

Belle II: Searching for New Phenomena at the Intensity Frontier

https://www.facebook.com/belle2collab https://twitter.com/belle2collab

Phillip Urquijo ARC Future Fellow The Uni. of Melbourne

LAL Seminar December 2016

Belle II Mission

To search for new phenomena that may solve the missing antimatter puzzle Builds on 2008 Nobel Prize success, M Kobayashi and T Maskawa , → Belle experiment credited ~500 publications.

Belle II >600 collaborators, 100 institutes

The case for new physics manifesting in Belle II

Issues (addressable at a Flavour factory)

Baryon asymmetry in cosmology
 → New sources of CPV in quarks and charged leptons

- Finite neutrino masses
 → Tau LFV.
- Quark and Lepton flavour & mass hierarchy
 → higher symmetry, massive new particles, extended gauge sector
- 19 free parameters
 → Extensions of SM relate some, (GUTs)
- + Puzzling nature of exotic "new" QCD states.

In this talk I will highlight areas where Melbourne in particular has been contributing.

 \rightarrow NP beyond the direct

Australian Contributions to Belle II

ComputingPhysicsGrid servicesCoordinationRare B decaysAnalysis computingSemileptonicB CP violationReconstructionDark sectort flavour

Searches for New Phenomena

- Energy Frontier: Production of new particles from *collisions* at high-*Energy* (LHC)
 - Limited by Beam energy
- Flavour Frontier: virtual production to probe *scales* beyond energy frontier.
 - Often first clues about NP
 - •e.g. weak force,
 - c, b, t quarks, Higgs boson.

Maximum Energy/Mass Scale reach:

5

Searches for New Phenomena

Energy Frontier: Production of **new** particles from *collisions* at high-*Energy* (LHC)

Limited by Beam energy

Flavour Frontier: virtual production to probe *scales* beyond energy frontier.

Quark

Flavour

 10^{8}

- Often first clues about NP
- •e.g. weak force,

EWP

 10^{4}

c, b, t quarks, Higgs boson.

mн

 10^{2}

Phillip URQUIJO

5

Cabibbo-Kobayashi-Maskawa matrix

- 2 Gens: CP conserving
- 3 Gens: CP violating, only source of CPV in SM
- 4 Gens or More Gauge Bosons → many more CPV phases.

CKM Picture over the years

Existence of CPV phase established in 2001 by BaBar & Belle

- Picture still holds 15 years later, constrained with remarkable precision
- But: still leaves room for new physics contributions

wiversity of Zurich, 2016, May 9

Flavoilianoroalles Belle II's impact on the physics landscapeurne

LAL Seminar, 2016

Belle II at the e⁺e⁻ intensity frontier

First operation of SuperKEKB (4 GeV e+'s & 7 GeV e-'s)

LER: Beam current 1 Amp, Beam dose 780 Ah, pressure 10⁻⁶ Pa

HER: Beam current 0.87 Amp, Beam dose 660 Ah pressure 10⁻⁷ Pa

Belle II Detector [600+ collaborators, 101 institutes, 23 nations]

Belle II TDR, arXiv:1011.0352

Belle II Detector [600+ collaborators, 101 institutes, 23 nations]

Time-of-Propagation(TOP) Detector

Feb: 1st TOP bar

May: fully installed!

Particle Identification

(TOP, ARICH, dE/dx[CDC])

(TOP, ARICH, dE/dx[CDC], KLM)

Fake rates > 2x lower than Belle (even better in some p regions)

LAL Seminar, 2016

Silicon Vertex Detector

SVD Layer 3 Construction, All ladders now built

Construction @ Melbourne

April 2016: DESY testbeam 2 *full-sized* Belle II pixel modules

So when do we start Belle II ?

BEAST PHASE I: Feb-June 2016 (Belle II roll-in in March 2017).

