TRIGGERING AT ATLAS

ANNA SFYRLA UNIVERSITÉ DE GENÈVE

PERIMENT

SEMINAR AT LAL, ORSAY 20 JANUARY 2017

THE STANDARD MODEL

...ONE PIECE IN THE PUZZLE

THE LARGE HADRON COLLIDER

New Particle! (<<**mHz?**)

p-p collisions with interesting parton interactions (<kHz)

0000

p)⇒ ⇐ p

~25 p-p collisions/bc

Proton bunches >10¹¹ protons/bunch (colliding at ~40MHz)

THE LARGE HADRON COLLIDER

New Particle! (<<**mHz?**)

p-p collisions with interesting parton interactions (<kHz)

p)⇒ ⇐ p

~25 p-p collisions/bc

Proton bunches >10¹¹ protons/bunch (colliding at ~40MHz)

THE ATLAS DETECTOR

RUN1, RUN2 AND BEYOND

ATLAS POST-RUN1

ATLAS POST-RUN1

LHC OPERATIONS & ATLAS

Why "trigger"?

The trigger system in ATLAS run2.

including trigger performance and new ideas for 2017 (and beyond).

Trigger menus.

- In and what to expect for the future.
- Beyond run2…

THE STANDARD MODEL

THE STANDARD MODEL

In 2016

40 MHz 13 TeV

L1 accept ~ 90 kHz

> Storage 1 kHz

THE DATA

Event Rate Lingt = 10³⁴/cm²s

1 GHz

1 kHz

1 Hz

10⁻² Hz

Viable SUSY

& other exotics

Status: August 2016

Theory

Data 4.5 - 4.9 fb

Data 0.08 - 14.8 fb

LHC pp $\sqrt{s} = 7$ TeV

LHC pp $\sqrt{s} = 8$ TeV Data 20.3 fb⁻¹

LHC np √s = 13 TeV

 $V\gamma t\bar{t}Wt\bar{t}Z t\bar{t}\gamma Z_{jj} ww z_{\gamma\gamma} w_{\gamma\gamma} vv_{jj}$

Triggering Challenge

Maintain a rich acceptance in physics (including unknown new phenomena!) while respecting the limitations of

gd

 10^{11}

106

104

 10^{3}

10²

 10^{1}

1 10⁻¹

10⁻²

A Ototal (x2

 $0.1 < \frac{n_j \ge 1}{\rho_{\rm T}} < 2 \, {\rm TeV}$

_____n, ≥ 0

DAO inelasti

Standard Model Production Cross Section Measurements

ATLAS Preliminary

Run 1,2 $\sqrt{s} = 7, 8, 13$ TeV

γγ Η

- Detector readout
- DAQ system & HLT
- Computing system

- Find ways to reduce fakes and improve robustness to pile-up, respecting the limitations imposed by various systems.
- → Various upgrades and new features introduced in DAQ, L1 and HLT.
- → Key feature: robustness; events that are not triggered are lost forever.

In 2016

40 MHz 13 TeV

L1 accept ~ 90 kHz

Storage

1 kHz

New Run2 components in pink boxes

L1Calo L1Muon L1Topo CTP

L1CALO

Reconstructs energy depositions in the calorimeters: electrons & photons, taus, jets and MET.

- Preprocessor Upgraded For Run2
 - Data Digitization and Timing definition
 - Bunch-crossing ID
 - Noise suppression and Pedestal correction
 - Calibration
- Processors Upgraded For Run2
 - Cluster algorithms
 - Isolation
 - Identification of "TOBs" (trigger objects)
- Common Merger Modules New For Run2
 - Eta-dependent thresholds
 - TOBs to L1Topo

L1CALO

Reconstructs energy depositions in the calorimeters: electrons & photons, taus, jets and MET.

- Preprocessor Upgraded For Run2
 - Data Digitization and Timing definition
 - Bunch-crossing ID
 - Noise suppression and Pedestal correction.
 - Calibration
- Processors Upgraded For Run2
 - Cluster algorithms
 - Isolation
 - Identification of "TOBs" (trigger objects)
- Common Merger Modules New For Run2
 - Eta-dependent thresholds
 - TOBs to L1Topo

Reconstructs muons.

- Barrel (RPC, |η|<1.05)
- Extra coverage increases acceptance (few %).
- Endcap (TGC, 1.05<|η|<2.4)
 - Two- (low-pT) and three-station coincidence.
- New For
RUN2Extra coincidence between specific
chambers reduces fakes (up to 60%).
 - Moving for MU4 the two-station 2016 coincidence to three-station in the phidirection reduces fakes significantly.
 - No pT measurement. Only threshold passed (and multiplicities).

- Barrel (RPC, |η|<1.05)
- NEW IN 2016
- Extra coverage increases acceptance (few %).
- Endcap (TGC, 1.05<|η|<2.4)
- Two- (low-pT) and three-station coincidence.
- New For
RUN2Extra coincidence between specific
chambers reduces fakes (up to 60%).
 - Moving for MU4 the two-station 2016 coincidence to three-station in the phidirection reduces fakes significantly.
 - No pT measurement. Only threshold passed (and multiplicities).

L1MUON

Level-I

passed (and multiplicities).

Central Trigger

Moving for MU4 the two-station coincidence to threestation in the phidirection reduces fakes significantly for minimal efficiency loss.

• Barrel (RPC, |η|<1.05)

NEW IN

- Extra coverage increases acceptance (few %).
- Endcap (TGC, 1.05<|η|<2.4)
 - Two- (low-pT) and three-station coincidence.
- New For
RUN2Extra coincidence between specific
chambers reduces fakes (up to 60%).
 - Moving for MU4 the two-station 2016 coincidence to three-station in the phidirection reduces fakes significantly.
 - No pT measurement. Only threshold passed (and multiplicities).

L1MUON

L1TOPO NEW IN 2016 – A MAJOR MILESTONE

Combines information from L1Calo and/or L1Muon into variables that are used for additional L1 selections.

- Topological/angular selections, kinematic selections, sums.
- Significant rate reduction, increased signal purity, no impact in physics acceptance.
- A key feature for high-luminosity running!
- Main use cases in 2016: $H \rightarrow \tau \tau$ and B-physics.
- New crucial feature introduced in 2015, in commissioning till mid-2016. In "active" mode since September 2016.

CENTRAL TRIGGER PROCESSOR UPGRADED FOR RUN2

Time-aligns the trigger signals, provides the final trigger decision (L1A).

- **Bunchgroup** defines which bunch of the 3564 possible LHC bunches the trigger is active on.
- **Prescale** factor N means that 1/N events is accepted.
- Trigger deadtime:
 - **Simple**; number of bunches the trigger waits before a new L1 accept.
 - **Complex**; restricts the number of L1 accepts in a given period.

REGIONS OF INTEREST (Rol)

"Rol-builder" (RolB).

30

REGIONS OF INTEREST (Rol)

Level-1 feeds the HLT with regional information ($\eta \times \phi$), the Rol.

