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Distler et al "06 hep-ph/ 0604255 [1]
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@ Linear Sigma Model I; and I, in contradiction with bounds

@ 3-flavour YPT = generalization for SU(3)y breaking.

© SU(2) — A Manohar & V.M in preparation [F]EEA
SU@B) — V.M work in preparation [4] c
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Symmetry constrains

SU(2)y = only three independent amplitudes | =0, 1, 2.
Crossing = only one independent function

Chew—Mandelstam representation
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2 _6 10
T's,t) = VTV (u,t), cl'cl® = 6,, Cy= % 2 3 5 |,
2 3 1
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7 scattering : analyticity

4 No other state lighter than the pion. No lighter intermediate state m, > 2m
4 Unitarity = T(s < 4m2) € ® — single-valued

fors >4m2 T (s+ie)—T(s—ie)=2ilmT (s+ie)+#0— multivalued
4 Branch cut for s > 4m2 | Rest of singularities and branch points lay on it.
4 Remaining branch cuts obtained by crossing.

@ Analytic region = s,t,u < 4m2 — Dispersion relations
@ Mandelstam triangle = 0 < s,t,u < 4m2 wrongly assumed in [1]
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Fixed t dispersion relations

Fort < 4m? and s ¢ branch cut — T'(s,1) = 52 § dx 50

L

“ ” ! T'(x,
if . dx TEY £ 0 “subtract” $-T'(s, ):zn—;ifwdxﬁ
Fronssart bound —-n=2

oo " "
sty = 2 [T ax| 9 Sy

I’ H
42 7 Jun P T oy IMmT" (X +ie,t)
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Fixed t dispersion relations

Fort < 4m2 and s ¢ branch cut — T'(s, t) ¢ dx L0

- 27r|

L

“

_ T'(x.t)
dsn ( ) - % §,\/ dX (x,s)n+1

Fronssart bound —n=2

d 2 0o 6”, CLI, y )
OI2T(s t) = w/lm%dx[(x—s)3+ x—u)? ImT" (X +ie,t)

Fors+t > 0s < 4m?2 both denominators > 0 in the integral path F!aﬂA
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@ Optical theorem = Imfj(s) = s3(s) oy(s) (s — m2) > 0
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IMT!(s,1) = 227% (2£+ 1)s 5(s) oh(s)Pe (1 + 247 ) > 0

FlaviA
Vicent Mateu Bounds in 7 7 scattering from dispersion relations



7 7 scattering

Fixed t dispersion relations & positivity conditions
Bounds on chiral LECs and the Linear Sigma Model
Equivalence with Penni ngt on & Port ol es

Positivity conditions

@ Partial wave expansion T'(s,t) = >20°, (2¢+ 1)fi(s)P. (1 +. 4m2 )

@ Optical theorem = Imfj(s) = s3(s) oy(s) (s — m2) > 0
@ Py(z)>1forz >1forall{=1ft>0&s>4m2thenz >1
IMT!(s,1) = 227% (2£+ 1)s 5(s) oh(s)Pe (1 + 247 ) > 0

@ Forcertain > aT'witha, >0 — Y aC{T; =3, bcTk with by >0
They correspond to physical processes with equal initial and final state.

FlaviA
Vicent Mateu Bounds in 7 7 scattering from dispersion relations



7 7 scattering

Fixed t dispersion relations & positivity conditions
Bounds on chiral LECs and the Linear Sigma Mode
Equivalence with Penni ngt on & Port ol es

Positivity conditions

@ Partial wave expansion T'(s,t) = Do o(2£+1)fg(s)Pg(1+ = 4m2)

@ Optical theorem = Imfy(s) = sB(s) oy(s) (s —m3) > 0

@ Py(z)>1forz >1forall{=1ft>0&s>4m2thenz >1
IMT!(s,1) = 227% (2£+ 1)s 5(s) oh(s)Pe (1 + 247 ) > 0

@ Forcertain > aT'witha, >0 — Y aC{T; =3, bcTk with by >0
They correspond to physical processes with equal initial and final state.