PHASE II Operation: Starts in ~Jan 2018 [Begin with damping ring commissioning; First collisions; *limited physics without vertex detectors*]

Phase III: Belle II Physics Running: late 2018 [vertex detectors in]

QCSL at the IP, Aug 2016 QCSR will be at KEK, Dec 2016

Latest SuperKEKB Luminosity Profile

PU, j.nuclphysbps 263–264 (2015) 15–23

LHC era			HL-LHC era	
Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2020-22)	Run 4 (2025-28)	Run 5+ (2030+)
3 fb ⁻¹	8 fb ⁻¹	23 fb ⁻¹	46 fb ⁻¹	100 fb ⁻¹

Latest SuperKEKB Luminosity Profile

PU, j.nuclphysbps 263–264 (2015) 15–23

LHC era			HL-LHC era	
Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2020-22)	Run 4 (2025-28)	Run 5+ (2030+)
3 fb ⁻¹	8 fb ⁻¹	23 fb ⁻¹	46 fb ⁻¹	100 fb ⁻¹

THE UNIT

MELBOURNE

"Missing Energy Decay" in a Belle II GEANT4 simulation

Signal $B \rightarrow K \vee \nu$ tag mode: $B \rightarrow D\pi$; $D \rightarrow K\pi$

Zoomed view of the vertex region in r--phi

MELBOURNE

View in r-z

LAL Seminar, 2016

Belle II Flagship: H⁺ Search in B⁺ $\rightarrow \tau \upsilon$, $\mu \upsilon$

 H^{+}, W^{+} Helicity suppressed - very small in SM. NP could interfere *e.g.* **charged Higgs.** $BR(B_u \to \tau \nu_{\tau}) = \frac{G_F^2 f_B^2 |V_{ub}|^2}{\sqrt{8\pi}} \tau_B m_B m_{\tau}^2 \left(1 - \frac{m_{\tau}^2}{m_B^2}\right)^2 \left[1 - \left(\frac{m_B^2}{m_{H^+}^2}\right) \lambda_{bb} \lambda_{\tau\tau}\right]^2$ **BF**_{SM} Rн Туре λDD λLL $\cot \beta \quad \cot \beta$ $-\tan\beta$ $-\tan\beta$ The B meson decay constant $-\tan\beta \cot\beta$ IV $\cot \beta$ - $\tan \beta$ $|V_{ub}|$: from indep. measurements.

Belle, $B \rightarrow \tau v$ (Had) PRL110 131801 (2013) Belle, $B \rightarrow \tau v$ (SL) PRD 92, 5, 051102 (2015)

0

With the full B factory statistics only "evidence". No single observation from either Belle or BaBar. Belle II \rightarrow 5 σ discovery

	Belle Ave.	Belle II		
		5 ab ⁻¹	50 ab ⁻¹	
3→τν	96(1±22%)	10%	3%	
3→μν	<1.7	20%	7%	

Phillip URQUIJO

LAL Seminar, 2016

В

The current combined B→τυ limit places a stronger constraint than direct searches from LHC exps. for the next few years.

Currently inclusive $b \rightarrow s\gamma$ rules out m_{H+} below ~540 GeV/c² range at 95% CL (independent of tan β assuming no other NP)

Anomaly in $B \rightarrow D(^*) \, \tau \, \nu$

Belle, Phys.Rev.D 92, 072014 (2015) Belle, Phys.Rev.D 94, 072007 (2016) Belle, arXiv:1612 00529 (to PRL)

$B {\rightarrow} D^{(*)} \, \tau \, \nu$

- Reconstruct one B in Y(4S)→BB event
 Either hadronic or semileptonic decay mode
 First application of semileptonic tagging for B →D(*)τν
- Look for signal in the recoil, $B \rightarrow D^* \tau v$, $D^* \rightarrow D\pi$, $D \rightarrow many$, $\tau \rightarrow lvv$,

 $R(D^*) = 0.302 \pm 0.030 \pm 0.011$

Semileptonic ations (for factor perclusive vs heavy anomaly

Control and concentration puzzle ~ 2% precision expected.

B⁰ semileptonic • Piscrepancy could be right handed currents with solupling V_{ub}^R • B→π | v rate goes as $|V_{ub}^L + V_{ub}^R|^2$ • B→τ v rate goes as $|V_{ub}^L - V_{ub}^R|^2$

• $B \rightarrow X_u | v$ rate goes as $|V_{ub}^L| + |V_{ub}^R|^2$

 $B \to X_u \,\ell \,\bar{\nu}_\ell$

Error on IV _{ub} l	stat.	tot.
B-Factories	2.7%	9.4%
Belle II 5/ab	1.0%	4.2%
Belle II 50/ab	0.3%	2.2%

-			
	Error on $IV_{ub}I$	stat.	tot.
	B-Factories	4.5%	6.5%
	Belle II 5/ab	1.1%	3.4%
	Belle II 50/ab	0.4%	3%

28
Semileptonic

Conversion case is puzzle ~ 2% precision expected.