- Per type of object (e.g. EM, TAU)
- Per threshold passed (e.g. EM7)

Made available to the HLT by the "Rol-builder" (RolB).

HLT INFRASTRUCTURE

Large commercial PC farm installed in the surface building above ATLAS.

 Typical HLT node: 2x12-core Intel Xeon Haswell, 96 cores / box. 48 GB RAM, 10Gb Ethernet, 4 motherboards in 2U box.

Required number of cores:

input rate × <processing time>

- E.g: 100kHz x 300ms = 30K cores. Outliers in processing time absorbed by buffers.
- Events are processed independently in these cores.

HLT "CHAINS"

HLT software very similar to the offline reconstruction software; ideally, "identical".

 Except... offline reconstruction takes > 10s / events. The HLT only has << 1s!

Trigger reconstruction works in steps.

- → Fast (often trigger specific) reconstruction, mostly at Rols.
- → Precision reconstruction, with full detector available.
- → Stop chain processing as soon as a step fails; stop event processing as early as possible.

Two types of algorithms:

- "Feature Extraction" (FEX) algorithms that build objects (e.g. tracks and clusters). Are (should be) the slowest; we make sure they run once per event.
- "Hypothesis" (HYPO) algorithms that apply selection cuts (e.g. track pT, invariant mass).

HLT "CHAINS"

HLT software very similar to the offline reconstruction software; ideally, "identical".

 Except... offline reconstruction takes > 10s / events. The HLT only has << 1s!

Trigger reconstruction works in steps.

- → Fast (often trigger specific) reconstruction, mostly at Rols.
- → Precision reconstruction, with full detector available.
- → Stop chain processing as soon as a step fails; stop event processing as early as possible.

Two types of algorithms:

- "Feature Extraction" (FEX) algorithms that build objects (e.g. tracks and clusters). Are (should be) the slowest; we make sure they run once per event.
- "Hypothesis" (HYPO) algorithms that apply selection cuts (e.g. track pT, invariant mass).

Event gets accepted if any trigger passes (HLT decision positive).

- Streaming is based on trigger decisions.
- The Raw Data physics streams are generated at the HLT output level.

THE DATA

Event Rate Lingt = 10³⁴/cm²s

1 GHz

1 kHz

1 Hz

10⁻² Hz

Viable SUSY

& other exotics

Status: August 2016

Theory

Data 4.5 - 4.9 fb

Data 0.08 - 14.8 fb

LHC pp $\sqrt{s} = 7$ TeV

LHC pp $\sqrt{s} = 8$ TeV Data 20.3 fb⁻¹

LHC np √s = 13 TeV

 $V\gamma t\bar{t}Wt\bar{t}Z t\bar{t}\gamma Z_{jj} ww z_{\gamma\gamma} w_{\gamma\gamma} vv_{jj}$

Triggering Challenge

Maintain a rich acceptance in physics (including unknown new phenomena!) while respecting the limitations of

gd

 10^{11}

106

104

 10^{3}

10²

 10^{1}

1 10⁻¹

10⁻²

A Ototal (x2

 $0.1 < \frac{n_j \ge 1}{\rho_{\rm T}} < 2 \, {\rm TeV}$

_____n, ≥ 0

DAO inelasti

Standard Model Production Cross Section Measurements

ATLAS Preliminary

Run 1,2 $\sqrt{s} = 7, 8, 13$ TeV

γγ Η

- Detector readout
- DAQ system & HLT
- Computing system

- Find ways to reduce fakes and improve robustness to pile-up, respecting the limitations imposed by various systems.
- → Various upgrades and new features introduced in DAQ, L1 and HLT.
- → Key feature: robustness; events that are not triggered are lost forever.

In 2016

40 MHz 13 TeV

L1 accept ~ 90 kHz

Storage

1 kHz

THE DATA

2017 will see improvements in detector

readout and data bandwidth at least.

Triggering Challenge

Maintain a rich acceptance in physics (including unknown new phenomena!) while respecting the limitations of

• 2016 limitations.

Detector readout

max ~ 90 kHz

DAQ system & HLT

CPU: average ~ 300ms, Data bandwidth: average ~ 3GB/s

Computing system

average ~ 1 kHz

and knowing that the event rate is dominated by "fakes" and is significantly affected by pile-up.

- Find ways to reduce fakes and improve robustness to pile-up, respecting the limitations imposed by various systems.
- → Various upgrades and new features introduced in DAQ, L1 and HLT.
- → Key feature: robustness; events that are not triggered are lost forever.

In 2016

40 MHz 13 TeV

L1 accept ~ 90 kHz

> Storage 1 kHz

OPERATING THE TRIGGER

ATLAS Trigger Operation pp Data July 2016, vs= 13 TeV

Luminosity Block [~ 60s]

OPERATING THE TRIGGER

ATLAS Trigger Operation pp Data July 2016, vs= 13 TeV

TRIGGER SIGNATURES

Simplified Detector Transverse View

TRIGGER SIGNATURES

NEW FOR RUN2: Software had to be adjusted (pretty much everywhere) in view of the merged HLT!

Toroids HadCAL EMCAL

Solenoid

TRT

SCT

Pixels

COMMON: INNER DETECTOR TRACKING

Tracking is used in pretty much all objects reconstructed at the trigger (as is the case for offline).

 Muons, electrons, taus, b-jets and jets, MET, b-physics, minbias. And also, in beamspot and cosmic triggers.

The offline tracking runs in the complete detector, once per event. In the HLT this is not possible (CPU / DAQ).

- To reduce network traffic and the time available to read out the detector, data are read out only from the Rols.
- The ID Trigger then takes this local data and reconstructs tracks within the Rol only.
- Each Rol in an event is (usually) processed independently.

COMMON: HLT CALO CLUSTERING

Reconstructs calorimeter data at the HLT.

- For electrons, taus, jets, MET.
- Exists in Rol-based version (used in electrons and taus) and Full-scan version (used in jets and MET).

Data is unpacked to calorimeter cells from where clusters are built.

Pile-up corrections: train structure and bunch to bunch luminosity variations can create significant energy shifts which are mitigated by BCID dependent average pileup correction. Offline since a while, online since 2016.

ELECTRON / PHOTON

At L1:

- Analyse regions of 4x4 trigger tower.
- Cut on transverse energy threshold; eta-dependent; apply hadronic core isolation; and electromagnetic isolation.

At HLT:

Just like offline

- Photon is an energy cluster (no requirement on track).
- Electron is an energy cluster matched to a pT > 1GeV track.
- Reconstruction is fully Rol-based.
- Energy calibration based on a multivariate analysis technique.
 - Electron identification relies on a likelihood technique.

