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Definitions of the form factors
J. Bijnens and P. Tal avera hep-ph/ 0303103, Nucl. Phys. B669 (2003) 341-362

In the chiral conventions

R + +

U=-e I\/_ O = f+f 7107-[ n K0
= exp = o _ﬁj% K2

K KO —ZL

V6

We consider here the form factors defined as

(K@) 18 1@ ) = == [0+ 0O + (u = 0)E"0)] @

and .
K7 K7 K7
fo (t) =f; (t) + m fo (t)
with t = (g — p)2.
Specially, we are considering the limit
tlinéfc'f”(t) = & = £57(0) )

Those coefficients are strongly connected to Vs.
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calculation

J. Bijnens’ web page http ://ww.thep.lu.se/ bijnens/chpt.htm
The chiral expansion of fK™ is given by

f— @ + HS + 6 (3)

=1

From now, we are taking the two loops expression for f*™ provided by J.
Bijnens.
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J. Bijnens’ web page http ://ww.thep.lu.se/ bijnens/chpt.htm
The chiral expansion of fK™ is given by
f=f® 4 0 4 6 (3)
~——
=1

From now, we are taking the two loops expression for f*™ provided by J.
Bijnens.

It involves scalar two loop D-dimensional integrals

. [ d°k; d°k, Num.
V= | G [ = 2] [(ka —af —m2] [(a + ke —p—me]

at the end 396 scalars integrals!
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Introduction

J. Bijnens’ web page http ://ww.thep.lu.se/ bijnens/chpt.htm
The chiral expansion of fK™ is given by

f— @ + HS + 6 (3)

=1

From now, we are taking the two loops expression for f*™ provided by J.
Bijnens.

It involves scalar two loop D-dimensional integrals

. del dez Num.

V= (2m)P (27)P [kZ — m?] [(ki — )2 — m2] [(ki + k2 — p)2 — mZ] @)

at the end 396 scalars integrals!

Necessity of a method to obtain a complete analytical expression.
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Aulti-dimensional Converse Mapping theorem

To reduce the number of integrals to calculate we propose the following
algorithm :

1. Use the Laporta’s Algorithm to reduce the number of integral to a
minimal set of Master Integrals.
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Aulti-dimensional Converse Mapping theorem

To reduce the number of integrals to calculate we propose the following
algorithm :

1. Use the Laporta’s Algorithm to reduce the number of integral to a
minimal set of Master Integrals.

2. Use the inverse multi-dimensional Converse Mapping theorem to
evaluate the analytical expressions of the unknown Master Integrals.
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Aulti-dimensional Converse Mapping theorem

To reduce the number of integrals to calculate we propose the following
algorithm :

1. Use the Laporta’s Algorithm to reduce the number of integral to a
minimal set of Master Integrals.

2. Use the inverse multi-dimensional Converse Mapping theorem to
evaluate the analytical expressions of the unknown Master Integrals.

3. Give the analytical expression of the form factors.
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0@00

Laporta’s Algorithm

S.Laporta, Int. J. Md. Phys. A 15 (2000) 5087
T. Gehrmann and E. Remiddi, Nucl. Phys. B 580 (2000) 485
R Bonciani, P. Mastrolia and E. Remi ddi, Nucl. Phys. B 661 (2003) 289

Every two loops amplitudes obey to the following form

B dPk; dPk, Sit--- Sy
) (2m)P (27)P Dfl . DfL

for S scalar products and D denominators.

s
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0@00

Laporta’s Algorithm

S.Laporta, Int. J. Md. Phys. A 15 (2000) 5087
T. Gehrmann and E. Remiddi, Nucl. Phys. B 580 (2000) 485
R Bonciani, P. Mastrolia and E. Remi ddi, Nucl. Phys. B 661 (2003) 289

Every two loops amplitudes obey to the following form

B dPk; dPk, Sit--- Sy
) (2m)P (27)P Dfl . DfL

for S scalar products and D denominators.

s

1. Use the Integrate by parts relation (Stokes’ theorem)

del de2 i V,LLSZTI.”SITIN 0
(2m)P (2m)P oK/ Di*...D" o

forv = kq, k2, p, Q.
2. Use Lorentz' invariance and discrete symmetries
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o] o)

After the 2 points of the Laporta’s Algorithm we obtain a linear system where
every amplitudes are linked together.

Finally, using a recursive method and over constraining the generated
system, every integrals can be deduced from a small set of Master’s integrals.

