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+

C II′
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For s + t ≥ 0 s ≤ 4 m2
π both denominators ≥ 0 in the integral path
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For certain
P

aIT I with aI ≥ 0 → P

aIC IJ
u TJ =

P

K bk TK with bk ≥ 0

They correspond to physical processes with equal initial and final state.
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Partial wave expansion T I(s, t) =
P

∞

ℓ=0 (2 ℓ + 1) f I
ℓ(s)Pℓ
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1 + 2 t
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π

”

Optical theorem ⇒ Im f I
ℓ(s) = s β(s) σI

ℓ(s) θ(s − m2
π) ≥ 0
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Im T I(s, t) =
P

∞
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“
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≥ 0

For certain
P

aIT I with aI ≥ 0 → P

aIC IJ
u TJ =

P

K bk TK with bk ≥ 0

They correspond to physical processes with equal initial and final state.

Positivity conditions :

Inside the region A ≡ {s ≤ 4 m2
π , 0 ≤ t ≤ 4 m2 & s + t ≥ 0}

d2

ds2
T

“

π0π0 → π0π0
”

[(s, t) ∈ A] ≥ 0 ,
d2

ds2
T

`

π+π+ → π+π+
´

[(s, t) ∈ A] ≥ 0 ,

d2

ds2
T

“

π+π0 → π+π0
”

[(s, t) ∈ A] ≥ 0 ,
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Bounds on chiral LECs
In the region A we can apply χPT at O(p4) to obtain [

d2

ds2
O(p2) = 0]

2
X

i=1

αji l̄i − fj [(s, t) ∈ A] ≥ 0 =⇒
2

X

i=1

αji l̄i ≥ fj [(s, t) ∈ A]|max
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In the region A we can apply χPT at O(p4) to obtain [

d2

ds2
O(p2) = 0]

2
X

i=1

αji l̄i − fj [(s, t) ∈ A] ≥ 0 =⇒
2

X

i=1

αji l̄i ≥ fj [(s, t) ∈ A]|max

Process LECs combination Bound Experimental value

π0π0 → π0π0 l̄1 + 2 l̄2 [1,2] ≥ 157
40 = 3.925 8.2 ± 0.6

π+π0 → π+π0 l̄2 [1,2] ≥ 27
20 = 1.350 4.3 ± 0.1

π+π+ → π+π+ l̄1 + 3 l̄2 [3] ≥ 5.604 12.5 ± 0.7
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In the region A we can apply χPT at O(p4) to obtain [

d2

ds2
O(p2) = 0]
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X

i=1

αji l̄i − fj [(s, t) ∈ A] ≥ 0 =⇒
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X
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αji l̄i ≥ fj [(s, t) ∈ A]|max

Process LECs combination Bound Experimental value

π0π0 → π0π0 l̄1 + 2 l̄2 [1,2] ≥ 157
40 = 3.925 8.2 ± 0.6

π+π0 → π+π0 l̄2 [1,2] ≥ 27
20 = 1.350 4.3 ± 0.1

π+π+ → π+π+ l̄1 + 3 l̄2 [3] ≥ 5.604 12.5 ± 0.7
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Is the Linear Sigma Model consistent?
� Functional integration of σ particle =⇒ l̄1 and l̄2 in LSM : (at one–loop)

l̄1 = 24 π2

g + log
“

mσ

mπ

”

− 35
6 , l̄2 = log

“

mσ

mπ

”

− 11
6 Gasser et al ’84
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l̄1 = 24 π2

g + log
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� Plugging into the second bound log
`

mσ

m

´

≥ 191
60 violated for mσ . 24 mπ !!!
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� Plugging into the second bound log
`

mσ

m

´

≥ 191
60 violated for mσ . 24 mπ !!!

� But LSM consistent if mσ ≥
√

3 mπ . Apply directly positivity conditions.
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Is the Linear Sigma Model consistent?
� Functional integration of σ particle =⇒ l̄1 and l̄2 in LSM : (at one–loop)

l̄1 = 24 π2

g + log
“

mσ

mπ

”

− 35
6 , l̄2 = log

“

mσ

mπ

”

− 11
6 Gasser et al ’84

� Plugging into the second bound log
`

mσ

m

´

≥ 191
60 violated for mσ . 24 mπ !!!

� But LSM consistent if mσ ≥
√

3 mπ . Apply directly positivity conditions.

� Integration of σ tantamount to
1

m2
σ

expansion. To all orders we have :

5 10 15 20
mΣ
�������

m

1

2

3

16 Π2 F
Π

4 i

k
jj
d2 T
������������

ds2
y

{
zz
0,4 m2

It is consistent even for mσ < mπ
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Is the Linear Sigma Model consistent?
� Functional integration of σ particle =⇒ l̄1 and l̄2 in LSM : (at one–loop)
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� Plugging into the second bound log
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60 violated for mσ . 24 mπ !!!

