Deep Learning and Computer Vision in High Energy Physics

Michael Kagan

SLAC

LAL, January 10, 2017

Aspects of Machine Learning (ML) in HEP

<u>Optimization</u>

- Bottom line is performance
- But can we build new better (simple?) features?

• <u>Teaching the learning</u>

- Guide and boost performance of ML algorithms using physics knowledge (i.e. domain specific knowledge)
- We don't want ML to relearn special relativity

• Learning from Learning ...(if we can)

- Can we extract information about what the ML is learning?
- Can we use this information to design new variables?
- Often visualization is a key component

Coefficient

Machine Learning Applied Widely in HEP

• In analysis:

- Classifying signal from background, especially in complex final states
- Reconstructing heavy particles and improving the energy / mass resolution

• In reconstruction:

- Improving detector level inputs to reconstruction
- Particle identification tasks
- Energy / direction calibration
- In the trigger:
 - Quickly identifying complex final states

• In computing:

 Estimating dataset popularity, and determining needed number and location of dataset replicas

Neural Networks and Deep Learning

4

Neural Networks

- "Typical" neural network circa 2005
- Typical questions of optimization
 - Which variables to choose as inputs? How correlated are they?
 - How many nodes in the hidden layer?

Neural Networks

- "Typical" neural network circa 2005
- Typical questions of optimization
 - Which variables to choose as inputs? How correlated are they?
 - How many nodes in the hidden layer?

Training a Neural Network

 Define a loss function that depends on predictions f(x;w) and targets y

$$L_{MSE} = \frac{1}{N} \sum_{i=1}^{N_{examples}} (y_i - f(x_i))^2$$
$$L_{BCE} = \frac{1}{N} \sum_{i=1}^{N_{examples}} -y_i \log f(x_i) - (1 - y_i) \log(1 - f(x_i))$$

Training a Neural Network

 Define a loss function that depends on predictions f(x;w) and targets y

$$L_{MSE} = \frac{1}{N} \sum_{i=1}^{N_{examples}} (y_i - f(x_i))^2$$
$$L_{BCE} = \frac{1}{N} \sum_{i=1}^{N_{examples}} -y_i \log f(x_i) - (1 - y_i) \log(1 - f(x_i))$$

• Add **regularization** to control the model complexity and reduce overfitting

$$L' = L + \frac{1}{2} \sum_{j} w_j^2$$

Training a Neural Network

 Define a loss function that depends on predictions f(x;w) and targets y

$$L_{MSE} = \frac{1}{N} \sum_{i=1}^{N_{examples}} (y_i - f(x_i))^2$$
$$L_{BCE} = \frac{1}{N} \sum_{i=1}^{N_{examples}} -y_i \log f(x_i) - (1 - y_i) \log(1 - f(x_i))$$

 W_2

• Add **regularization** to control the model complexity and reduce overfitting

$$L' = L + \frac{1}{2} \sum_{j} w_j^2$$

- Minimize the loss function using backpropagation
 - Fancy word for chain rule
 - Compute average gradient on training set
- Update weights with gradient descent

$$w_j \leftarrow w_j - \alpha \nabla_{w_j} L$$

– α is called the learning rate

$$\nabla_{w_j} L = \frac{\partial L}{\partial f} \frac{\partial f}{\partial g_n} \frac{\partial g_n}{\partial g_{n-1}} \dots \frac{\partial g_{k+1}}{\partial g_k} \frac{\partial g_k}{\partial w_j}$$

Deep Neural Networks

- As data complexity grows, need exponentially large number of neurons in a single-hidden-layer network to capture all the structure in the data
- Deep neural networks have many hidden layers
 - Factorize the learning of structure in the data across many layers
- Difficult to train, only recently has this become possible...

Why did it take so long to train DNN's?