Here, after applying this algorithm, the only analytically unknown topologies
of Master Integrals are

e Two points functions :

AR
N
where m,, mg and m,,.
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My, Mg and m,,.
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One dimensional Mellin’s Transform and Converse Mapping theorem
The Mellin’s transform of a function f and its inverse transform are defined as

MIF(x)](s) i/ dx x*7H(x) — f(x)= 2d|_jr xS M[f(x)](s)
0
c—ico
If and only if
c =Res €]a, 8]  written (a, B) Fundamental strip
It corresponds to the behaviours
_ —a _ -8
f(x) o Oo(x™ ) & f(x) s o(x~7)
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One dimensional Mellin’s Transform and Converse Mapping theorem
The Mellin’s transform of a function f and its inverse transform are defined as

C+ioco
MIF(x)](s) i/ dx x*7H(x) — f(x)= 2d|_§r xS M[f(x)](s)
0
c—ico
If and only if
c =Res €]a, 8]  written (a, B) Fundamental strip
It corresponds to the behaviours
_ —a _ -8
f(x) o Oo(x™ ) & f(x) s o(x~7)
Examples :
f — Mf]
e — r(s) (0,00)
T(v—s)r
(L4+x)" — G r(i; (s) (0, Rew)
™
In(1 + x) — e (—1,0)
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Converse Mapping theorem
Flajolet et al. (1994)
Friot, Greynat and de Rafael (2005)
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Converse Mapping theorem
Flajolet et al. (1994)
Friot, Greynat and de Rafael (2005)

Idea : The singularities in the complex Mellin’s plan manage completely the
asymptotic behaviour of the associated function
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Converse Mapping theorem
Flajolet et al. (1994)
Friot, Greynat and de Rafael (2005)

Idea : The singularities in the complex Mellin’s plan manage completely the
asymptotic behaviour of the associated function

Exemple :

N~ (F1P N~ (1P
r(S)AZ bl stp — e x:OZ P! xP

p=0 p=0
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Converse Mapping theorem
Flajolet et al. (1994)
Friot, Greynat and de Rafael (2005)

Idea : The singularities in the complex Mellin’s plan manage completely the
asymptotic behaviour of the associated function

Exemple :

r(s) =< i (_1.)[) 1 — e ~ i (1)

Converse Mapping Theorem

1 (=)t
Mg ()= S gy < (00, - 3 cop X Pﬁlnn -
p>p3,n p>p3,n
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Converse Mapping theorem
Flajolet et al. (1994)
Friot, Greynat and de Rafael (2005)

Idea : The singularities in the complex Mellin’s plan manage completely the
asymptotic behaviour of the associated function

Exemple :
(-1 1 (=1
F(s) =< Z ( — e ~ Z
s p! s+p x—0 & p!
Converse Mapping Theorem
MF)]igu ()= > ¢ _r f(x) - ) capx (DT In"~*x
right \S) = = p.n (s—p)" X—rtoo S nP (n—1)!
ME(8) = Y dpareroe o 1) ~ > dn xp )H In"~* x
ldt p<a,n " (S+p) p<an ’ )
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00O@000

Multi-dimensional Mellin’s Transform and Grothendieck’s Residues
theory

We define the n-dimensional Mellin’s transform of function f as
MIf](s1,...,8n) = / dx; - / dxn X1 xS (X, . Xn)
0 0

and its inverse transformation
ds; dsp, —
2im 2ir 1
c1+HRR cn+HRR

f(X1,. .., Xn) = <Xy S MF](S1, - - -, Sn)

This inversion formula is of course valid in the fundamental polyhedra defined
as all the constraints on ¢ = '(cy, . . ., ¢n) where the Mellin's transform is
completely analytical.

If we want to extend the Converse Mapping Theorem to the multi-dimensional
case we need to introduce "briefly" the Grothendieck’s Residue theory.
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000000

A few words on Grothendieck’s Residues theory

P. Giffiths, J.Harris, Principles of Al gebraic Geonetry, Wley NYC 1978
A. K. Tsikh et al., hep-th 9609215

N.B. : From now, all vectors in n-dimension are written as s = T(51 ..... Sn)

One way to see the residues in multi-dimensional complex analysis is to
consider the quantity (for any h completely analytic)

h(s h(s) ds; dsn .
Res. |:f1( ) fn(5:| %fl(s 2|7T/\.“/\m_%;w

All the curves, the divisors, in the 2n-dimension complex space given by —
jeftn]
D = {SE Cn,fj(S) = 0}

have intersections points in this space. They provide the calculation of the
residue in a summation over
M o
jel1,n]

via a sequential Cauchy’s theorem.
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D000@0

Multi-dimensional Converse Mapping Theorem
J.-Ph. Aguilar, D. Geynat and E. de Rafael, Work in progress (2008)

Idea : If you combine the calculation of the Grothendieck’s residues and the
multi-dimensional Jordan’s lemma you can define sectors in complex plans
where the x; are bigger or smaller than 1 and their relative position and
permit to generate the complete asymptotic behaviour in each variables

In the case of ratios of Euler’'s second function : the I function, the
multi-dimensional Converse Mapping theorem for

j=p
r(q-s+bj)
_ _s,y =1 ds ds
f(s):/xlsl...xnskq—ﬁ T;
~+HIRN Hr(Ck s+ dy)
k=1

the divisors are

={seC", g-s+bj=—(,lecN}
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00000e
J.-Ph. Aguilar, D. Greynat and E. de Rafael, Work in progress (2008)

The multi-dimensional Jordan’s lemma provides a sub-set J of index j to
permit the convergence of the series coming from the calculation of the

Grothendieck’s residue theorem. (we give here the theorem only in the case
of simple non-degenerate poles)

(9= Res [[IA (e s+ !