� But LSM consistent if mσ ≥
√

3 mπ . Apply directly positivity conditions.

� Integration of σ tantamount to
1

m2
σ

expansion. To all orders we have :
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k
jj
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{
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It is consistent even for mσ < mπ

# But the non–Linear Sigma Model is inconsistent for mσ < 24mπ

Vicent Mateu Bounds in π π scattering from dispersion relations



Motivations
SU(2)

SU(3)

Conclusions

π π scattering
Fixed t dispersion relations & positivity conditions
Bounds on chiral LECs and the Linear Sigma Model
Equivalence with Pennington & Portoles

Is the Linear Sigma Model consistent?
� Functional integration of σ particle =⇒ l̄1 and l̄2 in LSM : (at one–loop)

l̄1 = 24 π2

g + log
“

mσ

mπ

”

− 35
6 , l̄2 = log

“

mσ

mπ

”

− 11
6 Gasser et al ’84

� Plugging into the second bound log
`

mσ

m

´

≥ 191
60 violated for mσ . 24 mπ !!!

� But LSM consistent if mσ ≥
√

3 mπ . Apply directly positivity conditions.

� Integration of σ tantamount to
1

m2
σ

expansion. To all orders we have :
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It is consistent even for mσ < mπ

# But the non–Linear Sigma Model is inconsistent for mσ < 24mπ

# Caveat! For those who integrate ρ (as I do) for estimating chiral LECs ...

mρ/mπ ≪ 25 (!).
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Is the Linear Sigma Model consistent?
� Functional integration of σ particle =⇒ l̄1 and l̄2 in LSM : (at one–loop)

l̄1 = 24 π2

g + log
“

mσ

mπ

”

− 35
6 , l̄2 = log
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mσ

mπ

”

− 11
6 Gasser et al ’84

� Plugging into the second bound log
`

mσ

m

´

≥ 191
60 violated for mσ . 24 mπ !!!

� But LSM consistent if mσ ≥
√

3 mπ . Apply directly positivity conditions.

� Integration of σ tantamount to
1

m2
σ

expansion. To all orders we have :
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16 Π2 F
Π
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jj
d2 T
������������

ds2
y

{
zz
0,4 m2

It is consistent even for mσ < mπ

# But the non–Linear Sigma Model is inconsistent for mσ < 24mπ

# Caveat! For those who integrate ρ (as I do) for estimating chiral LECs ...

mρ/mπ ≪ 25 (!). But in this case LECs are generated at tree level.
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Scattering lengths

aI
ℓ ≡ lims→4 m2

f I
ℓ
(s)

( s
4 −m2)ℓ

and Bose symmetry implies a1
2k ≡ 0
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Scattering lengths

aI
ℓ ≡ lims→4 m2

f I
ℓ
(s)

( s
4 −m2)ℓ

and Bose symmetry implies a1
2k ≡ 0

P & P [2] quote a0
2 + 2 a2

2 ≥ 0 , a0
2 − a2

2 ≥ 0 (1)
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4 −m2)ℓ

and Bose symmetry implies a1
2k ≡ 0

P & P [2] quote a0
2 + 2 a2

2 ≥ 0 , a0
2 − a2

2 ≥ 0 (1)

But in fact aI
ℓ =

4ℓ ℓ !

(2 ℓ + 1)
C II′

t
dℓF I′ (s,4 m2)

d sℓ

˛

˛

˛

˛

s=0

[3]
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Since (s = 0, t = 4 m2) ∈ A appropriate linear combinations → (1)
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d sℓ

˛

˛

˛

˛
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Since (s = 0, t = 4 m2) ∈ A appropriate linear combinations → (1)

1 They only consider a single point in A → less general, no necessarily
the most stringent. No way to find third bound.
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Scattering lengths
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ℓ ≡ lims→4 m2
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4 −m2)ℓ

and Bose symmetry implies a1
2k ≡ 0

P & P [2] quote a0
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2 − a2

2 ≥ 0 (1)

But in fact aI
ℓ =

4ℓ ℓ !

