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Definitions of the form factors
J. Bijnens and P. Talavera hep-ph/0303103, Nucl. Phys. B669 (2003) 341-362
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We consider here the form factors defined as
〈

K +(p) | ūγµs |π0(q)
〉

.
=

1√
2

[

(pµ + qµ)f Kπ

+ (t) + (pµ − qµ)f Kπ

− (t)
]

(1)

and

f Kπ

0 (t) = f Kπ

+ (t) +
t

m2
K −m2

π

f Kπ

− (t)

with t .
= (q − p)2.

Specially, we are considering the limit

lim
t→0

f Kπ

0 (t) .
= f Kπ

0 = f Kπ

+ (0) (2)

Those coefficients are strongly connected to Vus.
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J. Bijnens’ web page http ://www.thep.lu.se/ bijnens/chpt.html

The chiral expansion of f Kπ is given by

f = f (2)

︸︷︷︸
.
=1

+ f (4) + f (6) (3)

From now, we are taking the two loops expression for f Kπ provided by J.
Bijnens.
It involves scalar two loop D-dimensional integrals

V .
=

ˆ

dDk1

(2π)D

dDk2

(2π)D

Num.
[
k2

1 −m2
1

] [
(k1 − q)2 −m2

2

] [
(k1 + k2 − p)2 −m2

4

] (4)

at the end 396 scalars integrals !

Necessity of a method to obtain a complete analytical expression.
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To reduce the number of integrals to calculate we propose the following
algorithm :

1. Use the Laporta’s Algorithm to reduce the number of integral to a
minimal set of Master Integrals.

2. Use the inverse multi-dimensional Converse Mapping theorem to
evaluate the analytical expressions of the unknown Master Integrals.

3. Give the analytical expression of the form factors.
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Laporta’s Algorithm

S.Laporta, Int. J. Mod. Phys. A 15 (2000) 5087

T. Gehrmann and E. Remiddi, Nucl. Phys. B 580 (2000) 485

R. Bonciani, P. Mastrolia and E. Remiddi, Nucl. Phys. B 661 (2003) 289

Every two loops amplitudes obey to the following form

I =

ˆ

dDk1

(2π)D

dDk2

(2π)D

Sn1
1 · · ·S

nN
N

D`1
1 · · ·D

`L
L

for S scalar products and D denominators.

1. Use the Integrate by parts relation (Stokes’ theorem)

ˆ

dDk1

(2π)D

dDk2

(2π)D

∂

∂kµ

j

[

vµ Sn1
1 · · ·S

nN
N

D`1
1 · · ·D

`L
L

]

= 0

for v = k1, k2, p, q.

2. Use Lorentz’ invariance and discrete symmetries
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After the 2 points of the Laporta’s Algorithm we obtain a linear system where
every amplitudes are linked together.

Finally, using a recursive method and over constraining the generated
system, every integrals can be deduced from a small set of Master’s integrals.

Here, after applying this algorithm, the only analytically unknown topologies
of Master Integrals are

• Two points functions :

where mπ, mK and mη.

Progress on analytical expression of K`3 form factors at two loop order David Greynat
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• Three points functions :

mπ, mK and mη.

Progress on analytical expression of K`3 form factors at two loop order David Greynat
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One dimensional Mellin’s Transform and Converse Mapping theorem
The Mellin’s transform of a function f and its inverse transform are defined as

M[f (x)](s)
.
=

ˆ ∞

0
dx xs−1f (x) ←→ f (x) =

c+i∞
ˆ

c−i∞

ds
2iπ

x−sM[f (x)](s)

If and only if

c .
= Re s ∈]α, β[ written 〈α, β〉 Fundamental strip

It corresponds to the behaviours

f (x) =
x→0+

O(x−α) & f (x) =
x→+∞

O(x−β)

Examples :

f ←→ M[f ]

e −x ←→ Γ(s) 〈0,∞〉

(1 + x)−ν ←→ Γ(ν − s)Γ(s)

Γ(ν)
〈0, Re ν〉

ln(1 + x) ←→ π

s sin πs
〈−1, 0〉
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Converse Mapping theorem
Flajolet et al. (1994)

Friot, Greynat and de Rafael (2005)

Idea : The singularities in the complex Mellin’s plan manage completely the
asymptotic behaviour of the associated function

Exemple :

Γ(s) �
∞∑

p=0

(−1)p

p!

1
s + p

←→ e −x ∼
x→0

∞∑

p=0

(−1)p

p!
xp

Converse Mapping Theorem

M [f (x)]right (s) �
∑

p>β,n

cp,n
1

(s − p)n
↔ f (x) ∼

x→+∞
−
∑

p>β,n

cn,p x−p (−1)n−1

(n− 1)!
lnn−1 x

M [f (x)]left (s) �
∑

p<α,n

dp,n
1

(s + p)n
↔ f (x) ∼

x→0

∑

p<α,n

dn,p xp (−1)n−1

(n− 1)!
lnn−1 x
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Multi-dimensional Mellin’s Transform and Grothendieck’s Residues
theory

We define the n-dimensional Mellin’s transform of function f as

M[f ](s1, . . . , sn)
.
=

ˆ ∞

0
dx1 · · ·

ˆ ∞

0
dxn xs1−1

1 · · · xsn−1
n f (x1, . . . , xn)

and its inverse transformation

f (x1, . . . , xn)
.
=

ˆ

c1+iR

ds1

2iπ
· · ·
ˆ

cn+iR

dsn

2iπ
x−s1

1 · · · x−sn
n M[f ](s1, . . . , sn)

This inversion formula is of course valid in the fundamental polyhedra defined
as all the constraints on c .