Positivity conditions :
Inside the region A= {s <4m2,0<t<4m?&s+1t > 0}

dd2T<7r7r —>7r7r>[(5t)€.4]>0 %T(W+W+—>ﬁﬁ)[(st)€¢4]>0

d2
@T<7r+7ro—>7r 71‘)[(3 t)ye A >0, FlaﬂA
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SU(2)

Bounds on chiral LECs
In the region A we can apply xPT at O(p*) to obtain [%(’)(pz) =0]

Zajil_i 2 fj[(svt) 6'A]|ma)<

i
i=1

> ok —fls,)eA] >0 =

i=1
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Bounds on chiral LECs
In the region A we can apply xPT at O(p*) to obtain [%(’)(pz) =0]

Zajil_i _ fj[(S,t) EA] > 0 — Zajil_i > fj[(svt) 6'A]|ma)<

i=1 i=1

Process LECs combination Bound Experimental value
7on® — 7070 L +21;[1,2] > 187 =3.925 8.24+0.6
R I, [1,2] > 20 =1.350 43+0.1
atat = rtrt I+ 31 [3] > 5.604 125+0.7
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Bounds on chiral LECs
In the region A we can apply xPT at O(p*) to obtain [%(’)(pz) =0]

Zajil_i _ fj[(S,t) EA] > 0 — Zajil_i > fj[(svt) 6'A]|ma)<

i=1 i=1
Process LECs combination Bound Experimental value
7on® — 7070 L +21;[1,2] > 187 =3.925 8.24+0.6
R I, [1,2] > 20 =1.350 43+0.1
atat = rtrt I+ 31 [3] > 5.604 125+0.7
—

i\' |
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SU(2)

Is the Linear Sigma Model consistent?

4 Functional integration of o particle Iy and 1, in LSM : (at one—loop)
= 2‘;—“2+Iog(m—z)—g, I, = log m_i)_% CGasser et al ’'84

—
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Is the Linear Sigma Model consistent?

¢ Functional integration of o particle —> I, and [, in LSM : (at one—loop)
o= 2 +Iog( )—3—65, L = Iog(m—”)—% Gasser et al ’'84
¢ Plugglng into the second bound log (%) > 23 violated for m, < 24m, Il
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Is the Linear Sigma Model consistent?

¢ Functional integration of o particle —> I, and [, in LSM : (at one—loop)
L = 2‘;—“2+Iog(m—z)—3—§, L = Iog(m—i)—% Gasser et al ’84

¢ Plugging into the second bound log (%) > 22 violated for m, < 24 m, !!!
4 But LSM consistent if m, > v/3m,.. Apply directly positivity conditions.

FlaviA

Vicent Mateu Bounds in 7 7 scattering from dispersion relations



7 7 scattering
SU(2) Fixed t dispersion relations & positivity conditions

Bounds on chiral LECs and the Linear Sigma Model

Equivalence with Penni ngt on & Port ol es

Is the Linear Sigma Model consistent?

¢ Functional integration of o particle —> I, and [, in LSM : (at one—loop)
L = 24“ +Iog( )—§ I = Iog(m—a)—E Gasser et al '84

6 7 6

¢ Plugglng into the second bound log (%) > 23 violated for m, < 24m, Il
4 But LSM consistent if m, > v/3m,.. Apply directly positivity conditions.

. 1 .
¢ Integration of o tantamount to = expansion. To all orders we have :

1672 F4 \‘T" T

o.ant

m,_ . .
5 1 s 2 m |t is consistent even for m, < m;
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Is the Linear Sigma Model consistent?

¢ Functional integration of o particle —> I, and [, in LSM : (at one—loop)
L = 24“ +Iog( )—§ I = Iog(m—a)—E Gasser et al '84

6 7 6

¢ Plugglng into the second bound log (%) > 23 violated for m, < 24m, Il
4 But LSM consistent if m, > v/3m,.. Apply directly positivity conditions.

