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Introduction

Study of QCD two-point functions of color singlet local operators
(with possible insertions of soft operators).

Integrals of these Green’s functions over their euclidean momenta
(with appropriate weights) govern the hadronic contributions

to many electromagnetic and weak interaction processes.

Two simple examples (with no soft insertions)
@ Hadronic Vacuum Polarization two-point function (HVP)

M. (q) = ’/d4x €7(0IT (U (%) (0)) [0) = (Guay — G°Gun)NQP)
@ The Left-Right two-point function (LR) (in the chiral limit)

Mi4(a) =21 [ o'x e (0T (LR (0)') 0) = (¢"" -9 )Nen( Q).

They provide excellent theoretical laboratories
to test non perturbative approaches.
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3G — 2t = a,"* as an example.
It is an Integral over the Euclidean HVP Two-Point Function

Euclidean Representation of aii'* (Lautrup- de Rafael '69)

2
HVP X 2 PR X 2
/dx(1—x[ (1_Xm#>], C):1_Xmu.

This is also the representation used in LQCD (Blum '03)

Recall that (Q?) (renormalized on shell at @®> = 0) obeys the Dispersion Relation:

odt @ 1
02)_/ The LNy, @=-¢#>o0,

and therefore P
dt 1
&V = / ax ( 17)()/ ”72“ —ImN(t),
+ X 2 ™
m.
—,_/

_ 4xla 1
where U(t)[e+e*~>('y)~>ﬂad|~ons] =1 ;Iml‘l(t)

which is the Standard Phenomenological Representation (Bouchiat-Michel ’61).
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Mellin-Barnes Representation of HVP

There is a representation of M(Q?) in terms of

o > 1—s
M(s) = / at (”ZH) Timn(t)  Res<1.
Ja4 ™

mgrt

The Mellin Transform of the Spectral Function

o=, () E)med o

From pQCD we know that

The Representation in question is an inverse Mellin-Barnes Integral (EdeR’14):

@ 1

T2 o
ms, 2ri

Cs+ico s
/ ds (%) r(s)r(1 —s) M(s), cs=Re(s) €]0,1].

"

ne? =

cg—ioco
Very useful for expansions of 1(Q?) for Q? small (xPT) and large Q? (OPE).

(For QED applications see Friot-Greynat-de Rafael’08, Aguilar-Greynat-de Rafael’12)
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Ramanujan’s Master Theorem

Expansion For Q?-Small

o & @?\® @?\°
—g @) o~ {M(O)— —5M(=1) + (m—2> M(~2) — <ﬁ> M(—3)+~~},

I3 o

A ANE (D)™ e (0 ?
M(—n) = /2 Z (T) —Imn(t) = (n+1)!(m,b) + (WH(O )) o

Ramanujan’s Theorem:

o [P @\ @ @\?
/0 d <mf> <m5> {M(O)— e M ¢ <E> M(—2)+~-~} = T(s)F(1-8)M(s),

Guarantees the convergence of discrete moments M(—n) to the full Mellin transform M(s).

Recall that LQCD has access to the discreet M(—n) (at least for low n)
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Mellin-Barnes Representation of the Muon Anomaly (EdeR, P.L.14)

; ; 2 _ X2 2 .
Integrating over x, i.e. Q° = 7, m,, results in:

Integral Representation of &f}*" (Model Independent)

Cc+ioco

ue _ (o) 1
& ’(w) 2ri / ds F(s) M(s),  Rec€]0,+1]

c—ioco

F(s)=-T(8=2s)[(=3+s)[(1+5)

1—s
[ dt [ 1

Mellin Transform of the Spectral Function

M(s) is finite for s < 1 and singular at s = 1:
o 2 1 1
Mraeo(®) v, (5) <§) Nezi—s
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Ramanujan’s Theorem Limitations

@ The nice feature of Ramanujan’s Theorem:
Guarantees the convergence to the full Mellin transform M(s)

@ Unfortunately, it does not tell us which Interpolation Function to use
when we only know a few discrete M(—n).

@ Padé Approximants to M(Q?) at low-Q® cannot be the answer, because
they don’t reproduce the pQCD behaviour at s = 1 of M(s).

@ Padé Approximants to M(Q?) at low-Q? plus pQCD for high-Q? values
(the favored LQCD practice at present) has not been proved to be the
best possible interpolation, and my claim is that it is not.

@ In fact there is even no proof that the Padé Approximants to M(Q?) at
low-Q? plus pQCD for high-Q? values satisfy Ramanujan’s Theorem.
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New Approach based on Dirac Combs < Hurwitz-Zeta Functions

Replace Physical Spectral Function by Infinite sum of Distributions

; o
—mmn(t) = P(t)=3_ {N o?5(t — M? — no?) + N o260 (t — M? — no®)+
T n=0

N 026@(t — M? — no?) + Ng 026 (t — M? — no?) + - - - } .