= T(c1, . . . , cn) where the Mellin’s transform is
completely analytical.

If we want to extend the Converse Mapping Theorem to the multi-dimensional
case we need to introduce "briefly" the Grothendieck’s Residue theory.

Progress on analytical expression of K`3 form factors at two loop order David Greynat
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A few words on Grothendieck’s Residues theory
P. Griffiths, J.Harris, Principles of Algebraic Geometry, Wyley NYC 1978

A.K. Tsikh et al., hep-th 9609215

N.B. : From now, all vectors in n-dimension are written as s = T(s1, . . . , sn)

One way to see the residues in multi-dimensional complex analysis is to
consider the quantity (for any h completely analytic)

Res.

[
h(s)

f1(s) · · · fn(s)

]

0

=

˛

0

h(s)
f1(s) · · · fn(s)

ds1

2iπ
∧ · · · ∧ dsn

2iπ
.
=

˛

0
ω

All the curves, the divisors, in the 2n-dimension complex space given by –
j ∈ [[1, n]]

Dj
.
=
{

s ∈ C
n, fj(s) = 0

}

have intersections points in this space. They provide the calculation of the
residue in a summation over ⋂

j∈[[1,n]]

Dj

via a sequential Cauchy’s theorem.
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Multi-dimensional Converse Mapping Theorem
J.-Ph. Aguilar, D. Greynat and E. de Rafael, Work in progress (2008)

Idea : If you combine the calculation of the Grothendieck’s residues and the
multi-dimensional Jordan’s lemma you can define sectors in complex plans
where the xj are bigger or smaller than 1 and their relative position and
permit to generate the complete asymptotic behaviour in each variables

In the case of ratios of Euler’s second function : the Γ function, the
multi-dimensional Converse Mapping theorem for

f (s) =

ˆ

γ+iRn

x−s1
1 · · · x−sn

n

j=p
∏

j=1

Γ(aj · s + bj)

k=q
∏

k=1

Γ(ck · s + dk )

ds1

2iπ
∧ · · · ∧ dsn

2iπ

the divisors are

D`
j =

{
s ∈ C

n, aj · s + bj = −` , ` ∈ N
}
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J.-Ph. Aguilar, D. Greynat and E. de Rafael, Work in progress (2008)

The multi-dimensional Jordan’s lemma provides a sub-set J of index j to
permit the convergence of the series coming from the calculation of the
Grothendieck’s residue theorem. (we give here the theorem only in the case
of simple non-degenerate poles)

f (s) =
∑

j∈J

Res.

[∏k=q
k=1 Γ(ck · s + dk )

−1

∏j=p
j=1 Γ(aj · s + bj)

−1

]

s∈∩Dj

=
∑

j∈J

(−1)|`|

`! det(aj)

∏

j 6=J

Γ(aj · s`
j + bj)

k=q
∏

k=1

Γ(ck · s`
j + dk )

x
−(s`

j )1

1 · · · x−(s`

j )n
n

Hopefully more clear on the following example...
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An example of the calculation on the Master Integrals
We consider the sunrise type integral (mπ, mK and mη)

1. Feynman’s parametrization D = 4− ε

H(m2
η, m2

K , m2
K , m2

π)

= − πD

(2π)2D
Γ(ε− 1)

¨

[0,1]2

dxdy(1− x)
3
2 ε−2 [1− Y + Yx]

3
2 ε−3

× (1− Y )1−εx1−ε(1− x)1−ε
(

m2
π

)1−ε

×
∣
∣
∣
∣
1− 1− Y + xY

(1− x)(1− Y )
ρ2 −

1− Y + xY
x(1− Y )

ρ1

∣
∣
∣
∣

1−ε

where Y = 1− y(1− y), ρ1 = m2
K /m2

π and ρ2 = m2
η/m2

π .

Progress on analytical expression of K`3 form factors at two loop order David Greynat



Introduction First step : Laporta’s Algorithm Second step : Multi-dimensional Converse Mapping theorem An example of calculation

2. Inverse Mellin’s representation
Using the general functions inverse Mellin’s representation (c ∈< 0, ν >)

|1− x |−νsign (1− x) =

ˆ

c+i R

ds
2iπ

x−sΓ(1− ν)

[
Γ(s)

Γ(s − ν + 1)
− Γ(ν − s)

Γ(1− s)

]

,

And using the polar coordinates we obtain the double inverse Mellin’s
representation of H :

H(m2
η, m2

K , m2
K , m2

π) = −Γ(ε− 1)Γ(1− ε)

(4π)D

(
m2

π

2

)1−ε√
π

×
ˆ

ccc+i R2

ds1 ∧ ds2

(2iπ)2
(4ρ1)