. 1 .
¢ Integration of o tantamount to = expansion. To all orders we have :

@ T)
)

1677 F |
Jo.am

m,_ . .
5 1 s 2 m |t is consistent even for m, < m;

% But the non-Linear Sigma Model is inconsistent for m, < 24m,
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Is the Linear Sigma Model consistent?
¢ Functional integration of o particle —> I, and [, in LSM : (at one—loop)
o= 2 +Iog( )—3—65, L = Iog(m—”)—% Gasser et al ’'84
¢ Plugglng into the second bound log (%) > 23 violated for m, < 24m, Il

60
4 But LSM consistent if m, > v/3m,.. Apply directly positivity conditions.

. 1 .
¢ Integratlon of o tantamount to = expansion. To all orders we have :

e (T
‘ ds ‘DAM

m,_ . .
5 1 s 2 m |t is consistent even for m, < m;

% But the non-Linear Sigma Model is inconsistent for m, < 24m,
- Caveat! For those who integrate p (as | do) for estimating chiral LECs .

grate p ( ) g |—_Iavi A
my/m; < 25 (I). e
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Is the Linear Sigma Model consistent?
¢ Functional integration of o particle —> I, and [, in LSM : (at one—loop)
o= 2 +Iog( )—3—65, L = Iog(m—”)—% Gasser et al ’'84
¢ Plugglng into the second bound log (%) > 23 violated for m, < 24m, Il

60
4 But LSM consistent if m, > v/3m,.. Apply directly positivity conditions.

. 1 .
¢ Integratlon of o tantamount to = expansion. To all orders we have :

e (T
‘ ds ‘DAM

m,_ . .
5 1 s 2 m |t is consistent even for m, < m;

% But the non-Linear Sigma Model is inconsistent for m, < 24m,
% Caveat! For those who integrate p (as | do) for estimating chiral LECS . .

n thi FlaviA
m,/m. < 25 (!). Butin this case LECs are generated at tree level.
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Scattering lengths
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al, = limg_, 2 ﬁ and Bose symmetry implies a}, =0
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P &P [2] quote al +2a2 >0, a—a3>0 (1)
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Bounds on chiral LECs and the Linear Sigma Model
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Equivalence with Penni ngt on & Port ol es[2]

Scattering lengths

I
al, = limg_, 2 % and Bose symmetry implies a}, =0
s
P &P [2] quote al +2a2 >0, a—a3>0 (1)
| 4500w e s am?)
; [3]

But in fact a, = 2+ < =

s=0
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Scattering lengths

I
al, = limg_, 2 ﬁ and Bose symmetry implies a}, =0
s
P &P [2] quote al +2a2 >0, a—a3>0 (1)
: 401 e (s am?
Butinfact  a, = t” (s,4m") [3]
(2¢+1) ot

Since (s =0, t = 4m?) € A appropriate linear combinations — (1)
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Scattering lengths

I
al, = limg_, 2 ﬁ and Bose symmetry implies a}, =0
s
P &P [2] quote al +2a2 >0, a—a3>0 (1)
| 4500w e s am?)
; [3]

But in fact a, = 2i+1) t ds? -
Since (s =0, t = 4m?) € A appropriate linear combinations — (1)

@ They only consider a single pointin .A — less general, no necessarily
the most stringent. No way to find third bound.
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Scattering lengths

I
al, = limg_, 2 ﬁ and Bose symmetry implies a}, =0
s
P &P [2] quote ad + 2a3 > 0, a—a3>0 (1)
| 4500w e s am?)
; [3]

But in fact a, = 2i+1) t ds? -
Since (s =0, t = 4m?) € A appropriate linear combinations — (1)

@ They only consider a single pointin .A — less general, no necessarily
the most stringent. No way to find third bound.

