesssim$ 35

 b-τ unification impossible to achieve

 $\tan \beta \approx 40$

- b-⊤ unification possible
- $B_s \rightarrow \mu^+ \mu^-$ and $B \rightarrow X_s \gamma$ compatible with experiment

 $\tan \beta \gtrsim 45$

- t-b-τ unification possible, but:
- Combined $B_s \to \mu^+\mu^-$ and $B \to X_s \gamma$ constraints impossible to fulfill

χ^2 distribution from preliminary fit results:

χ^2 distribution from preliminary fit results:

χ^2 distribution from preliminary fit results:

 ${\sf BR}(B o X_s \gamma) \ \ 1.5 \sigma \ {\sf too \ low}$ $m_b \ \ 0.4 \sigma \ {\sf too \ big}$ $M_{\tilde t_1} = 830 \, {\sf GeV}$ $M_A = 503 \, {\sf GeV}$ $\chi^2 = 12$

χ^2 distribution from preliminary fit results:

 $\mathsf{BR}(B o X_{s}\gamma) \ 0.9\sigma \ \mathsf{too} \ \mathsf{low}$ $m_b \ 2.4\sigma \ \mathsf{too} \ \mathsf{big}$ $M_{ ilde{t}_1} = 730 \, \mathsf{GeV}$ $M_A = 400 \, \mathsf{GeV}$ $\chi^2 = 17$

Conclusions

Main Messages

- The tension between $B \to X_s \gamma$ and $B_s \to \mu^+ \mu^-$ is a universal problem of SUSY GUTs with t-b- τ Yukawa unification (assuming universal sfermion and gaugino masses)
- b- τ Yukawa unification is possible with moderate sfermion masses for $35 \lesssim \tan \beta \lesssim 45$
- LHC predictions: light stop, light neutralino, light chargino