ELECTRON / PHOTON

ELECTRON / PHOTON

TAU

Tau Decay Mode			B.R.
Leptonic		$T^{\pm} \rightarrow e^{\pm} + v + v$	17.8%
		$\tau^{\pm} \rightarrow \mu^{\pm} + \nu + \nu$	17.4%
Hadronic	1-prong	$\tau^{\pm} \rightarrow \pi^{\pm} + v$	11%
		$\tau^{\pm} \rightarrow \pi^{\pm} + v + n\pi^{0}$	35%
	3-prong	τ± → 3π± + v	9%
		$\tau^{\pm} \rightarrow 3\pi^{\pm} + v + n\pi^0$	5%
Other			~5%

Variable	Offline		Trigger	
	1-track	3-track	1-track	3-track
$f_{ m cent}$	•	•	•	•
$f_{ m track}$	•	•	•	•
$R_{ m track}$	•	•	•	•
$S_{ m leadtrack}$	•		•	
$N_{ m track}^{ m iso}$	•		•	
$\Delta R_{ m Max}$		•		•
$S_{\mathrm{T}}^{\mathrm{flight}}$		•		•
$m_{ m track}$		•		•
$m_{\pi^0+\mathrm{track}}$	•	•		
N_{π^0}	•	•		
$p_{\mathrm{T}}^{\pi^{0}+\mathrm{track}}/p_{\mathrm{T}}$	•	•		

- Built from 4×4 jet elements
 - using a sliding window algorithm
- Pile-up suppression had a huge impact in low-pT
- Very good performance; inefficiencies in close-by mutlijets / fat jets

JETS HLT

- Very similar to offline jets, since full-scan topoclustering is used at the HLT.
 - Exception: tracking. Too expensive (CPU).

Efficiency

- Several types of jets exist to cover different uses.
 - Single jets, multijets, reclustered large-R jets, large-R topocluster jets, H_T, central & forward jets ...
 - Corrected using "Jet Areas"; MC-based calibration.

Efficiency

FAT JETS & L1TOPO

- Currently fat jet triggers use single narrow jet seed at L1.
- Prospects for reseeding fat jet triggers in 2017.
- Other envisaged improvements include substructure and top / boson tagging.

New IN 2017

JETS: FURTHER IMPROVEMENTS

Utilize more appropriate noise cuts in topo-clustering algorithm.

Jet Calibration: bringing online jets closer to offline.

- In 2016 we had MC-based calibrations on top of jet areas corrections.
- In 2017 we envisage:
 - Updated MC-based calibrations.
 - Calo term of "Global sequential calibration" (GSC) default offline.
 - Track term of GSC for triggers where tracking run in Rols.
 - Tracking is expensive; consider it when already done for b-jets.
 - (Then, add GCS to b-jets.)
 - *In situ* eta inter-calibration.

MISSING E_T

At L1:

- Sum all jet elements to obtain E_{Tx} and E_{Ty} components, from where E_{T} is calculated.
- Pile-up suppression has been essential.
 - Needs adjustment for large steps in pile-up.

At HLT:

• One of the few areas where offline ME_T doesn't quite work at the trigger.

- Requires proper reconstruction and calibration of all objects in the event.
- Various trigger alternatives:
 - Cell ME_T (2015 default)
 - Missing H_T (2016 default)
 - Cell ME_T + Missing H_T
 - Topocluster based ME_T, including with pile-up suppression

IMPACT OF PILEUP – ME_T

- ME_T triggers significantly hit by pileup in 2016;
 - threshold increase was unavoidable; didn't yet compromise physics.

NEW IN 2017

- Workaround for higher luminosities in place:
 - Cell ME_T + Missing H_T
 - Pile-up suppression algorithm ("PU Fit").
- Further RnD in progress:

Use dedicated Primary Vertex (PV) finding and a BDT (similar to offline) to select b-jets against c- and light-jets.

Run tracking within jet Rols for PV reco.

2. Run tracking within wider cone for secondary vertex finding.

B-JETS

New IN 2017: add GSC calibration

Use dedicated Primary Vertex (PV) finding and a BDT (similar to offline) to select b-jets against c- and light-jets.

Run tracking within jet Rols for PV reco.

2. Run tracking within wider cone for secondary vertex finding.

At HLT : • Single muon triggers are Rol-based.

• Full-scan muon (no Rol-based) option exists; high efficiency & low pT.

Decision

L1 MU

L1 MU

B-PHYSICS

Triggers based in very low-pT muons.

Challenges:

- L1 rates push thresholds high.
- Increased CPU needs due to low-pT muon combinatorics..

Key users of L1Topo!

THE NEW FAST TRACK TRIGGER

THE ATLAS TRIGGER SYSTEM

NEW

65

A hardware system that provides (at L1 rate) "full-scan" tracks and associated hits to the HLT (which cannot afford running full-scan track reconstruction high rate).

Based on pattern matching. Pattern banks generated using MC simulation. More than 50 billion tracks used for ~ 1 billion patterns.

A hardware system that provides (at L1 rate) "full-scan" tracks and associated hits to the HLT (which cannot afford running full-scan track reconstruction high rate).

Based on pattern matching. Pattern banks generated using MC simulation. More than 50 billion tracks used for ~ 1 billion patterns.

A hardware system that provides (at L1 rate) "full-scan" tracks and associated hits to the HLT (which cannot afford running full-scan track reconstruction high rate).

Based on pattern matching. Pattern banks generated using MC simulation. More than 50 billion tracks used for ~ 1 billion patterns.

A hardware system that provides (at L1 rate) "full-scan" tracks and associated hits to the HLT (which cannot afford running full-scan track reconstruction high rate).

- Based on pattern matching. Pattern banks generated using MC simulation. More than 50 billion tracks used for ~ 1 billion patterns.
- The HLT has now available tracks of pT > 1GeV.

FTK IN THE TRIGGER

Lots of potential for signatures that already use tracks (e.g. taus and bjets), and others that don't yet (e.g. jets and MET).

FTK IN THE TRIGGER

Lots of potential for signatures that already use tracks (e.g. taus and bjets), and others that don't yet (e.g. jets and MET).

FTK IN THE TRIGGER

Lots of potential for signatures that already use tracks (e.g. taus and bjets), and others that don't yet (e.g. jets and MET).

Year	2012		2015			
\sqrt{s}		$8\mathrm{TeV}$		$13{ m TeV}$		
Peak luminosity	7.7 imes 1	$10^{33}{\rm cm}^{-2}{\rm s}^{-1}$	5.0 imes	$10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$		
		$p_{\rm T}$ th	reshold $[GeV]$, cr	iteria		
Category	L1	HLT	L1	HLT	Offline	
Sing About 1 5k H	II T sele	ctions seede	d by about 40	00 different I	evel-1 it	ems
Sing Primary tr	iaaore		a sy ascaled.			
Sing a Triniary u	iyyeis,					
Sing • Support a	nd back	ground trigg	ers, usually p	rescaled;		
Sing • Alternative	e triggei	rs, using diffe	erent algorithr	ns;		
• Backup tr	iggers, i	using tighter	selections;			
$\frac{E_{\rm T}}{\rm Dil}$ • Calibratio	n triaae	rs. usually pr	oviding partia	llv built ever	nts.	
Diel			5 · · · · · · · · · · · · · · · · · · ·			
Dim Floor Maintain a dur						1
Diple Maintained r	nenu ite	ems and pres	cale strategy	pretty stable	e through	n out
Dipi 2015 data ta	king an	d 2016 data f	taking, to ens	ure continuit	y of trigg	jer
T _{au} selections fo	r physic	s analyses.				
Tau, muon	8.10	20.15	12i(+iets), 10	25.14	30, 15	
Tau. $E_{\rm T}^{\rm miss}$	20.35	$\frac{10}{38}, \frac{10}{40}$	20.45(+iets)	$\frac{20}{35}, \frac{11}{70}$	40, 180	
Four jets	4×15	$\frac{4\times80}{4\times80}$	3×40	$\frac{337,73}{4\times85}$	$\frac{10, 200}{95}$	
Six jets	4×15	$6{\times}45$	4×15	$6{\times}45$	55	
Two b -jets	75	35b, 145b	100	50b, 150b	60	
Four(Two) $(b-)$ jets	4×15	$2 \times 35 \mathrm{b}, 2 \times 35$	$3{\times}25$	$2 \times 35b, 2 \times 35$	45	
B-physics (Dimuon)	6, 4	6, 4	6, 4	6, 4	6, 4	