© We remind that in Ref. [1] only the Mandelstam triangle was taken into
account. No way to find third bound.
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Scattering lengths

I
al, = limg_, 2 ﬁ and Bose symmetry implies a}, =0
s
P &P [2] quote ad + 2a3 > 0, a—a3>0 (1)
£ Y
Butinfact  a, = 4L o oF sam) [3]

@e+1) " AT
Since (s =0, t = 4m?) € A appropriate linear combinations — (1)

@ They only consider a single pointin .A — less general, no necessarily
the most stringent. No way to find third bound.

© We remind that in Ref. [1] only the Mandelstam triangle was taken into
account. No way to find third bound.

@ my/m; ~ 3.5 <« 24 Integrate K in SU(3) — SU(2)? Yes...
bad results for T, » but within bounds
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SU(2) Fixed t dispersion relations & positivity conditions
Bounds on chiral LECs and the Linear Sigma Model
Equivalence with Penni ngt on & Port ol es

Equivalence with Penni ngt on & Port ol es[2]

Scattering lengths

I
al, = limg_, 2 ﬁ and Bose symmetry implies a}, =0
s
P &P [2] quote ad + 2a3 > 0, a—a3>0 (1)
| 4500w e s am?)

But in fact a, =

v e |, O
Since (s =0, t = 4m?) € A appropriate linear combinations — (1)

@ They only consider a single pointin .A — less general, no necessarily
the most stringent. No way to find third bound.

© We remind that in Ref. [1] only the Mandelstam triangle was taken into
account. No way to find third bound.

@ my/m; ~ 3.5 <« 24 Integrate K in SU(3) — SU(2)? Yes...

bad results for I, but within bounds
 tentwith axiomatic i FlaviA
@ SU(3) xPT ? Consistent with axiomatic principles?
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SU(3)y limit (LECs independent of m)

Missmatch Clebsch-Gordan « tensor analysis
88 = 27910910" 98, ® 8, d1
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SU(3)y limit
Symmetry breaking

SU(3) Results

SU(3)y limit (LECs independent of m)

Missmatch Clebsch-Gordan « tensor analysis
88 = 27910910" 98, ® 8, d1
T(ab —cd) = Aq(s,t,u)d6% + Ax(s,t,u) %6 + As(s, t,u) 6296
+Bi(s,t,u)d®°d®® + By(s,t,u)d**°d"*

Crossing symmetry = T1o(S,t) = T10+(S,t)
Analogously to SU(2) I,J =1, 84, 8, 10, 27 (no isospin!)
o0 { s Cu’

2
L ris,) = 2

ds? 7 Jam? 3 ImTI/(X+i6’t)
m

(x—sP T (x—-u)
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SU(3)y limit
Symmetry breaking

SU(3) Results

SU(3)y limit (LECs independent of m)

Missmatch Clebsch-Gordan « tensor analysis
88 = 27910910" 98, ® 8, d1
T(ab —cd) = Aq(s,t,u)d6% + Ax(s,t,u) %6 + As(s, t,u) 6296
+Bi(s,t,u)d®°d®® + By(s,t,u)d**°d"*

Crossing symmetry = T1o(S,t) = T10+(S,t)
Analogously to SU(2) I,J =1, 84, 8, 10, 27 (no isospin!)

oo 1 1’ ,
—T'(s,t):g dx{ 9 4G 5 [ IMT (X +ie,1)

ds 7 Jam2 (x—s)B  (x—u)
d? . & 0.0
dSZT('/rW —atat)[(s,t) € A >0, @T(’KW — 7%7%)[(s,t) € A] >0,
d? &

T n® — arn0)[(s,t) € Al > T(rn—mn)(s,t) € A] 20,

ds? ds?