 B^0 semileptonic $P_{iscrepancy}^{ional dn} B^{de} right handed$ *currents* with southing V_{ub}^R

- $B \rightarrow \pi |v|$ rate goes as $|V_{ub}^{L} + V_{ub}^{R}|^{2}$
- $B \rightarrow \tau v$ rate goes as $|V_{ub}^{L} V_{ub}^{R}|^{2}$

• $B \rightarrow X_u | v rate goes as |V_{ub}^L| + |V_{ub}^R|^2$

 $B \to X_u \,\ell \,\bar{\nu}_\ell$

Error on IV _{ub} l	stat.	tot.
B-Factories	2.7%	9.4%
Belle II 5/ab	1.0%	4.2%
Belle II 50/ab	0.3%	2.2%

Error on IV _{ub} I	stat.	tot.
B-Factories	4.5%	6.5%
Belle II 5/ab	1.1%	3.4%
Belle II 50/ab	0.4%	3%

50/ab or 22/fb: dotted

Flavour changing neutral currents

Belle arXiv:1608.02344

FCNC or penguin decays are very sensitive to new particles and interactions.

Massive, beyond SM, particles may contribute to B decay processes in loop diagrams. b→s & b→d can be probed

B_s mixing

- b \rightarrow s g (e.g. TDCPV in B⁰ \rightarrow Φ Ks, etc.)
- b \rightarrow s γ (e.g. decay rate, TDCPV)
- b → s l⁺ l⁻ (e.g. F-B asymmetry test of chirality)

• b \rightarrow s v <u>v</u>

$A_{FB}(B \rightarrow K^* l^+ l^-)(q^2)$

The SM forward-backward asymmetry in b \rightarrow s l⁺ l⁻ arises from the **interference** between γ and Z⁰ contributions.

$$\Lambda_{\Gamma B}(B \to K^* \ell^+ \ell^-) = -C_{10} \xi(q^2) \left[Re(C_9) F_1 + \frac{1}{q^2} C_7 F_2 \right]$$

Ali, Mannel, Morozumi, PLB273, 505 (1991)

Multiple heavy particles of the SM (W, Z, top) enter in this decay.

^BThe $A_{5^{\circ}}$ measurements are on B compatible with the rom <u>SM prediction attalevel of 3.766</u>.....A mild tension can a called be seen in the A_{FB} dist Biberthore, where the 8% $e^{1}h$ absorbed be seen in the system at call A_{FB} dist Biberthore, where the SM $e^{1}h$ absorbed be seen in the frequencies of the SM $e^{1}h$ absorbed by $B^{\circ}h$ and $B^{\circ}h$ $B
ightarrow X_s \, \ell \ell \ C_7/C_9$ ratio

Error	tot.
B-Factories	19%
Belle II 5/ab	9%
Belle II 50/ab	6%

Lepton Flavour Universality Violation Melbourne MSc Thesis, A. Duong

Phillip URQUIJO

33

MELBOURNE

Lepton Flavour Universality Violation

FEATURE 27 April 2016

That's odd: Unruly penguins hint where all the antimatter went

 Belle II much more powerful on e modes.

Phillip URQUIJO

Beyond SM in the Lepton Sector

- No right-handed neutrinos in the SM, implies they are massless.
- Neutrino oscillations show they have small but finite masses.
 - Where are the R-handed Neutrinos?
- Mechanism beyond SM is needed.

Seesaw mechanisms are candidates

 $\frac{\text{Seesaw (tree level)}}{m_{ij}^{\nu} = y_i y_j v^2 / M} \qquad M = 10^{14} \text{ GeV (for } y_i = O(1))$

Quantum Effects (Radiative Seesaw)N-th order of perturbation $m^{v}_{ii} = [1/(16\pi^{2})]^{N} C_{ii} v^{2}/M$ M=1 TeV

Beyond SM in the Lepton Sector

- No right-handed neutrinos in the SM, implies they are massless.
- Neutrino oscillations show they have small but finite masses.
 - Where are the R-handed Neutrinos?
- Mechanism beyond SM is needed.