- Big Data: Large datasets vital for training (hundreds of) millions of parameters
- GPU's: Dramatically increased speed of training
- Improved optimization algorithms
- New regularization techniques: dropout, batch normalization, etc.
- New activation functions, like Rectified Linear Units

11

Deep NNs in HEP analysis

- Compare dense Deep NN against BDT's and shallow NN's
- Deep NN found to outperform shallow NN and BDT's
 - small but statistically significant gain over simpler ML algorithms
- Physicists are good at doing physics!
 - Typical physics variables are high performing (e.g. invariant mass, Razor, etc.)
 - But Deep NN's can learn well from only 4-vector inputs

Nature Communications 5, 4308 (2014)

BSM Higgs benchmark				
		AUC		
Technique	Low-level	High-level	Complete	
BDT	0.73(0.01)	0.78(0.01)	0.81 (0.01)	
NN	0.733(0.007)	$0.777 \ (0.001)$	0.816 (0.004)	
DN	0.880(0.001)	$0.800 \ (< 0.001)$	0.885(0.002)	
	Discovery significance			
Technique	Low-level	High-level	Complete	
NN	2.5σ	3.1σ	3.7σ	
DN	4.9σ	3.6σ	5.0σ	

- Hierarchical learning of representations
- Use **low level inputs** in smart ways
 - e.g. Feed in image pixels, rather than pre-computed features
 - Learn the structure in the data, rather than engineer it
 - No explicit need for feature engineering... unless you want to
- What deep learning is **<u>NOT</u>**:
 - A silver bullet
 - Replacement for thinking + domain knowledge
 - Always better than BDT, SVM, ...
 - Just feedforward neural networks!

Higher Level Representations

 Successive layers build upon information learned in lower layers to construct progressively higher level representations of data

NOT Simple Feedforward Neural Networks

- NN's as a **complex graph**
 - Nodes of graph are the layers
 - Edges of graph are data flow
 - Layers added to achieve a specific task, e.g. regularization
- Better to ask:
 - What does each layer / module do?
 - How is it connected to the previous and next layer?

GoogLeNet ILSVRC 2014 Winner 4M parameters

MaxPool 3x3+2(S) 7x7+2(S)

Filter Concatenation

3×3 Convolution

1×1 Convolution

Previous Layer

1×1 Convolution

5×5 Convolution

1×1 Convolution

1×1 Convolution

3×3 Pooling

The Tip of the Iceberg

Convolution in 2D

Convolutions in 2D

Input image

Convolved image

• Scan the filters over the 2D image, producing the convolved images

through

= 6	.6
-----	----

 \blacksquare \bigstar \bigstar \blacksquare \blacksquare =-7.8 \bigstar \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare **filter** \blacksquare 1.0 - really want \blacksquare 0.2 - sort of want

- Runner up, 2014 ILSVRC image recognition challenge
 - 140M parameters

Representation Learning

Filter

Layer 1

Matching images

L. Monier, G. Renard, <u>https://github.com/holbertonschool/deep-learning</u>

Representation Learning

Representation Learning

L. Monier, G. Renard, <u>https://github.com/holbertonschool/deep-learning</u>

Deep Learning for Image Recognition

• Deep Convolutional Networks now have *super-human* performance in image recognition (ILSVRC Challenge)

Deep learning and High Energy Physics

Deep learning and High Energy Physics

• How can we make use of high-performance deep learning algorithms in HEP?

- Can deep learning find interesting and useful high-level representations of physics data?
 - Can they teach us something new?
- Think about our low-level data in news ways that are amenable to deep learning
 - Can we frame HEP questions as if they were image recognition tasks?

Neutrino Identification at NOvA

- Two 2D projections of the interactions
- Goal: discriminate between different neutrino interactions / backgrounds

27

Neutrino Identification at NOvA

- Treat 2D projections as images
 - Convolutional Neural network for imaging tasks
- Make use of GoogLeNet
 - Use first layers with useful representations for structures in NOvA detector (e.g. edges, ...)
 - Train with two image inputs, one for each view

Neutrino Identification at NOvA

29

- Convolution filters and outputs show interesting features about how the NN is providing discrimination
- Major gains over current algorithms in v_e -CC discrimination: 35% \rightarrow 49% signal efficiency for the same background rejection

Jets at the LHC

CMS

Machine Learning and Jet Physics

• Can we use in internal structure of a jet (i.e. the individual energy depositions) to classify different kinds of jets?