(2 ℓ + 1)
C II′

t
dℓF I′ (s,4 m2)

d sℓ

˛

˛

˛

˛

s=0

[3]

Since (s = 0, t = 4 m2) ∈ A appropriate linear combinations → (1)

1 They only consider a single point in A → less general, no necessarily
the most stringent. No way to find third bound.

2 We remind that in Ref. [1] only the Mandelstam triangle was taken into
account. No way to find third bound.
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Scattering lengths
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and Bose symmetry implies a1
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P & P [2] quote a0
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2 ≥ 0 , a0
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2 ≥ 0 (1)

But in fact aI
ℓ =
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dℓF I′ (s,4 m2)

d sℓ

˛

˛

˛

˛

s=0

[3]

Since (s = 0, t = 4 m2) ∈ A appropriate linear combinations → (1)

1 They only consider a single point in A → less general, no necessarily
the most stringent. No way to find third bound.

2 We remind that in Ref. [1] only the Mandelstam triangle was taken into
account. No way to find third bound.

mK /mπ ∼ 3.5 ≪ 24 Integrate K in SU(3) → SU(2)? Yes...

bad results for l̄1,2 but within bounds
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Scattering lengths

aI
ℓ ≡ lims→4 m2

f I
ℓ
(s)

( s
4 −m2)ℓ

and Bose symmetry implies a1
2k ≡ 0

P & P [2] quote a0
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2 ≥ 0 , a0
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2 ≥ 0 (1)

But in fact aI
ℓ =
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(2 ℓ + 1)
C II′

t
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d sℓ

˛

˛

˛

˛

s=0

[3]

Since (s = 0, t = 4 m2) ∈ A appropriate linear combinations → (1)

1 They only consider a single point in A → less general, no necessarily
the most stringent. No way to find third bound.

2 We remind that in Ref. [1] only the Mandelstam triangle was taken into
account. No way to find third bound.

mK /mπ ∼ 3.5 ≪ 24 Integrate K in SU(3) → SU(2)? Yes...

bad results for l̄1,2 but within bounds

SU(3) χPT ? Consistent with axiomatic principles?
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Missmatch Clebsch-Gordan ↔ tensor analysis

8 ⊗ 8 = 27 ⊕ 10 ⊕ 10∗ ⊕ 81 ⊕ 82 ⊕ 1

T (ab → cd) = A1(s, t , u) δabδcd + A2(s, t , u) δacδbd + A3(s, t , u) δadδbc

+ B1(s, t , u) dabedcde + B2(s, t , u) dacedbde
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T (ab → cd) = A1(s, t , u) δabδcd + A2(s, t , u) δacδbd + A3(s, t , u) δadδbc

+ B1(s, t , u) dabedcde + B2(s, t , u) dacedbde

Crossing symmetry ⇒ T10(s, t) = T10∗(s, t)

Analogously to SU(2) I, J = 1, 81, 82, 10, 27 (no isospin!)

d2

ds2
T I(s, t) =

2

π

Z

∞

4m2
dx

"

δII′

(x − s)3
+

CII′
u

(x − u)3

#

Im T I′(x + iǫ, t)
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d2

ds2
T

`

π+π+ → π+π+
´

[(s, t) ∈ A] ≥ 0 ,
d2

ds2
T (π0π0 → π0π0)[(s, t) ∈ A] ≥ 0 ,

d2

ds2
T (π+π0 → π+π0)[(s, t) ∈ A] ≥ 0 ,

d2

ds2
T (π η → π η)[(s, t) ∈ A] ≥ 0 ,

d2

ds2
T (K η → K η)[(s, t) ∈ A] ≥ 0 ,

d2

ds2
T (Kπ+ → Kπ+)[(s, t) ∈ A] ≥ 0 ,
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Remarks :

In χPT we addopt µ = mπ = mK ≡ m

α1i Lr
1(m

2) + α2i Lr
2(m

2) + α3i Lr
3 ≥ fi [(s, t) ∈ A]|max

Experimental values for L1,2(mρ) ⇒ run down to µ = m

Which physical mass corresponds to m? mπ? mK ? We take both.

m = mπ not very stringent :-( .

m = mK severely violates bounds !

By including SU(3)V symmetry breaking :

1 The ambiguity disappears.
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m = mπ not very stringent :-( .

m = mK severely violates bounds !