Seesaw mechanisms are candidates

 $\frac{\text{Seesaw (tree level)}}{m_{ij}^{\nu} = y_i y_j v^2 / M} \qquad M = 10^{14} \text{ GeV (for } y_i = O(1))$

Quantum Effects (Radiative Seesaw)N-th order of perturbation $m^{v}_{ij} = [1/(16\pi^{2})]^{N} C_{ij} v^{2}/M$ M=1 TeV

Nature of NP in τ LFV

Nature of NP in τ LFV

If we find a signature, we can determine its nature

determine its nature.

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

	$\tau \rightarrow 3 \mu$	$\tau \to \mu \gamma$	$\tau \to \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
$O_{S,V}^{4\ell}$	✓	_	—	_	_	—
OD	1	1	\checkmark	\checkmark	_	_
O^q_V	—	—	✓ (I=1)	$\checkmark(\mathrm{I=}0{,}1)$	_	_
O_S^q	—	—	✓ (I=0)	$\checkmark(\mathrm{I=}0{,}1)$	—	—
O_{GG}	—	—	\checkmark	\checkmark	—	_
O_A^q	—	—	—	—	\checkmark (I=1)	✓ (I=0)
O_P^q	—	—	—	—	✓ (I=1)	✓ (I=0)
$O_{G\widetilde{G}}$	_	_	—	—	_	1

$\tau \rightarrow I \gamma$ with Beam background

LAL Seminar, 2016

Phillip URQUIJO

THE UNIVERSITY O MELBOURNE

Time-dependent CP violation

"<u>A Double-S</u>lit experiment" with particles and antiparticles

Belle II Analysis

LAL Seminar, 2016

Gluonic penguins, S_{CP}

 $B \rightarrow \phi K^0$ at 50/ab with ~2010 WA values

Belle II will lead on all TCPV in B decays

LAL Seminar, 2016

 \mathcal{B}

Radiative Penguins, S_{CP}

- SM EW purely L-handed.
- Right-handed current is a signature of NP
 S=-2(m_s/m_b)sin(2φ₁)=(-2.3±1.6)%

•WA Experiment ~ 22% precision

MELBOURNE

LAL Seminar, 2016

Phillip URQUIJO

NP in B_d mixing: Fit results

•95% CL, NP \leq (many × SM) \implies NP \leq (0.05 × SM)

$$h \simeq 1.5 \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \frac{(4\pi)^2}{G_F \Lambda^2} \simeq \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \left(\frac{4.5 \text{ TeV}}{\Lambda}\right)^2 \qquad \text{by Stage II,}$$

$$\sigma = \arg(C_{ij}\lambda_{ij}^{t*}) \qquad \text{or } \Lambda \simeq 20 \text{ TeV (tree)}$$

Stage II: similar sensitivity to gluino masses explored at LHC 14TeV

Phase II: First collision Run, Jan-Jun 2018

No VXD, only the BEAST silicon detector setup (for beam background study)

Tracking Efficiency

Tracking Efficiency

Phillip

Phase II Unique data sets

Only ~20-40 fb⁻¹ in Phase II

- New trigger menu to greatly enhance low multiplicity physics
- Unique E_{CM}, e.g. Y(6S) for bottomonium - strong interaction studies

Experiment	Scans/Off.	Res.	$\Upsilon(5$	(S)	Υ	(S)	$\Upsilon(3)$	SS)	$\Upsilon(2$	2S)	$\Upsilon(1)$	1S)
			10876	MeV	10580	MeV	10355	MeV	10023	MeV	9460	MeV
	fb^{-1}		fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}
CLEO	17.1		0.4	0.1	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54		R_b s	can	433	471	30	122	14	99	-	_
Belle	100		121	36	711	772	3	12	25	158	6	102

Accelerator E_{CM} reach

- Start with Y(4S) operation at Phase II
- 20 days to collect 10fb-1 @ Y(6S)
- 5 months total Phase II operation

 E_{CM} max with constant $\gamma\beta$ =0.284 is ~ 11.1 GeV

Exotic 4-quark States

Belle arXiv:1508.06562

Z_b Y(6S) Scan analysis

- Anomalous Y(5S) $\rightarrow \pi\pi Y(pS)$ transitions led to discovery of $Z_{b}^{\pm}(106XX)$
 - Preliminary evidence for Y(6S) $\rightarrow \pi\pi h(nP)$, via $\pi Z_b^{\pm}(106XX)$
 - Resonance structure of Y(6S) channel not fully studied
- Can be probed in phase II!