- Subfield of jet-substructure tries to answer this question using physics motivated features
- Can we learn the important information for discrimination directly from the data? And understand what we learned?

Jet tagging using jet substructure

- **Typical approach:** Use physics inspired variables to provide signal / background discrimination
- Typical physics inspired variables exploit differences in:
 - Jet mass –
 - N-prong structure:
 - o 1-prong (QCD)
 - \circ 2-prong (W,Z,H)
 - o 3-prong (top)
 - Radiation pattern:
 - Soft gluon emission
 - Color flow
- Motivated data compressions, inspired by understanding of what should be discriminating...
 - We are likely losing information!

The Jet-Image

- Treat the detector as a camera: The Jet-Image

 Calorimeter towers as pixels
 - Energy depositions as intensity
- Use all available information for jet classification

Image pre-processing

Pre-processing and space-time symmetries

Pre-processing steps may not be Lorentz Invariant

- Translations in η are Lorentz boosts along z-axis
 - Do not preserve the pixel energies
 - Use transverse energy rather than energy as pixel intensity
- Jet mass is not invariant under Image normalization

Pythia 8, $\sqrt{s} = 13 \text{ TeV}$

 $240 < p_T/GeV < 260 GeV, 65 < mass/GeV < 95$

Pre-processing and space-time symmetries

In both pictures the total intensity of Einstein's face is about the same. However, **the image mass is different**!

http://mentalfloss.com/article/49222/11-unserious-photos-albert-einstein
Pre-processing and space-time symmetries

bright side

Standard computer vision tasks would likely not want to be sensitive to this!

In jet-tagging, these differences can have physical meaning

Need physics-domain knowledge input for how to pre-process

isity of ne.

However, the image mass is different!

http://mentalfloss.com/article/49222/11-unserious-photos-albert-einstein

dark

side

Discriminating Signal and Background

- In the past, explored linear classification techniques applied to Jet-Images
 - Similar / improved performance over physicsinspired variables
 - Image paradigm allows excellent insight into the "physics" governing discrimination through visualization

- Linear methods can be limited
 - All the physics inside of a jet is not linear

Deep Jets – Convolutional Neural Networks

39

Performance with Deep Neural Networks

Combining Deep NN's with Substructure Variables

41

Conditional Correlations with Network Output

Looking "into" the network to better see what it is learning

Convolved representations

First layer 11x11 convolutional filters

Convolved jet image differences

$$X_{sig}^{*}w - X_{bkg}^{*}w$$

Average Most Activating Jet Images

Physics in deep representations

Pearson Correlation Coefficient of the pixels intensity with the network output: <u>how discriminating information is contained within the network</u>

Physics in deep representations

Pearson Correlation Coefficient of the pixels intensity with the network output: <u>how discriminating information is contained within the network</u>

47

Learning About Learning

Restricted Phase Space: 79 < m < 81 GeV and 0.19 < τ_{21} < 0.21

Learning something beyond mass and $\tau_{_{21}}\ldots$

Spatial information indicative of radiation pattern for W and QCD: New information learned by the network potentially related to colorflow

Where is DL in HEP going next?

- Computer vision and imaging techniques may have broad applicability...
 - Calorimeter shower classification?
 - Energy calibration regression?
 - Pileup reduction?
 - Tracking?

- Sequential learning techniques (not discussed in this talk) may be useful in tasks with variable length data
 - Typical neural networks and BDT's require a fixed input size
 - But not all discrimination tasks in HEP have a fixed size data representation, e.g. jets with variable numbers of constituents, variable number of jets in an events, ...
- New network training paradigms may help with statistical inference, fast simulations, or reduce systematic uncertainties...