=P (A . -1
i< [ (& - s+by) scnp,
, [[r-s +b)
-y (=1 (DL P
&7 fidet(g) k=g 1 n
: [T (e s +d)
k=1

Hopefully more clear on the following example...
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®000000

An example of the calculation on the Master Integrals
We consider the sunrise type integral (m-, mx and m,)

1. Feynman’s parametrizationD =4 — ¢

H(mZ, mg, mg, m?)
D
_ —(ZZ_ﬁr(e—l) / dxdy(1—x) 32 [L— Y 4+ yx]F?
[0,12

P ()

1-Y +xY 1-Y +xy |'°¢

T aooa- T x@-v)

whereY =1 —y(1—vy), p1 = mi/m2 and p, = m?/m2.
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rse Mapping theorem

An example of calculation
2. Inverse Mellin’s representation

0O@00000

Using the general functions inverse Mellin’s representation (c €< 0,v >)
Y ds ¢ r(s) v —>s)
1-— 1-x)= [ ==x"°r(1- -
1 =x]""sign (1 =x) 2in ( ){F(s—y—kl) rfr—s)|’

And using the polar coordinates we obtain the double inverse Mellin's
representation of H :

c+i R

1—e
2 2 2 o [e—1(1—¢) (mi
H(mna mK7mKam7r) - (47T)D 2 \/E
ds; Ads s -
W (4p1) ™™ p, M(sy, S2)
c+i R?2
x [h(sl,sz) ~Plnsy 4+ 1,8) — Ph(sy, s +1)] ,
4 4
with

M(Sl,Sz) _ r(Sl)r(Sz) |: F(51 + Sz)

-~ r(E—Sl —Sz)}
r(31+32) r(31+32 —€+1) I'(l—sl —Sz)

and

h(s S)_r(2—6+31)|—(1—5+32)|—(1
T T (B3t s+ (3-8

5+s1)

5+51)
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[e] 0000

3. Fundamental polyhedra and pertinent sector

Im 51, Im s9

=
| Re s9
Re s9
\\ 7
e
7/
Re s1
Re S1
|
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[e]e]e] le]ele)

We obtain here 6 different 2-forms :

wy = dsi A ds; (4p1)—s1 p—Sz r| st 2—e+s1,1-5+sp,1-5+s1
(Ziﬂ')z 2 |1—etsitsy, 3—%e+51+52 s §—§+Sl
wy = dsy A ds; (Ap1) ™5 py% | sz 3 s 1ogis 25 4s
(2im)? 2 |1—etsi+sy,4—3etsi+sp, 53— 5451
ws = dsi A ds; (4p1)—s1 p—Sz r| st 1 2—€+S1,2— 548y, 1—-5+s1
(Ziﬂ')z 2 |1-e—s1—s7 ,4—%e+51+52 s %—§+Sl
wp = — ds; Ads; (4p1)—51 p*SZ [|st:52: 5152 ,2—ets1,1—-54s3,1-5+51
(2im)? 2 145y ,1-51 -5, 3= Betsy4sy, 3545,
ws = _dSl A ds; (4p1)7sl p_52 r S1,S2,€—S1—Sp ,3—€+Sy, 1— 545, ,2— 5451
(2im)? 2 S1482, 18157, 4—Fetsy 45y, §— 5451
e = _dsl A ds; (4 )—51 =Sz %t ,S2, €—81—Sp ,2—€e+S1,2— 548y, 1— 548
6~ (2im)? P1 P2 S148p,1—81—Sp ,4—3 3¢
1+S2 5 1—S2, S€+S1+Sy, 5 — 5481
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An example of calculation
0O000e00

The divisors are for example for w; the following lines

Multi-dimensional Converse Mapping theorem implies to sum over
intersections in the fourth quadrant.
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An example of calculation
[e]e]eole] o}

oo oo k
_ Z Z (4p1)n & r 2—e-n,1-5-k,1-5-n
n! k! —n—k—e+2,3-3e-n—k,3-5-n

1-£ —k—14+5,2—e—n,1-5—n 1-5—k,1-5—n,—-14+5—n
+ 2r 2> T2 + 4p T 270 T2 2
P2 -5 k P1 1-n,2—c—k-n,1-5—k-n

€ €
—E—n,Z—e—n—k,l—E—n— 5

We doing the same processus for all 6 2-forms wj... To obtain finally the
following behaviour after an e-expansion

- 1 1

A(me i me) ~ [ (2mk o+ i)+
in agreement with literature
Of course the epsilon-expansion and the cut of the infinite series are not
obligatory and in this sense, we have an analytic expansion of the Master
Integrals .

M Caffo et al., Nuovo Cinmento Vol. 111, A N 4 (1998)
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[e]e]e]e]e]e)

CONCLUSIONS

A work in progress... closed to the end...
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