Dark Sector

)13

- Belle II can probe 'dark forces' with dedicated Triggers
 - 'dark forces': involving dark-matter particles that serve as portals from dark e^- to SM sectors.

Dark Sector

)13

- Belle II can probe 'dark forces' with dedicated Triggers
 - 'dark forces': involving dark-matter particles that serve as portals from dark e^- to SM sectors.

Trigger & dataset

- HLT output estimated to be ~11 nb = 11 kHz at nominal luminosity.
- Largest dataset in particle physics outside of LHC.

LAL Seminar, 2016

Roadmap

- SuperKEKB has been brought to life first turns occurred in February. Current reached 1 Amp!
- Phase II starts January 2018, Phase III Late 2018
- 50 × integrated luminosity @ Belle II will probe significantly into > 1 TeV mass scale
- Rich physics program at SuperKEKB/Bellell
 - New sources of CPV, New gauge bosons, Lepton Flavour Violation, Dark Sectors.
 - Numerous anomalies to probe with the first 5 ab⁻¹ (many more than shown).
- The Belle II physics book to be published in 2017 (ed. PU & E. Kou)

Golden modes: B physics

SuperKEKB TDR (2014)

	Observables	Belle	Belle II	
		(2014)	5 ab^{-1}	50 ab^{-1}
UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$ [64]	0.012	0.008
	α [°]	85 ± 4 (Belle+BaBar) [24]	2	1
	γ [°]	68 ± 14 [13]	6	1.5
Gluonic penguins	$S(B \to \phi K^0)$	$0.90^{+0.09}_{-0.19}$ [19]	0.053	0.018
	$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$ [65]	0.028	0.011
	$S(B \to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$ [17]	0.100	0.033
	$\mathcal{A}(B \to K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$ [66]	0.07	0.04
UT sides	$ V_{cb} $ incl.	$41.6 \cdot 10^{-3} (1 \pm 1.8\%) [8]$	1.2%	
	$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{\text{ex.}} \pm 2.7\%_{\text{th.}})$ [10]	1.8%	1.4%
	$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} (1 \pm 6.0\%_{\text{ex.}} \pm 2.5\%_{\text{th.}}) [5]$	3.4%	3.0%
	$ V_{ub} $ excl. (had. tag.)	$3.52 \cdot 10^{-3} (1 \pm 8.2\%)$ [7]	4.7%	2.4%
Missing E decays	$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$96(1\pm27\%)$ [26]	10%	5%
	$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	$< 1.7 \ [67]$	20%	7%
	$R(B \to D \tau \nu)$	$0.440(1 \pm 16.5\%) \ [29]^{\dagger}$	5.6%	3.4%
	$R(B \to D^* \tau \nu)^{\dagger}$	$0.332(1 \pm 9.0\%) \ [29]^{\dagger}$	3.2%	2.1%
	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40 [30]	< 15	30%
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55 [30]	< 21	30%
Rad. & EW penguins	$\mathcal{B}(B \to X_s \gamma)$	$3.45\cdot 10^{-4} (1\pm 4.3\%\pm 11.6\%)$	7%	6%
	$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$	$2.2 \pm 4.0 \pm 0.8$ [68]	1	0.5
	$S(B\to K^0_S\pi^0\gamma)$	$-0.10 \pm 0.31 \pm 0.07$ [20]	0.11	0.035
	$S(B o ho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$ [21]	0.23	0.07
	$C_7/C_9 \ (B \to X_s \ell \ell)$	$\sim \! 20\% [36]$	10%	5%
	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	$< 8.7 \ [42]$	0.3	_
	$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$	_	< 2 [44]‡	_