Year		2012	2015		
\sqrt{s}		$8{ m TeV}$			
Peak luminosity	7.7 imes 1	$0^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	5.0 imes	$10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	
		$p_{\rm T}$ th	reshold [GeV], cr	iteria	
Category	L1	HLT	L1	HLT	Offline
Single electron	18	24i	20	24	25
Single muon	15	24i	15	20i	21
Single photon	20	120	20	120	125
Single tau	40	115	60	80	90
Single jet	75	360	100	360	400
Single b -jet	n/a	n/a	100	225	235
$E_{\mathrm{T}}^{\mathrm{miss}}$	40	80	50	70	180
Dielectron	2×10	2×12 ,loose	2×10	2×12 ,loose	15
Dimuon	2×10	2×13	2×10	2×10	11
Electron, muon	10, 6	12, 8	15, 10	17, 14	19, 15
Diphoton	16, 12	35, 25	2×15	35, 25	40, 30
Ditau	15i, 11i	27, 18	20i, 12i	35, 25	40, 30
Tau, electron	11i, 14	28i, 18	12i(+jets), 15	25, 17i	30, 19
Tau, muon	8,10	20, 15	12i(+jets), 10	25, 14	30, 15
Tau, $E_{\rm T}^{\rm miss}$	20, 35	38, 40	20, 45(+jets)	35, 70	40, 180
Four jets	4×15	4×80	3×40	4×85	95
Six jets	4×15	6×45	4×15	6×45	55
Two b -jets	75	$35b,\!145b$	100	50b, 150b	60
Four(Two) $(b-)$ jets	4×15	$2 \times 35b, 2 \times 35$	$3{\times}25$	$2 \times 35b, 2 \times 35$	45
B-physics (Dimuon)	6, 4	6, 4	6, 4	6, 4	6, 4

Year		2012	2015 2016			
\sqrt{s}		$8{ m TeV}$		$13{ m TeV}$		
Peak luminosity	7.7 imes 1	$0^{33}{\rm cm}^{-2}{\rm s}^{-1}$	5.0 imes	$10^{33}{\rm cm}^{-2}{\rm s}^{-1}$.2×10 ³⁴ cm ⁻² s ⁻¹	
		$p_{\rm T}$ th	reshold [GeV], cr	riteria		
Category	L1	HLT	L1	HLT	Offline	
Single electron	18	24i	20 22 i	24 26 i	25 27 i	
Single muon	15	24i	15 <mark>20</mark>	20i <mark>26</mark> i	21 27 i	
Single photon	20	120	20 <mark>22</mark> i	120 140	125 145	
Single tau	40	115	60	80 160	90 170	
Single jet	75	360	100	360 <mark>380</mark>	400 420	
Single b -jet	n/a	n/a	100	225	235	
$E_{\mathrm{T}}^{\mathrm{miss}}$	40	80	50	70 110	180 200	
Dielectron	2×10	2×12 ,loose	2×10 15	2×12 ,loose 17	15 18	
Dimuon	2×10	2×13	2×10	$2{ imes}10$ 14	11 15	
Electron, muon	10, 6	12, 8	15, 10	17, 14	19,15	
Diphoton	16, 12	35,25	2×15	35,25	40, 30	
Ditau	15i, 11i	27, 18	20i, 12i	35,25	40, 30	
Tau, electron	11i, 14	28i, 18	12i(+jets), 15	25, 17i	30, 19	
Tau, muon	8,10	20, 15	12i(+jets), 10	25, 14	30, 15	
Tau, $E_{\rm T}^{\rm miss}$	20, 35	38, 40	20, 45(+jets)	35, 70	40, 180	
Four jets	4×15	4×80	3×40	$4{ imes}85$ 100	95 110	
Six jets	4×15	$6{\times}45$	4×15	$6{ imes}45{ m w}$ / Ŋ C	uts 55	
Two b -jets	75	$35\mathrm{b},\!145\mathrm{b}$	100	$50\mathrm{b},\!150\mathrm{b}$	60	
Four(Two) $(b-)$ jets	4×15	$2 \times 35b, 2 \times 35$	$3{\times}25$	$2 \times 35b, 2 \times 35$	45	
B-physics (Dimuon)	6, 4	6, 4	6, 4	6, 4 6 , 6	6, 4	

Year	2012		2015 2016			(Examples)
\sqrt{s}		$8\mathrm{TeV}$		$13{ m TeV}$		HLT Rate
Peak luminosity	7.7×1	$0^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	5.0 imes	$10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ 1	.2×10 ³⁴ cm ⁻²	s-1 (Hz)
		$p_{\rm T}$ th	reshold [GeV], cr	iteria		
Category	L1	HLT	L1	HLT	Offline	
Single electron	18	24i	20 22 i	24 26 i	25 27 i	130 130
Single muon	15	24i	15 <mark>20</mark>	20i 26 i	21 27 i.	130 130
Single photon	20	120	20 22 i	120 140	125 145	
Single tau	40	115	60	80 160	90 170	
Single jet	75	360	100	360 380	400 420	
Single b -jet	n/a	n/a	100	225	235	
$E_{\mathrm{T}}^{\mathrm{miss}}$	40	80	50	70 110	180 200	55 230
Dielectron	2×10	2×12 ,loose	$2{ imes}10$ 15	2×12 ,loose 17	15 18	
Dimuon	2×10	2×13	2×10	$2{\times}10$ 14	11 15	
Electron, muon	10, 6	12, 8	15, 10	17, 14	19, 15	
Diphoton	16, 12	35,25	2×15	35,25	40, 30	
Ditau	15i, 11i	27, 18	20i, 12i	35,25	40, 30	
Tau, electron	11i, 14	28i, 18	12i(+jets), 15	25, 17i	30, 19	
Tau, muon	8,10	20, 15	12i(+jets), 10	25, 14	30, 15	
Tau, $E_{\mathrm{T}}^{\mathrm{miss}}$	20, 35	38, 40	20, 45(+jets)	35,70	40,180	
Four jets	4×15	4×80	3×40	$4{\times}85$ 100	95 110	
Six jets	4×15	6×45	4×15	$6{ imes}45$ w/ η cι	uts 55	12 18
Two b -jets	75	$35\mathrm{b},\!145\mathrm{b}$	100	$50b,\!150b$	60	
Four(Two) $(b-)$ jets	4×15	$2 \times 35b, 2 \times 35$	$3{\times}25$	$2 \times 35b, 2 \times 35$	45	
B-physics (Dimuon)	6, 4	6, 4	6, 4	6, 4 6 , 6	6, 4	