−s1 ρ
−s2
2 M(s1, s2)

×
[

h(s1, s2)−
ρ1

4
h(s1 + 1, s2)−

ρ2

4
h(s1, s2 + 1)

]

,

with

M(s1, s2) =
Γ(s1)Γ(s2)

Γ(s1 + s2)

[
Γ(s1 + s2)

Γ(s1 + s2 − ε + 1)
− Γ(ε− s1 − s2)

Γ(1− s1 − s2)

]

and

h(s1, s2) =
Γ (2− ε + s1) Γ

(
1− ε

2 + s2
)
Γ
(
1− ε

2 + s1
)

Γ
(
3− 3

2 ε + s1 + s2
)
Γ
(

3
2 − ε

2 + s1
)
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3. Fundamental polyhedra and pertinent sector

Im s1 , Im s2

Re s1

Re s2

Re s2

Re s1

Progress on analytical expression of K`3 form factors at two loop order David Greynat



Introduction First step : Laporta’s Algorithm Second step : Multi-dimensional Converse Mapping theorem An example of calculation

We obtain here 6 different 2-forms :

ω1
.
=

ds1 ∧ ds2

(2iπ)2
(4ρ1)

−s1 ρ
−s2
2 Γ

[
s1 ,s2 , 2−ε+s1 , 1− ε

2 +s2 , 1− ε

2 +s1

1−ε+s1+s2 , 3− 3
2 ε+s1+s2 , 3

2 −
ε

2 +s1

]

ω2
.
=

ds1 ∧ ds2

(2iπ)2
(4ρ1)

−s1 ρ
−s2
2 Γ

[
s1 ,s2 , 3−ε+s1 , 1− ε

2 +s2 , 2− ε

2 +s1

1−ε+s1+s2 , 4− 3
2 ε+s1+s2 , 5

2 −
ε

2 +s1

]

ω3
.
=

ds1 ∧ ds2

(2iπ)2
(4ρ1)

−s1 ρ
−s2
2 Γ

[
s1 ,s2 , 2−ε+s1 , 2− ε

2 +s2 , 1− ε

2 +s1

1−ε−s1−s2 , 4− 3
2 ε+s1+s2 , 3

2 −
ε

2 +s1

]

ω4
.
= −ds1 ∧ ds2

(2iπ)2
(4ρ1)

−s1 ρ
−s2
2 Γ

[
s1 ,s2 , ε−s1−s2 , 2−ε+s1 , 1− ε

2 +s2 , 1− ε

2 +s1

s1+s2 , 1−s1−s2 , 3− 3
2 ε+s1+s2 , 3

2 −
ε

2 +s1

]

ω5
.
= −ds1 ∧ ds2

(2iπ)2
(4ρ1)

−s1 ρ
−s2
2 Γ

[
s1 ,s2 , ε−s1−s2 , 3−ε+s1 , 1− ε

2 +s2 , 2− ε

2 +s1

s1+s2 , 1−s1−s2 , 4− 3
2 ε+s1+s2 , 5

2 −
ε

2 +s1

]

ω6
.
= −ds1 ∧ ds2

(2iπ)2
(4ρ1)

−s1 ρ
−s2
2 Γ

[
s1 ,s2 , ε−s1−s2 , 2−ε+s1 , 2− ε

2 +s2 , 1− ε

2 +s1

s1+s2 , 1−s1−s2 , 4− 3
2 ε+s1+s2 , 3

2 −
ε

2 +s1

]
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The divisors are for example for ω1 the following lines

s1

s2

Multi-dimensional Converse Mapping theorem implies to sum over
intersections in the fourth quadrant.
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Introduction First step : Laporta’s Algorithm Second step : Multi-dimensional Converse Mapping theorem An example of calculation

Obtaining then the following representation
ˆ

ω1

=
∞∑

n=0

∞∑

k=0

(4ρ1)
n

n!

ρk
2

k !

(

Γ

[
2−ε−n , 1− ε

2 −k , 1− ε

2 −n

−n−k−ε+2 , 3− 3
2 ε−n−k , 3

2 −
ε

2 −n

]

+ ρ
1− ε

2
2 Γ

[
−k−1+ ε

2 , 2−ε−n , 1− ε

2 −n

3
2 −

ε

2 −n , 2−ε−n−k , 1− ε

2 −n−k

]

+ 4ρ1Γ

[
1− ε

2 −k , 1− ε

2 −n , −1+ ε

2 −n

1
2 −n , 2−ε−k−n , 1− ε

2 −k−n

])

We doing the same processus for all 6 2-forms ωj ... To obtain finally the
following behaviour after an ε-expansion

H̄(m2
η, m2

K , m2
K , m2

π) ∼ 1
ε2

[

−1
8

(

2m2
K + m2

η

)]

+ · · ·

in agreement with literature
Of course the epsilon-expansion and the cut of the infinite series are not
obligatory and in this sense, we have an analytic expansion of the Master
Integrals .

M. Caffo et al., Nuovo Cimmento Vol. III, A, N 4 (1998)
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CONCLUSIONS

A work in progress... closed to the end...
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