	Observables	Belle	Bel	le II
		(2014)	5 ab^{-1}	50 ab^{-1}
Charm Rare	$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%)$ [46]	2.9%	0.9%
	$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \cdot 10^{-3} (1 \pm 3.7\% \pm 5.4\%) [46]$	3.5%	2.3%
	$\mathcal{B}(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5 [49]	30%	25%
Charm CP	$A_{CP}(D^0 \to K^+ K^-) \ [10^{-2}]$	$-0.32 \pm 0.21 \pm 0.09$ [69]	0.11	0.06
	$A_{CP}(D^0 \to \pi^0 \pi^0) \ [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$ [70]	0.29	0.09
	$A_{CP}(D^0 \to K_S^0 \pi^0) \ [10^{-2}]$	$-0.21 \pm 0.16 \pm 0.09$ [70]	0.08	0.03
Charm Mixing	$x(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.56 \pm 0.19 \pm {}^{0.07}_{0.13}$ [52]	0.14	0.11
	$y(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.30 \pm 0.15 \pm {}^{0.05}_{0.08}$ [52]	0.08	0.05
	$ q/p (D^0\to K^0_S\pi^+\pi^-)$	$0.90 \pm {0.16 \atop 0.15} \pm {0.08 \atop 0.06}$ [52]	0.10	0.07
	$\phi(D^0 \to K^0_S \pi^+ \pi^-) \ [^\circ]$	$-6 \pm 11 \pm \frac{4}{5}$ [52]	6	4
Tau	$\tau \to \mu \gamma \ [10^{-9}]$	< 45 [71]	< 14.7	< 4.7
	$\tau \to e \gamma \ [10^{-9}]$	< 120 [71]	< 39	< 12
	$\tau \to \mu \mu \mu \ [10^{-9}]$	< 21.0 [72]	< 3.0	< 0.3

The periodic table of particle physics

Particles in a given family distinguished only by the mass!

Seesaw mechanisms can generate mass

Seesaw mechanisms are candidates

 $\frac{\text{Seesaw (tree level)}}{m_{ii}^{v} = y_{i}y_{j}v^{2}/M}$

$$M = 10^{14} \text{ GeV} (\text{for } y_i = O(1))$$

 $\label{eq:mv_ij} \begin{array}{l} \underline{\text{Quantum Effects (Radiative Seesaw)}} & \text{N-th order of perturbation} \\ m^{v}{}_{ij} = [1/(16\pi^2)]^{N} \ C_{ij} \ v^2/M & \text{M=1 TeV} \end{array}$

Non-degenerate, SUSY, Type 1 Seesaw

T. Goto et al. Phys. Rev. D 91, 033007 (2015) NEW PHYSICS INTERPRETATION

- what type of NP?
- μ due to 1-loop correction
- a charged particles necessary
- $\iota\gamma$ typically too large
- possible to explain if extra scalar doublet
- OM of type III
- ntly above Cheng-Sher naturalness erion

Dorsner et al, 1502.07784

LHC synergy with H $\rightarrow \tau \mu$ anomaly: Leptoquarks

$B \rightarrow D^* \tau \nu, \tau \rightarrow h \nu$

• By combining $R(D^*)$ and P_{τ} , our result is consistent with the SM within 0.6 σ

Bottomonia

4 ways for NP to manifest in Flavour

- Common model-building step is to extend the gauge structure of the SM.
- An additional U(1)x gauge symmetry (e.g. a Z'): Flavour changing neutral current.
- 2. An additional Higgs doublet: charged Higgs.
- 3. Restoration of Left-Right Symmetry: i.e. Additional Right handed SU(2): SU(2)_L x SU(2)_R x U(1)_{B-L}
 - → New heavy gauge bosons W', Z' and new heavy charged and neutral Higgs particles.
 - \rightarrow Quark flavour mixing matrices V_L = V_{CKM} and V_R describing left- and right-handed charged current interactions 5 more CP phases.

4. Add a heavy seesaw neutrino partner: majorana mass term, LFV.

Dark photon to invisible, $e+e- \rightarrow \gamma A'$, $A' \rightarrow invisible$.

- Single photon triggered (*New*)
- BaBar: 28fb⁻¹ single-photon trigger (Y(2S,3S)) unpublished.

Dark photon to invisible, $e+e- \rightarrow \gamma A'$, $A' \rightarrow invisible$.

- Single photon triggered (*New*)
- BaBar: 28fb⁻¹ single-photon trigger (Y(2S,3S)) unpublished.

Belle II & LHCb projections

