Testing non-standard couplings of fermions to Z

Micaela Oertel

LUTH, Meudon

Collaborators: V. Bernard (Strasbourg), E. Passemar (Bern) & J. Stern (Orsay)

V. Bernard, M.O., E. Passemar, J.Stern, Phys. Lett. B 638 (2006) 480 V. Bernard, M.O., E. Passemar, J.Stern, arXiv:0707.4194 [hep-ph]

Theoretical framework to classify non-standard EW effects

- High energies: larger symmetry → observable effects at low energies?
- "Bottom-up" approach: low energy effective theory framework does not depend on particular model at high energies
- ullet Decoupling scenario: new physics operators suppressed by energy scale Λ
- "Not quite decoupling" effective theory (valid for $p \ll \Lambda \sim 3 \, TeV$) fulfilling
 - Equipped with a systematic infrared power counting $(p \to p\lambda)$ in the limit $\lambda \to 0$

$$\mathcal{L}_{ ext{eff}} = \sum_{d \geq 2} \mathcal{L}_d \quad d = n_p + n_g + rac{n_\psi}{2}$$

- Renormalisation order by order in the expansion scheme
- Assuming naturality (all operators allowed by the symmetries at a given order appear with "natural" strength)
- Observed phenomenology, i.e., at lowest order the higgsless vertices of the SM should be recovered and nothing else
- (Light) particle content (below \sim 3 TeV), here all observed particle of the SM, i.e., gauge bosons W, Z, γ + quarks + leptons
- Appropriate symmetry (partially non-linearly realised at low energies) to garantuee these conditions

Constructing the minimal not quite decoupling LEET

- Most simple LEET based on SU_L(2) × U_Y(1) (chiral electroweak Lagrangian) gives rise to unwanted operators (e.g. lowest order contributions to the parameters S, T)
- Solution: larger symmetry S_{nat} ⊃ SU_L(2) × U_Y(1) survives at low energy and becomes non-linearly realised: S_{nat} constrains the interactions at low energy
- Minimal solution to get at lowest order the higgsless vertices of the SM: symmetry $S_{nat} = [SU(2)]^4 \times U(1)_{B-L}$ (Hirn&Stern '04,'06)
- Reduction of $S_{nat} \to S_{EW}$ via spurions $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ populating the coset space S_{nat}/S_{EW} with $D_{\mu}\mathcal{X} = D_{\mu}\mathcal{Y} = D_{\mu}\mathcal{Z} = 0$
- Power counting in terms of momenta and spurion parameters (in the standard gauge $\mathcal{X} = \xi \Omega_L, \mathcal{Y} = \eta \Omega_R$ with $\Omega_L, \Omega_R \in SU(2)$)
- Counting $\xi, \eta \sim \mathcal{O}(p^{1/2})$ $(m_{\text{Dirac}} \sim \mathcal{O}(\xi \eta))$: $\kappa = \frac{k+l}{2}$ for $\mathcal{O}(\xi^k \eta^l)$

Next-to leading order

Momentum and spurion (κ) power counting :

$$\mathcal{L}_{\text{eff}} = \sum_{d^* \geq 2} \mathcal{L}_{d^*} \quad d^* = d + \kappa = 2 + 2\,L + \sum_{v} (d^*_v - 2)$$

• Leading order (d* = 2): SM without Higgs

$$\mathcal{O}(p^2\kappa^0)$$
: $\frac{f^2}{4}\langle D_{\mu}\Sigma^{\dagger}D^{\mu}\Sigma\rangle + \dots$ $\mathcal{O}(p^1\kappa^1)$: fermion mass terms

Two operators at NLO (O(p²κ¹))

$$\mathcal{O}_{L} = \bar{\Psi}_{L} \mathcal{X}^{\dagger} \Sigma \gamma^{\mu} D_{\mu} \Sigma^{\dagger} \mathcal{X} \Psi_{L} \qquad \mathcal{O}_{R}^{a,b} = \bar{\Psi}_{R} \mathcal{Y}_{a}^{\dagger} \Sigma^{\dagger} \gamma^{\mu} D_{\mu} \Sigma \mathcal{Y}_{b} \Psi_{R}$$

- ightharpoonup non-standard couplings of fermions to W and $Z\left(\{a,b\}\in\{U,D\}\right)$
- NLO Lagrangian with $\mathcal{O}(1)$ prefactors $\rho_L, \lambda_L, \rho_R^{a,b}, \lambda_R^{a,b}$

$$\mathcal{L}_{\mathsf{NLO}} = \rho_{\mathsf{L}} \mathcal{O}_{\mathsf{L}}(\mathit{I}) + \lambda_{\mathsf{L}} \mathcal{O}_{\mathsf{L}}(q) + \sum_{a,b} \rho_{\mathsf{R}}^{a,b} \mathcal{O}_{\mathsf{R}}^{a,b}(\mathit{I}) + \sum_{a,b} \lambda_{\mathsf{R}}^{a,b} \mathcal{O}_{\mathsf{R}}^{a,b}(q)$$

- Oblique corrections and loop corrections at NNLO (d* ≥ 4)
- What are the constraints on these non-standard couplings?