By including SU(3)V symmetry breaking :

1 The ambiguity disappears.

2 Bounds tighten

but...need to reconsider the positivity conditions
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(x − u)3

Vicent Mateu Bounds in π π scattering from dispersion relations



Motivations
SU(2)

SU(3)

Conclusions

SU(3)V limit
Symmetry breaking
Results

Symmetry breaking
Analytic region

Consider the process a + b → a + b (Im fℓ ≥ 0) ma = M, mb = m

If a + b → c + d , a + b̄ → e + f and a + ā → g + h exist analytic in
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Pℓ

»

1 +
s t

(s + m2 − M2)2 − 4 m2 s

–
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t must be positive (if s → ∞ back to symmetric case)

Pℓ ≥ 0 only for (M − m)2 ≥ s ≥ (M + m)2

Theorem

Positivity conditions hold for processes of the type a + b → a + b such that
the lightest pair of particles that can arise off the scattering a + b is precisely
a + b, and analogously for a + b̄.
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t must be positive (if s → ∞ back to symmetric case)

Pℓ ≥ 0 only for (M − m)2 ≥ s ≥ (M + m)2

Theorem

Positivity conditions hold for processes of the type a + b → a + b such that
the lightest pair of particles that can arise off the scattering a + b is precisely
a + b, and analogously for a + b̄.

d2

ds2
T

`

π+π+ → π+π+
´

[(s, t) ∈ A] ≥ 0 ,
d2

ds2
T (π0π0 → π0π0)[(s, t) ∈ A] ≥ 0 ,

d2

ds2
T (π+π0 → π+π0)[(s, t) ∈ A] ≥ 0 ,

d2

ds2
T (π η → π η)[(s, t) ∈ A] ≥ 0 ,

d2

ds2
T (Kπ+ → Kπ+)[(s, t) ∈ A] ≥ 0 ,
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1(µ) 103 × Lr
2(µ) 103 × L3

µ = mρ 0.43 ± 0.12 0.43 ± 0.12 −2.35 ± 0.37

µ = mK 0.69 ± 0.12 1.26 ± 0.12 −2.35 ± 0.37

µ = mπ 2.78 ± 0.12 1.26 ± 0.12 −2.35 ± 0.37
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µ = mρ 0.43 ± 0.12 0.43 ± 0.12 −2.35 ± 0.37

µ = mK 0.69 ± 0.12 1.26 ± 0.12 −2.35 ± 0.37

µ = mπ 2.78 ± 0.12 1.26 ± 0.12 −2.35 ± 0.37

Process 103 αi Li(µ) µ = mπ µ = mK mπ = mK mπ 6= mK

π0π0 2Lr
1(µ) + 2Lr

2(µ) + L3 6.20 ± 0.5 1.6 ± 0.5 ≥ 2.27 ≥ 2.28

π+π0 Lr
2(µ) 2.81 ± 0.12 1.26 ± 0.12 ≥ 0.75 ≥ 0.95

π+π+ 2Lr
1(µ) + 3Lr

2(µ) + L3 9.0 ± 0.6 2.8 ± 0.6 ≥ 3.32 ≥ 3.91

K η 12Lr
2(µ) + L3 31.4 ± 1.5 12.8 ± 1.5 ≥ 8.6 -

π η 3Lr
2(µ) + L3 6.1 ± 0.5 1.4 ± 0.5 ≥ 2.51 ≥ 6.00

K+ π+ 4Lr
2(µ) + L3 8.9 ± 0.6 2.7 ± 0.6 ≥ 3.50 ≥ − 5.55
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Process 103 αi Li(µ) µ = mπ µ = mK mπ = mK mπ 6= mK

π0π0 2Lr
1(µ) + 2Lr

2(µ) + L3 6.20 ± 0.5 1.6 ± 0.5 ≥ 2.27 ≥ 2.28

π+π0 Lr
2(µ) 2.81 ± 0.12 1.26 ± 0.12 ≥ 0.75 ≥ 0.95

π+π+ 2Lr
1(µ) + 3Lr

2(µ) + L3 9.0 ± 0.6 2.8 ± 0.6 ≥ 3.32 ≥ 3.91

K η 12Lr
2(µ) + L3 31.4 ± 1.5 12.8 ± 1.5 ≥ 8.6 -

π η 3Lr
2(µ) + L3 6.1 ± 0.5 1.4 ± 0.5 ≥ 2.51 ≥ 6.00

K+ π+ 4Lr
2(µ) + L3 8.9 ± 0.6 2.7 ± 0.6 ≥ 3.50 ≥ − 5.55

The present accuracy of the experimental determinations for L1, L2 and L3 is

not enough to discern whether SU(3) χPT at O(p4) satisfies the axiomatic

principles
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1 EFT & axiomatic principles ⇒ very interesting results
Bounds on LECs [as SU(2) and SU(3) χPT]
Only efficient for O(p4) LECs
Compare order of magnitude of LECs vs chiral logs
Permits testing the reliability of EFTs

2 SU(2)
Bounds on l1 and l2
Discard non-linear sigma Model for mσ < 24mπ

Caveat for resonance saturation
Generalizes scattering lengths method

3 SU(3)
Bounds on L1, L2 and L3

Discards mu = md ≡ ms

Consistent with ms = md ≡ mu

Cannot discard/confirm physical situation
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