Year		2012	2015 2016			(Examples)
\sqrt{S}		$8\mathrm{TeV}$		$13{ m TeV}$		HLT Rate
Peak luminosity	7.7×1	$0^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$5.0 \times$	$10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ 1	.2×10 ³⁴ cm ⁻²	s-1 (Hz)
		$p_{\rm T}$ th	reshold [GeV], cr	iteria		
Category	L1	HLT	L1	HLT	Offline	
Single electron	18	24i	20 22 i	24 26 i	25 27 i	130 130
Single muon	15	24i	15 <mark>20</mark>	20i 26 i	21 27 i	130 130
Single photon	20	120	20 <mark>22</mark> i	120 140	125 145	
Single tau	40	115	60	80 160	90 170	
Single jet	75	360	100	360 380	400 420	
Single b -jet	n/a	n/a	100	225	235	
$E_{\mathrm{T}}^{\mathrm{miss}}$	40	80	50	70 110	180 200.	55 230
Dielectron	2×10	2×12 ,loose	$2{ imes}10$ 15	2×12 ,loose 17	15 18	
Dimuon	2×10	2×13	2×10	$2{ imes}10$ 14	11 15	
Electron, muon	10, 6	12, 8	15,10	17, 14	19,15	
Diphoton	16, 12	35, 25	2×15	35,25	40, 30	
Ditau	15i, 11i	27, 18	20i, 12i	35,25	40, 30	
Tau, electron	11i, 14	28i, 18	12i(+jets), 15	25, 17i	30, 19	
Tau, muon	8, 10	20, 15	12i(+jets), 10	25, 14	30, 15	
Tau, $E_{\rm T}^{\rm miss}$	20, 35	38, 40	20, 45(+jets)	35, 70	40,180	
Four jets	4×15	4×80	3×40	$4{ imes}85$ 100	95 110	
Six jets	4×15	6×45	4×15	$6{ imes}45{ extsf{w}}$ / ŋ ci	uts 55	12 18
Two <i>b</i> -jets	75	$35b,\!145b$	100	$50b,\!150b$	60	
Four(Two) $(b-)$ jets	4×15	$2 \times 35b, 2 \times 35$	$3{\times}25$	$2 \times 35b, 2 \times 35$	45	
B-physics (Dimuon)	6, 4	6, 4	6, 4	6, 4 6 , 6	6, 4	

Year		2012	2015 2016			(Examples)
\sqrt{S}		$8\mathrm{TeV}$		$13{ m TeV}$		
Peak luminosity	7.7×1	$0^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	5.0 imes	$10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.2×10 ³⁴ cm ⁻²	s-1 (Hz)
		$p_{\rm T}$ th	reshold [GeV], cr	riteria		
Category	L1	HLT	L1	HLT	Offline	
Single electron	18	24i	20 22 i	24 26 i	25 27 i	130 130
Single muon	15	24i	15 <mark>20</mark>	20i <mark>26</mark> i	21 27 i	130 130
Single photon	20	120	20 22 i	120 140	125 145	
Single tau	40	115	60	80 160	90 170	
Single jet	75	360	100	360 380	400 420	
Single <i>b</i> -jet	n/a	n/a	100	225	235	
$E_{\mathrm{T}}^{\mathrm{miss}}$	40	80	50	70 110	180 200.	55 230
Dielectron	2×10	2×12 ,loose	2×10 15	2×12 ,loose 17	15 18	
Dimuon	2×10	2×13	2×10	$2{ imes}10$ 14	11 15	
Electron, mu <mark>on</mark>	10, 6	12, 8	15,10	17, 14	19,15	
Diphoton	16, 12	35,25	2×15	35, 25	40, 30	
Ditau	15i, 11i	27, 18	20i, 12i	35, 25	40, 30	
Tau, electron	11i, 14	28i, 18	12i(+jets), 15	25, 17i	30, 19	
Tau, muon	8, 10	20, 15	12i(+jets), 10	25, 14	30, 15	
Tau, $E_{\rm T}^{\rm miss}$	20, 35	38, 40	20, 45(+jets)	35, 70	40,180	
Four jets	4×15	4×80	3×40	$4{ imes}85$ 100	95 110	
Six jets	4×15	6×45	4×15	$6{ imes}45{ extsf{w}}$ / Ŋ Cl	uts 55	12 18
Two <i>b</i> -jets	75	$35\mathrm{b},\!145\mathrm{b}$	100	$50b,\!150b$	60	
Four(Two) $(b-)$ jets	4×15	$2 \times 35b, 2 \times 35$	3×25	$2 \times 35b, 2 \times 35$	45	
B-physics (Dimuon)	6, 4	6, 4	6, 4	6, 4 6 , 6	6, 4	

Year		2012		2015 2016	(Exam	ples)
\sqrt{s}		8'IeV		13 TeV		Rate
Peak luminosity	7.7×1	$10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	5.0 >	$\times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ 1	.2×10 ³⁴ cm ⁻² s ⁻¹ (Hz	<u>z</u>)
		$p_{\rm T}$ th	reshold $[GeV]$, c	riteria		
Category	L1	HLT	L1	HLT	Offline	
Single electron	18	24i	20 22 i	24 26 i	25 27 i130	130
Single muon	15	24i	15 <mark>20</mark>	20i 26 i	21 27 i130	130
Single photon	20	120	20 22 i	120 140	125 145	
Single tau	40	115	60	80 160	90 170	
Single jet	75	360	100	360 380	400 420	_
Single <i>b</i> -jet	Trigger r	nenu made de	eneric enoual	n to cover mult	inle analyses.	
$E_{\mathrm{T}}^{\mathrm{miss}}$	dodicato	d triggors don	it pocossarily	r to oover man	w add many	
Dielectron			I L HECESSAIIIy	save rate, the	y add many	
Dimuon	imes un	ique rate.				
Electron muon	Still, ther	re are many "o	dedicated" an	d highly select	ing triggers	
Diphoton	E.g. s	oft lepton & je	et & MET for h	nighly compres	sed RPC SUSY	′ .
Ditau	Ũ	. ,				
Tau, electron	Commo	n reminder [.]				
Tau, muon	the tri	agor io tho fir	ot otop ip op d	nalvaia aalaat	ion and noode to	
Tau, $E_{\rm T}^{\rm miss}$		gger is the life	st step in an a	analysis select		ן נ
Four jets	be we	ell thought of!				
Six jets	4×15	6×45	4×15	$6{ imes}45$ w/ ŋ cı	uts 5512	2 18
Two <i>b</i> -jets	75	35b,145b	100	50b, 150b	60	-
Four(Two) $(b-)$ jets	4×15	$2 \times 35 \mathrm{b}, 2 \times 35$	$3{\times}25$	$2 \times 35 \mathrm{b}, 2 \times 35$	45	
B-physics (Dimuon)	6, 4	6, 4	6, 4	6, 4 6 , 6	6, 4	

GETTING MORE PHYSICS OUT

A flash-back to 2012; the SUSY paradigm.