Structure of couplings to W at NLO

- Lepton sector:
 - Universal modification of left-handed couplings → redefinition of G_F
 - Additional Z_2 symmetry $(\nu_R \rightarrow -\nu_R)$
 - → suppresses Dirac mass for neutrinos
 - → no right-handed charged lepton current
- Effective quark charged current interaction, $\delta = (\rho_L \lambda_L)\xi^2$, $\epsilon = \eta^2 \lambda_R^{u,d}$

$$W_{\mu}^{+}\left((1+\delta)\; \bar{U}_{L}\,\gamma^{\mu}\; V^{L}\,D_{L}\,+\,\epsilon\; \bar{U}_{R}\,\gamma^{\mu}\; V^{R}\,D_{R}\right)+h.c.$$

- V^L and V^R: two a priori independent unitary mixing matrices
- $\epsilon \neq 0$: direct coupling of right-handed quarks to W
- Experimental tests for light quarks at NLO: $K_{\mu3}^L$ decays (\rightarrow KLOE talk this afternoon), hadronic tau decays, hadronic width of W, $\pi^0 \rightarrow 2\gamma$ (V. Bernard et al, arXiv:0707.4194)
- Many possible tests beyond NLO (e.g. FCNC processes)

Structure of couplings to Z at NLO

Effective neutral current interaction (universal non-standard effects)

$$Z_{\mu}\left(\sum_{f}g_{\mathsf{L}}^{f}ar{\psi^{\mathsf{f}}}_{\mathsf{L}}\gamma^{\mu}\;\psi_{\mathsf{L}}^{f}+\sum_{f}g_{\mathsf{R}}^{f}ar{\psi^{\mathsf{f}}}_{\mathsf{R}}\gamma^{\mu}\;\psi_{\mathsf{R}}^{f}
ight)$$

• Effective couplings of left-handed fermions to $Z(\tilde{s}_w^2 = s^2/(1 - \xi^2 \rho_L))$

$$g_L^u = rac{1+\delta}{2} - rac{2}{3} ilde{s}_w^2 \qquad g_L^d = -rac{1+\delta}{2} + rac{1}{3} ilde{s}_w^2 \qquad g_L^e = -rac{1}{2} + ilde{s}_w^2 \qquad g_L^
u = rac{1}{2}$$

Effective couplings of right-handed fermions to Z:

$$g_R^u = -rac{2}{3} ilde{s}_W^2 + rac{1}{2}\epsilon^u$$
 $g_R^d = rac{1}{3} ilde{s}_W^2 - rac{1}{2}\epsilon^d$ $g_R^e = ilde{s}_W^2 - rac{1}{2}\epsilon^e$ $g_R^
u = rac{1}{2}\epsilon^
u$

- Parameter $\delta=(\rho_L-\lambda_L)\xi^2$, the same as for the coupling of left-handed quarks to W
- Parameter $\epsilon^i = \eta^2 \rho_R^i$ proportional to η^2 as for ϵ (W)
- Coupling of right-handed neutrinos enters only quadratically the Z width

 → no NLO effect

Remarks on G_F and the W mass

• Relate fundamental couplings of the theory (g, g') to α and muon life time

$$\alpha(0) = e^2/(4\pi), \quad \frac{G_F}{\sqrt{2}} = \frac{4\pi\alpha(0)}{8m_Z^2c^2s^2(1-\Delta r)}(1-\xi^2\rho_L)^2$$

- Weak loop corrections at NNLO $\rightarrow \Delta r = \Delta \alpha$
- Spurion contribution and loop corrections modify LO result in the same way
- Writing charged current observables in terms of G_F : $\xi^2 \rho_L$ not accesible
- Couplings to Z: ξ²ρ_L enters independently via s̃²_w → express ξ²ρ_L and m_W in terms of s̃²_w, G_F (and α, m_Z)

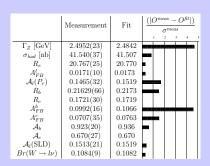
$$\frac{m_W^2}{m_Z^2} = \frac{h}{h + \tilde{s}^4}, \quad 1 - \xi^2 \rho_L = \frac{\tilde{s}_W^2}{h + \tilde{s}^4} \quad (h = \frac{\pi \alpha(0)}{\sqrt{2}G_F m_Z^2(1 - \Delta r)})$$

Note: no direct modification of m_W at NLO

Experimental information: couplings to Z

1. Data near the Z resonance: (LEP/SLD compilation Phys. Rep. '06)

- Perform a fit to Z-pole data
- Include leptonic branching fraction of W (sensitive to δ)
- Take EM/QCD radiative corrections into account
- Simultaneous determination of α_s and spurion parameters difficult
- α_s(m_Z) = 0.1190 for the presented result
- · For comparison, first LO result
- At LO, no variable parameter (α_s(m_Z) fixed for better comparison with NLO result