WHY?

Because the Mellin transform of Dirac Combs and their derivatives are Hurwitz-Zeta Functions:

o m\ 'S m\ 1 2
?(%) Nazé(thzfnaz):N( g) C(Zfs,vz%),

0 [oa (o2

oo m\ "¢ me\ e M?
?(%) N2026(1)(t7M27n02):N2( g) (27s)§<37s,vz—2),

0 o o

2

1—s 2
N o®50(t = M? — no®) = N, (m> @2-9)B-9)¢ (4—s,vz K) :
g

B —
Hurwitz-Zeta Functions have the desired QCD singularity structure
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Properties of the Hurwitz-Zeta Function

@ The Hurwitz-Zeta function is defined by the Dirichlet Series

> 1
(s, v) = m, Res>1 and Rev # —n.
n=0

@ Integral Representation (which provides basis for analytic continuation)
7VX

oo
C(s,v) = )/ T—e=x" Res > 1,Rev >0,
@ In particular, for s = —mwithm=0,1,2,-- -
Bm+1(v)
—-mVv) = ———=
o ) m+1

where B,.1(v) are the Bernoulli polynomial of degree m + 1:

1 1
Bi(v)=v-5. Bz(V):vz—v+E

@ Integral Representation implies
2
1 o2 o? 2 o? 8 e M/t

—ImM(f) = SN — + Nz [ — No|l — | + p ————

7 mn® { r " 2<t>+4 t 1o 2t

Which approaches better and better to the shape of the Physical Spectral Function
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Tests with a Phenomenological Toy Model (Lellouch’16)

@ First Approximation
PO = 2 1n, (g) iozé(t - M — no® < ) Z ao(t —no?) ¢,
73 3 = =

Fix M and o with M(0) from Toy Model and the fact that there is no 1/Q? term in OPE

1.0f b

0.8F b

0.6 b

10* x M(s)

041 b

0.2 ]

0.0 1

-2.0 -15 -1.0 -0.5 0.0

S
Mellin Transforms of the Spectral Function of the Toy Model (red)
and of the first Spectral Function Distribution (blue-dashed).
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Continuation of Tests

a\21 1, g
= <;> ENCE? ; dxx(2 — x) x
X

2 2, 4 52 , X2
|:§C<2,V+17X? +§ﬁ< 2,v +

=6.726 x 1078

This result reproduces the Toy Model result at the 1% level |

If we use the BHLS-Model input: M(0) = 10.1307 + 0.0745

a" (first) = (681.85£4.79) x 107 &""(BHLS) = (683.50 + 4.75) x 10 '°

Excellent Agreement (even better than with the toy model)

EdeR Hurwitz-Zeta QCD



Continuation of Tests: Second Approximation

Assume that the first two derivatives of N(Q?) at the origin are known. In the Toy Model:
M(0) = 0.9979 x 10~* and M(—1) = 0.0235 x 10~*.

N 2
pleecond)(py — 751\/0"2; { (5) 25(t — M? — no?) + Ba?6@(t — M? — no?)+

ia/za(t - M? - naz)} .

This fixes the parameter values:

o =0.9775GeV, [ =0.00406 and v = % .

HVP second
a, (Second):( ) /dXX2—X/ dI Zp(seon)(t)
0 t+1 )
a\?1 m, 1

:<;> ENCE?/O adxx(2 — x) x

2 x2 X m 4 o2 2P

262V —= 6 4,v =3 : oy u
|:3<<3 +17X0'2)+ ﬁC(y +17X0’ +9 s¢ |2 +17XU/2

=6.817 x 1078,

which reproduces the Toy Model result at the 0.4% level !!
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Spectral Functions Corresponding to First and Second Approximations

o
0.8F 1
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SF(t)

045 1

0.2F 1
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t(GeV?)
Spectral Function of the 2nd Approximation (red)
and of the first Approximation (blue).
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Conclusions

@ We conclude from these tests that with a precise determination of M (0)
i.e. with a precise determination of just the slope of the HVP function at
the origin from LQCD, one can already obtain the result for af}** with an
accuracy comparable to the determination using experimental data.

@ We wish to emphasize that the method we propose, besides the
eventual determination of M(0), only uses as other input two well known
properties of QCD: asymptotic freedom and the fact that in the chiral
limit there is no 1/Q? term in the OPE of N(Q?).

@ As shown, the method is improvable with more and more experimental
or LQCD input and Ramanujan guarantees convergence.
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