T~ Knls0 € 420, dd—zzT(Kw ks e 420 A
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SU(3)y limit (I1)

Remarks :
@ In xPTweaddopty=m; =mg =m
a1 L5 (M?) + ani Ly (M?) + asi L > fi[(s,t) € Al|max
Experimental values for L; 2(m,) = rundownto x=m

o
o
@ Which physical mass corresponds to m? m,? mg ? We take both.
@ m = m, not very stringent :-( .

o

m = mg severely violates bounds !
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Remarks :
@ InyPTweaddopty=m; =mg =m
@ oy LY(M?) + g L5(M?) + agi LS > fi[(s,t) € AJ|ma
@ Experimental values for Ly o(m,) = rundownto x=m
@ Which physical mass corresponds to m? m,? mg ? We take both.
@ m = m, not very stringent :-( .
@ m = mg severely violates bounds !
By including SU(3)y symmetry breaking :
© The ambiguity disappears.
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@ Experimental values for Ly o(m,) = rundownto x=m
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@ m = m, not very stringent :-( .
@ m = mg severely violates bounds !
By including SU(3)y symmetry breaking :
© The ambiguity disappears.
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SU(3)y limit
Symmetry breaking
Results

SU(3)y limit (I1)

Remarks :
@ InyPTweaddopty=m; =mg =m
@ oy LY(M?) + g L5(M?) + agi LS > fi[(s,t) € AJ|ma
@ Experimental values for Ly o(m,) = rundownto x=m
@ Which physical mass corresponds to m? m,? mg ? We take both.
@ m = m, not very stringent :-( .
@ m = mg severely violates bounds !
By including SU(3)y symmetry breaking :
© The ambiguity disappears.
© Bounds tighten

but...need to reconsider the positivity conditions I_— .
lavi A\
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Analytic region
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Symmetry breaking

SU(3) Results

Symmetry breaking

Analytic region

Consider the processa+b — a+b (Imf, > 0)ma =M, m, =m
lfat+b—c+d,a+b—e+fanda-+a— g-+ h existanalytic in
s < (Me +mg)?, t < (Me+m;)?, s+t >2(m?+M?) — (mg + my)?

Dispersion relation

2 oo . 0o )
Cren=2 )" oMMTeEey 2 7 g Ml
( (

ds? T Jmeim o =SP 7 mgemy  (X—UP
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Symmetry breaking

SU(3) Results

Symmetry breaking

Analytic region

Consider the processa+b — a+b (Imf, > 0)ma =M, m, =m
lfat+b—c+d,a+b—e+fanda-+a— g-+ h existanalytic in
s < (Me +mg)?, t < (Me +me)?, s+t >2(m?+M?) — (mg + my)?

Dispersion relation

2 2 [ ImT ie,t) 2 [ ImT ie,t
d—zT(s,t):—/ dx X rlel) (X+'§’)+—/ ax MTu(x e 1)
ds T J(me+mg )2 (X - S) T J(mg+mp)2 (X - U)

Denominators positive for s < (me +mg)?, s +t > 2 (m? + M?) — (mg + mp)?

st
(s+m2—M2)2—4m?s

P, {1—% } > 0 inthetwo integrals
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SU(3) Results

Symmetry breaking

Analytic region

Consider the processa+b — a+b (Imf, > 0)ma =M, m, =m
lfat+b—c+d,a+b—e+fanda-+a— g-+ h existanalytic in
s < (Me +mg)?, t < (Me +me)?, s+t >2(m?+M?) — (mg + my)?

Dispersion relation

2 2 [ ImT ie,t) 2 [ ImT ie,t
d—zT(s,t):—/ dx X rlel) (X+'§’)+—/ ax MTu(x e 1)
ds T J(me+mg )2 (X - S) T J(mg+mp)2 (X - U)

Denominators positive for s < (me +mg)?, s +t > 2 (m? + M?) — (mg + mp)?

st
(s+m2—M2)2—4m?s

P, {1—% } > 0 inthetwo integrals

St 2 2 .
Grme Py —ames =0 fors 2 (Me o ma)T(mg + mn)] FraviA
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Symmetry breaking (II)

@ t must be positive (if s — oo back to symmetric case)
@ P, >0onlyfor (M —m)?>s>(M+m)?