Dedie	cated SUSY triggers in 2012]
Selection	EF trigger election	$\begin{array}{c} \textbf{EF Avrg Rate} \\ \textbf{(Hz)} \\ L_{\text{avrg}} = 5 \text{e} 33/\text{cm}^2\text{s} \end{array}$
$egin{array}{c} { m Single \; jet} \ \& \; E_{ m T}^{ m miss} \end{array}$	$\begin{array}{c} \text{Jet } p_T > 145 \text{ GeV} \\ \& \text{ EF-only } E_{\mathrm{T}}^{\mathrm{miss}} > 70 \text{ GeV} \end{array}$	8
$egin{array}{c} { m Single \; jet} \& E_{ m T}^{ m miss} \;\&\; \Delta \phi({ m jet}, E_{ m T}^{ m miss}) \end{array}$	${ m Jet} \ p_T > \!\! 80 { m GeV} \ \& \ E_{ m T}^{ m miss} > \!\! 70 { m GeV} \ \& \ \Delta \phi > \!\! 1.0$	8
H _T	>700 GeV	8
$ \begin{array}{c} \text{Single electron} \\ \& \ E_{\mathrm{T}}^{\mathrm{miss}} \end{array} $	Electron $p_T > 25 \text{ GeV}$ & EF-only $E_T^{\text{miss}} > 35 \text{ GeV}$	26
$\begin{array}{c} \text{Single muon} \\ \& \text{ single jet } \& \ E_{\mathrm{T}}^{\mathrm{miss}} \end{array}$	$\begin{array}{c} {\rm Muon}\ p_T >\!\! 24 \ {\rm GeV} \\ \& \ {\rm jet}\ p_T >\!\! 65 \ {\rm GeV}\ \&\ {\rm EF-only}\ E_{\rm T}^{\rm miss} >\!\! 40 \ {\rm GeV} \end{array}$	15
${f Single photon} \& E_{ m T}^{ m miss}$	${ m Photon} \ p_T > 40 { m ~GeV} \ \& { m EF-only} \ E_{ m T}^{ m miss} > 60 { m ~GeV}$	5
3 electrons	$p_T > 18, 2 \times 7 \text{ GeV}$	<1
3 muons	$p_T > 18, 2 \times 4 \text{ GeV}$	<1
3 electrons & muons	$p_T > 2 imes 7 \ (e), \ 6 \ (\mu) \ { m GeV} \ p_T > 7 \ (e), \ 2 imes 6 \ (\mu) \ { m GeV}$	<1 <1

- The $\Delta \phi$ selection is applied at EF, between the $E_{\rm T}^{\rm miss}$ and the two leading jets >45 GeV.
- H_T is defined as the sum of jets above 45 GeV, and is calculated in events that already satisfied the requirement of a leading jet >145 GeV.
- For the muon & jet & E_{T}^{miss} trigger, two versions are available, one without muon corrections in the E_{T}^{miss} and one with (this latter was introduce during the data taking).

→ SUSY delayed stream → Data not prompty reconstructed

Signature	EF trigger Selection		
	Prompt	Delayed	
	$4 \times 80 \text{ GeV}$	$4 \times 65 \text{ GeV}$	
Multi-jets	$5 \times 55 \text{ GeV}$	5×45 GeV	
	$6 \times 45 \text{ GeV}$	0/40 (10)	
H _T	700 GeV	500 GeV	
Jet $(R = 1.0)$	460 GeV	360 GeV	
$E_{ m T}^{ m miss}$	80 GeV	60 GeV	

DEDICATED STREAMING IN 2016

Date of run

Message:

a lot of flexibility is available at the trigger if there is a good use case for it!

DATA "SCOUTING" aka "Trigger-Level Analysis" (TLA)

Make available higher rate of jetty events by skipping the full detector information

- save HLT jets only.
- <5% of full event size. 1kHz of such partial events corresponds to < 50Hz of full events.

L1 Threshold [GeV]

PRESCALING STRATEGY

Prescale changes ensure no bandwidth goes wasted and special requirements for datasets get collected.

Important difference between L1 and HLT:

- At L1 we need to watch out for peak rates.
- At the HLT we need to watch out for average rates (primarily).

Usual strategy: single primaries through out a data period; end-of-fill primaries upon request only.

PRESCALING STRATEGY

Prescale changes ensure no bandwidth goes wasted and special requirements for datasets get collected.

Important difference between L1 and HLT:

- At L1 we need to watch out for peak rates.
- At the HLT we need to watch out for average rates (primarily).

Usual strategy: single primaries through out a data period; end-of-fill primaries upon request only.

WHAT TO EXPECT IN 2017

Year	Peak Lumi	Peak µ	L1 output	HLT output
2016	1.4e34	~40	90kHz peak	1.5kHz peak, 1kHz avg
2017	2e34	~60	100kHz peak	

- Generally, tighter selections at higher luminosity if rate reduction is necessary.
 - Generic signatures are most favorable to keep unchanged.
- Dedicated low-rate and analysis-specific triggers to be added depending on impact.
 - E.g. triggers for LLPs (is an HLT displaced vertex trigger possible?)
- Now that it is commissioned, make better use of L1Topo!
 - E.g. late muons, fatter or narrower jets, $\Delta \phi$ (jet,ME_T)
- Commission FTK to use in physics asap!
- ...and figure out how to best cover difficult or uncovered phase space.
 - E.g. compressed SUSY phase-space, RPV SUSY.

FURTHER IN THE FUTURE...

RUN1, RUN2 AND BEYOND

PHASE I

- Full-functional prototypes are being built and tested. First system tests started.
- Aim to complete pre-production by Q3-2017 & complete production by Q3-2018.
- Extremely important upgrade: software upgrade for the whole of ATLAS. The HLT is obviously following with major changes. More robust code, closer online to offline.

PHASE II

- Very active area with lots of new ideas and developments.
- Two architectures being discussed.
- Huge potential for improvements in otherwise compromised phase-space.

PHASE II

- Very active area with lots of new ideas and developments.
- Two architectures being discussed.
- Huge potential for improvements in otherwise compromised phase-space.