Z pole data, NLO result

- Good quality of the NLO fit $(\chi^2/dof = 8.5/8)$
- Again: $\alpha_s(m_Z) = 0.1190$ for the presented result
- "A^b_{FB} puzzle" can be solved with universal modification of couplings important point: non-standard couplings of right-handed quarks

	Measurement	Fit	$\frac{(O^{meas} - O^{fit})}{\sigma^{meas}}$
			1 2 3
Γ_Z [GeV]	2.4952(23)	2.4943	-
σ_{had} [nb]	41.540(37)	41.569	
R_e	20.767(25)	20.785	
A_{FB}^{l}	0.0171(10)	0.0165	
$A_l(P_\tau)$	0.1465(32)	0.1485	_
R_b	0.21629(66)	0.21685	
R_c	0.1721(30)	0.1725	
A_{FB}^{b}	0.0992(16)	0.1012	
A_{FB}^{c}	0.0707(35)	0.0707	
A_b	0.923(20)	0.910	
A_c	0.670(27)	0.636	
$A_l(SLD)$	0.1513(21)	0.1485	_
$Br(W \rightarrow l\nu)$	0.1084(9)	0.1089	—

Values for the parameters coherent with the LEET:

$$(\epsilon^{e})_{\text{NLO}} = -0.0024(5)$$
 $(\epsilon^{u})_{\text{NLO}} = -0.02(1)$ $(\epsilon^{d})_{\text{NLO}} = -0.03(1)$ $(\tilde{s}_{w}^{2})_{\text{NLO}} = 0.2307(2)$ $(\delta)_{\text{NLO}} = -0.004(2)$

 Parameter values susceptible to be modified at NNLO (remind: only loop corrections + counter terms meaningful within the LEET), but hardly imaginable that the nice agreement with data is spoiled

Couplings to Z, data at low momentum transfer

2. Data at low momentum transfer:

Atomic parity violation experiments: test the weak charge

$$\begin{array}{lcl} Q_W & = & 4g_A^e \Big(Z \left(2g_V^u + g_V^d \right) + N \left(g_V^u + 2g_V^d \right) \Big) \\ Q_W(NLO) & = & (1 - \epsilon^e) \Big(Z \left(1 - 4\tilde{s}_W^2 + \delta - \epsilon^d + 2\epsilon^u \right) - N \left(1 + \delta + 2\epsilon^d - \epsilon^u \right) \Big) \end{array}$$

- Take the value from the fit to Z pole data: $(Q_W(^{133}Cs))_{NLO} = -70.72 \pm 4.19$ in agreement with the experimental value, $Q_W(^{133}Cs) = -72.71(49)$ (Guena et al '05)
- QWEAK experiment will measure Q_W of the proton NLO result very small ($Q_W^\rho = 0.062(22)$) because $1 4\tilde{s}_w^2 \ll 1$ \rightarrow enhanced sensitivity to higher orders
- The same for weak charge of electrons (Møller scattering):

$$Q_W^e = 1 - 4 \, \tilde{s}_w^2 \, (1 - \epsilon^e)$$

with $(Q_W^e)_{NLO} = 0.074(1)$ compared with measurement $Q_W^e = 0.041(5)$ again $(1 - 4\tilde{s}_w^e \ll 1)$: higher order corrections probably important

Summary and outlook

Summary:

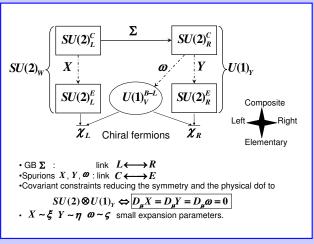
- Minimal (not quite decoupling) effective theory: first effects beyond the SM are non-standard couplings of fermions to W and Z
- Determination of EW and QCD parameters correlated
- Most spectacular effect: direct coupling of right-handed quarks to W (stringent test in K^L_{u3} decays, (V. Bernard et al, PLB '06), see also KLOE talk kaon WG)
- Here: couplings to Z
 - Z-pole data can be nicely reproduced at NLO (in particular A^b_{FR})
 - Nice agreement with atomic parity violation data
 - No inconsistencies with the systematics of the effective theory

Outlook:

- Heavy quark sector (couplings to W)
- Loop effects (CP violation, FCNC,....)

Structure of the minimal effective theory

• Minimal solution to get at lowest order the higgsless vertices of the SM: symmetry $S_{nat} = [SU(2)]^4 \times U(1)_{B-L}$ (Hirn&Stern '04,'06)



• Counting $\xi, \eta \sim \mathcal{O}(p^{1/2}) \quad (m_{\text{Dirac}} \sim \mathcal{O}(\xi \eta))$: $\kappa = \frac{k+l}{2}$ for $\mathcal{O}(\xi^k \eta^l)$