Positivity conditions hold for processes of the type a + b — a + b such that
the lightest pair of particles that can arise off the scattering a + b is precisely
a + b, and analogously for a + b.
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SU(3)y limit
Symmetry breaking
Results

Su(3)

Symmetry breaking (II)

@ t must be positive (if s — oo back to symmetric case)
@ P, >0onlyfor (M —m)?>s>(M+m)?

Positivity conditions hold for processes of the type a + b — a + b such that
the lightest pair of particles that can arise off the scattering a + b is precisely
a + b, and analogously for a + b.

o o
dSZT(ﬂ‘ﬂ‘ — 7 a")[(s,t) € A >0, ET(W°7T°—>7T7T)[(SI)€A]>O
2 2
%T(ﬂ'+ﬂ'0—>ﬂ' 7)[(s,t) € A] >0, @T(ﬂ'n—mrn)[(&t)6./4]207

d .
g2 T (Km" = Ka)[(s,) e A| > 0, FraviA
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10% x L (p) | 10% x Ly(u) 10% x L3

p=m, | 043+0.12 | 043+£012 | —2.35+0.37
p=mg | 069+012 | 1.264+0.12 | —2.354+0.37
p=my; | 2784012 | 1.264+0.12 | —2.35+0.37
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SU(3)y limit
Symmetry breaking
Results

10% x L (p) | 10% x Ly(u) 10% x L3

p=m, | 043+0.12 | 043+£012 | —2.35+0.37
p=mg | 069+012 | 1.264+0.12 | —2.354+0.37
p=my; | 2784012 | 1.264+0.12 | —2.35+0.37

Process 103 oLl (1) =My = mg Mr=mg | Mg #mg
7070 2% (p) +2L5(p) +L3 | 6.20£0.5 1.6+0.5 > 227 > 2.28
at a0 L5 (1) 2.81+0.12 | 1.26+0.12 | >0.75 > 0.95
atat | 2L3(p) +3L5(u) +Ls | 9.0+£0.6 28406 >3.32 > 3.91

Kn 12L5(p) + Lg 31.4+15 | 12.8+15 > 8.6 -
n 3LL (k) + Ls 6.1+05 1.4+05 > 251 > 6.00
K+ 7t AL () + Lg 8.9+0.6 27406 > 3.50 > —5.55
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Symmetry breaking
Results

10% x L (p) | 10% x Ly(u) 10% x L3

p=m, | 043+0.12 | 043+£012 | —2.35+0.37

p=mg | 069+012 | 1.264+0.12 | —2.354+0.37

p=my; | 2784012 | 1.264+0.12 | —2.35+0.37
Process 103 oLl (1) =My = mg Mr=mg | Mg #mg
7070 2% (p) +2L5(p) +L3 | 6.20£0.5 1.6+0.5 > 227 > 2.28
at a0 L5 (1) 2.81+0.12 | 1.26+0.12 | >0.75 > 0.95
atat | 2L3(p) +3L5(u) +Ls | 9.0+£0.6 28406 >3.32 > 3.91

Kn 12L5(p) + Lg 314415 | 128415 > 86 -

n 3LL (k) + Ls 6.1+05 14405 > 251 > 6.00
K+ 7t AL () + Lg 8.9+0.6 27406 > 3.50 > —5.55

not enough to discern whether SU(3) xPT at O(p*) satisfies the axiomati
principles

Vicent Mateu Bounds in 7 7 scattering from dispersion relations

The present accuracy of the experimental determinations for Ly, L, and L
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@ Only efficient for O(p*) LECs
@ Compare order of magnitude of LECs vs chiral logs
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Bounds on |; and |,
Discard non-linear sigma Model for m, < 24m,.
Caveat for resonance saturation
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@ EFT & axiomatic principles = very interesting results
@ Bounds on LECs [as SU(2) and SU(3) xPT]
@ Only efficient for O(p*) LECs
@ Compare order of magnitude of LECs vs chiral logs
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