Item	Run 1 Offline	Run 2 Offline	Run 3 Offline	Run 4 Offline
	$p_{\rm T}$ Threshold	$p_{\rm T}$ Threshold	$p_{\rm T}$ Threshold	$p_{\rm T}$ Threshold
	[GeV]	[GeV]	[GeV]	[GeV]
	$L = 8 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$L = 2 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$L = 3 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$L = 7.5 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
isolated single e	25	32	32	22
forward e	N/A	N/A	N/A	35
single γ	120	150	120	120
single μ	25	27	25	20
di- γ	25	35,25	25	25
di-e	17	20	19	15
di-µ	12	15	12	11
$e - \mu$	17,6	20,13	17,12	15
single τ	100	180	180	150
di-T	40,30	40,30 + jet>50	40,40 + jet>50	40,30
single jet	200	200	200	180
large-R jet				375
four-jet	55	70	60	75
H _T			400	500
E_T^{miss}	120	200	200	200
$jet + E_T^{miss}$	150,120	150,180	150,150	140,125

OUTLOOK

- The ATLAS trigger system is an extremely complicated, yet very robust system.
- Events that are not triggered on are lost forever.
- Improving trigger selections directly improves physics potential.
- Huge potential for improvements in the rest of run2.
- Exciting prospects for the future, with room for new ideas and R&D.
- Thrilling times ahead in the trigger community!

EXTRAS

EFFICIENCY MEASUREMENTS

Tag and Probe

Using a single-object inclusive trigger, select one object triggered online and study the trigger response of the second object, not used in the online selection.

• e.g. Z→TT events

Bootstrap method

- The efficiency, $\boldsymbol{\epsilon}_{B}$, of a trigger chain B, with threshold higher than a chain A, can be determined in a sample triggered by A (provided that $\boldsymbol{\epsilon}_{A}$ is measurable): $\boldsymbol{\epsilon}_{B} = \boldsymbol{\epsilon}_{AB} \times \boldsymbol{\epsilon}_{A}$.
- e.g. B: tau50_loose & A: tau16_loose

JETS – CALIBRATION

• Different calibrations are one of the main online/offline differences

- Harmonizing calibration improves HLT/offline resolution
- Large gains when adding more steps for 2017 (next slide)

Offline calibration	Trigger calibration		
R = 0.4 jets	2016	2017	Comments
EM/LC topoclusters	 Image: A set of the set of the	1	
Origin correction	×	×	No tracks to find PV0
Jet area subtraction	 Image: A set of the set of the	1	
Residual pileup offset	×	×	No tracks to count PVs
etaJES (MC15)	MC12	MC15	
GSC (calo)	×	1	
GSC (track)	×	×✓	Active in some 2017 triggers
GSC (punch-through)	×	×	Negligible trigger impact
In situ calibration	×	✓	

MISSING E_T – MORE PLOTS

TRIGGER MENU - COMPARISON

Trigger	Typical offine coloction	Trigger Selection		Level-1 Peak	HLT Peak
	Typical online selection	Level-1 (GeV)	HIT (CoV)	Rate (kHz)	Rate (Hz)
			nL1 (Gev)	$L = 5 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$	
Single leptons	Single iso μ , $p_T > 21$ GeV	15	20	7	130
	Single $e, p_{\rm T} > 25 \text{ GeV}$	20	24	18	139
	Single μ , $p_{\rm T} > 42$ GeV	20	40	5	33
	Single τ , $p_{\rm T} > 90 \text{ GeV}$	60	80	2	41
Two leptons	Two μ 's, each $p_{\rm T} > 11 \text{ GeV}$	2×10	2×10	0.8	19
	Two μ 's, $p_{\rm T} > 19, 10 \text{ GeV}$	15	18, 8	7	18
	Two loose e's, each $p_{\rm T} > 15 \text{ GeV}$	2×10	2×12	10	5
	One <i>e</i> & one μ , $p_{\rm T} > 10, 26 \text{ GeV}$	$20 \ (\mu)$	7, 24	5	1
	One loose e & one μ , $p_{\rm T} > 19, 15$ GeV	15, 10	17, 14	0.4	2
	Two τ 's, $p_{\rm T} > 40, 30 \text{ GeV}$	20, 12	35, 25	2	22
	One τ , one μ , $p_{\rm T} > 30, 15 \text{ GeV}$	12, 10 (+jets)	25, 14	0.5	10
	One τ , one $e, p_{\rm T} > 30, 19 \text{ GeV}$	12, 15 (+jets)	25, 17	1	3.9
	Three loose e 's, $p_{\rm T} > 19, 11, 11 \text{ GeV}$	$15, 2 \times 7$	$17, 2 \times 9$	3	< 0.1
Three leptons	Three μ 's, each $p_{\rm T} > 8$ GeV	3×6	3×6	< 0.1	4
	Three μ 's, $p_T > 19, 2 \times 6$ GeV	15	$18, 2 \times 4$	7	2
	Two μ 's & one $e, p_{\rm T} > 2 \times 11, 14 \text{ GeV}$	$2 \times 10 \ (\mu's)$	$2 \times 10, 12$	0.8	0.2
	Two loose e 's & one μ ,	2×8 10	$2 \times 12 \ 10$	0.3	< 0.1
	$p_{\rm T} > 2 \times 11, 11 \text{ GeV}$	2 × 0, 10 2 × 12, 10		0.5	< 0.1
One photon	one γ , $p_{\rm T} > 125$ GeV	22	120	8	20
Two photons	Two loose γ 's, $p_T > 40, 30$ GeV	2×15	35, 25	1.5	12
	Two tight γ 's, $p_T > 25, 25$ GeV	2×15	2×20	1.5	7
Single jet	Jet $(R = 0.4), p_T > 400 \text{ GeV}$	100	360	0.9	18
	Jet $(R = 1.0), p_{\rm T} > 400 {\rm GeV}$	100	360	0.9	23
$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 180 {\rm ~GeV}$	50	70	0.7	55
Multi-jets	Four jets, each $p_{\rm T} > 95 \text{ GeV}$	3×40	4×85	0.3	20
	Five jets, each $p_{\rm T} > 70$ GeV	4×20	5×60	0.4	15
	Six jets, each $p_{\rm T} > 55$ GeV	4×15	6×45	1.0	12
<i>b</i> -jets	One loose $b, p_{\rm T} > 235 \text{ GeV}$	100	225	0.9	35
	Two medium b's, $p_{\rm T} > 160, 60 \text{ GeV}$	100	150,50	0.9	9
	One b & three jets, each $p_{\rm T} > 75$ GeV	3×25	4×65	0.9	11
	Two b & two jets, each $p_{\rm T} > 45 \text{ GeV}$	3×25	4×35	0.9	9
<i>b</i> -physics	Two μ 's, $p_{\rm T} > 6, 4$ GeV		6, 4	8	
	plus dedicated <i>b</i> -physics selections	6, 4			52
Total	- * v			70	1400

	Typical offline selection	Trigger Sele	ction	Level-1 Peak	HLT Peak
Trigger		Level 1 (GeV)	HIT (GeV)	Rate (kHz)	Rate (Hz)
				$L = 1.2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	
Single leptons	Single isolated μ , $p_T > 27$ GeV	20	26 (i)	13	133
	Single isolated tight $e, p_T > 27 \text{ GeV}$	22 (i)	26 (i)	20	133
	Single μ , $p_{\rm T} > 52 \text{ GeV}$	20	50	13	48
	Single $e, p_T > 61 \text{ GeV}$	22 (i)	60	20	13
	Single τ , $p_{\rm T} > 170 \text{ GeV}$	60	160	5	15
Two leptons	Two μ 's, each $p_{\rm T} > 15 {\rm GeV}$	2×10	2×14	1.5	21
	Two μ 's, $p_{\rm T} > 23, 9 {\rm GeV}$	20	22, 8	13	30
	Two loose e 's, each $p_T > 18 \text{ GeV}$	2×15	2×17	8	7
	One <i>e</i> & one μ , $p_{\rm T} > 8,25 {\rm GeV}$	20 (µ)	7,24	13	2
	One loose e & one μ , $p_T > 18$, 15 GeV	15, 10	17, 14	1.5	2.6
	Two τ 's, $p_{\rm T} > 40, 30 {\rm GeV}$	20 (i), 12 (i) (+jets)	35, 25	6	35
	One τ & one isolated μ , $p_T > 30$, 15 GeV	12 (i), 10 (+jets)	25, 14 (i)	1.5	7
	One τ & one isolated e , $p_T > 30$, 18 GeV	12 (i), 15 (i) (+jets)	25, 17 (i)	3	9
Three leptons	Three loose <i>e</i> 's, $p_{\rm T} > 18, 11, 11 \text{ GeV}$	$15, 2 \times 8$	$17, 2 \times 10$	15	< 0.1
	Three μ 's, each $p_T > 7$ GeV	3×6	3×6	0.1	3
	Three μ 's, $p_T > 21, 2 \times 5$ GeV	20	$20, 2 \times 4$	13	4
	Two μ 's & one loose $e, p_T > 2 \times 11, 13 \text{ GeV}$	$2 \times 10 (\mu's)$	$2 \times 10, 12$	1.5	0.2
	Two loose <i>e</i> 's & one μ , $p_T > 2 \times 13, 11 \text{ GeV}$	$2 \times 8, 10$	$2 \times 12, 10$	1.1	0.1
One photon	One loose γ , $p_{\rm T} > 145 {\rm GeV}$	22 (i)	140	20	30
Two photons	Two loose γ 's, $p_{\rm T} > 40, 30 \text{ GeV}$	2×15	35, 25	8	40
	Two tight γ 's, $p_{\rm T} > 27, 27$ GeV	2 × 15	2×22	8	16
Single jet	Jet $(R = 0.4), p_{\rm T} > 420 {\rm GeV}$	100	380	3	38
	Jet $(R = 1.0), p_{\rm T} > 460 {\rm GeV}$	100	420	3	35
E ^{miss}	$E_{\rm T}^{\rm miss} > 200 { m GeV}$	50	110	6	230
Multi-jets	Four jets, each $p_{\rm T} > 110 \text{ GeV}$	3×50	4×100	0.4	18
	Five jets, each $p_T > 80 \text{ GeV}$	4×15	5×70	3.5	14
	Six jets, each $p_T > 70 \text{ GeV}$	4×15	6×60	3.5	5
	Six jets, each $p_{\rm T} > 55$ GeV, $ \eta < 2.4$	4 × 15	6×45	3.5	18
<i>b</i> –jets	One <i>b</i> ($\epsilon = 60\%$), <i>p</i> _T > 235 GeV	100	225	3	24
	Two b's ($\epsilon = 60\%$), $p_{\rm T} > 160, 60 {\rm GeV}$	100	150, 50	3	20
	One $b \ (\epsilon = 70\%)$ & three jets, each $p_{\rm T} > 85 \text{ GeV}$	4 × 15	4 × 75	3.5	19
	Two $b \ (\epsilon = 60\%)$ & one jet, $p_T > 65, 65, 110 \text{ GeV}$	$2 \times 20,75$	$2 \times 55,100$	2.7	25
	Two $b \ (\epsilon = 60\%)$ & two jets, each $p_{\rm T} > 45 \text{ GeV}$	4×15	4×35	3.5	56
<i>b</i> -physics	Two μ 's, $p_{\rm T} > 6, 6 {\rm GeV}$	6.6		4.7	20
	plus dedicated b-physics selections	0,0	0, 0	4.7	20
Total					1500

TRIGGER SNAKES AND LADDERS

IMPACT OF PILEUP

Generally both L1 and HLT reconstruction made robust to pile-up.

- Huge effort in finding ways to mitigate the problem.
- At the HLT: tracking helps!

Still fighting for ME_T ...

TRIGGER ORGANIZATION

TRIGGER ORGANIZATION

ELECTRON / PHOTON

At L1:

- Analyse regions of 4x4 trigger tower.
- Cut on transverse energy threshold; eta-dependent; apply hadronic core isolation; and electromagnetic isolation.

10-

 10^{-2}

10⁻³

10-4

-20

-10

HLT tracks light-flavor jets

10

0

20

30

d_o Significance

40

Use dedicated Primary Vertex (PV) finding and a BDT (similar to offline) to select b-jets against c- and light-jets.

Run tracking within jet Rols for PV reco.

Run tracking within wider cone for secondary vertex finding.

BUNCHGROUP

COMMON: HLT CALO CLUSTERING

Reconstructs calorimeter data at the HLT.

- For electrons, taus, jets, MET.
- Exists in Rol-based version (used in electrons and taus) and Full-scan version (used in jets and MET).

Data is unpacked to calorimeter cells from where clusters are built.

Pile-up corrections: train structure and bunch to bunch luminosity variations can create significant energy shifts which are mitigated by BCID dependent average pileup correction. Offline since a while, online since 2016.

COMMON: HLT CALO CLUSTERING

Reconstructs calorimeter data at the HLT.

- For electrons, taus, jets, MET.
- Exists in Rol-based version (used in electrons and taus) and Full-scan version (used in jets and MET).

Data is unpacked to calorimeter cells from where clusters are built.

Pile-up corrections: train structure and bunch to bunch luminosity variations can create significant energy shifts which are mitigated by BCID dependent average pileup correction. Offline since a while, online since 2016.

COMMON: HLT CALO CLUSTERING

Reconstructs calorimeter data at the HLT.

- For electrons, taus, jets, MET.
- Exists in Rol-based version (used in electrons and taus) and Full-scan version (used in jets and MET).

Data is unpacked to calorimeter cells from where clusters are built.

Pile-up corrections: train structure and bunch to bunch luminosity variations can create significant energy shifts which are mitigated by BCID dependent average pileup correction. Offline since a while, online since 2016.

COMMON: HLT CALO CLUSTERING

Reconstructs calorimeter data at the HLT.

- For electrons, taus, jets, MET.
- Exists in Rol-based version (used in electrons and taus) and Full-scan version (used in jets and MET).

Data is unpacked to calorimeter cells from where clusters are built.

Pile-up corrections: train structure and bunch to bunch luminosity variations can create significant energy shifts which are mitigated by BCID dependent average pileup correction. Offline since a while, online since 2016.

Proton bunches >10¹¹ protons/bunch (colliding at ~40MHz in run2)

~25 p-p collisions / bunch crossing