Dealing with Systematic Uncertainties

- Systematic uncertainties encapsulate our incomplete knowledge of physical processes and detectors
 Systematic uncertainty encoded as nuisance parameters, Z
- Can we teach a classifier to be robust to these kinds of uncertainties?

Adversarial Networks

- Adversarial training: a mini-max game
 - Train one neural network (f) to perform the classification task
 - Train a second network (r) to predict the nuisance parameter Z from f
- The loss encodes the performance of both classifiers, but is penalized when **r** does well

$$\hat{\theta}_f, \hat{\theta}_r = \arg\min_{\theta_f} \max_{\theta_r} E(\theta_f, \theta_r).$$

arXiv:1611.01046

G. Louppe, M. K., K. Cranmer,

$$E_{\lambda}(\theta_f, \theta_r) = \mathcal{L}_f(\theta_f) - \lambda \mathcal{L}_r(\theta_f, \theta_r),$$

Learning to Pivot: Toy Example

G. Louppe, M. K., K. Cranmer, arXiv:1611.01046

52

0.84

0.72

0.60

0.48

0.36

0.24

0.12

2.0

• 2D example

$$\begin{aligned} x &\sim \mathcal{N}\left((0,0), \begin{bmatrix} 1 & -0.5\\ -0.5 & 1 \end{bmatrix}\right) & \text{ when } Y = 0, \\ x &\sim \mathcal{N}\left((1,1+Z), \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\right) & \text{ when } Y = 1. \end{aligned}$$

- Without adversary (top) large variations in network output with nuisance parameter
- With adversary (bottom) performance is independent!

Learning to Pivot: Physics Example

- Tune the classification vs robustness in training to maximize significance, even beyond standard approaches
- Example:
 - W-tagging vs QCD
 - Physics inspired variables as inputs
 - Systematic: noise from additional "pileup" interactions in collision
 - Count events passing minimum network output threshold
 → compute significance including uncertainty (AMS)

Conclusion

- Machine learning already used widely in HEP
- Deep learning is a new and powerful paradigm for machine learning in certain contexts
- Framing HEP data in the new ways can allow us to benefit from deep learning
- Already seen performance improvements and new insights when using deep learning in HEP
- Large potential for new image recognition and deep learning applications in HEP

Backup

Useful Python ML software

- An aconda / Conda \rightarrow easy to setup python ML / scientific computing environments
 - <u>https://www.continuum.io/downloads</u>
 - <u>http://conda.pydata.org/docs/get-started.html</u>
- Integrating ROOT / PyROOT into conda
 - <u>https://nlesc.gitbooks.io/cern-root-conda-recipes/content/index.html</u>
 - <u>https://conda.anaconda.org/NLeSC</u>
- Converting ROOT trees to python numpy arrays / panda dataframes
 - <u>https://pypi.python.org/pypi/root_numpy/</u>
 - <u>https://github.com/ibab/root_pandas</u>
- Scikit-learn \rightarrow general ML library
 - <u>http://scikit-learn.org/stable/</u>
- Deep learning frameworks / auto-differentiation packages
 - <u>https://www.tensorflow.org/</u>
 - http://deeplearning.net/software/theano/
- High level deep learning package build on top of Theano / Tensorflow
 - <u>https://keras.io/</u>

Machine Learning

What is Machine Learning?

- Giving computers the ability to learn without explicitly programming them (Arthur Samuel, 1959)
- Statistics + Algorithms
- Computer Science + Probability + Optimization Techniques
- Fitting data with complex functions
- Pattern recognition: identifying patterns and regularities in data

What do we use ML for?

<u>Supervised Learning</u>

- Given data with variables / features $\{x_i \in X\}$ and $\textbf{targets} \; \{y_i \in Y\},$ learn the function mapping f(X)=Y
- Classification: Y is a finite set of labels
- **Regression**: $Y \in \text{Real Numbers}$
- Unsupervised Learning

- Given some data $D = \{x_i \in X\}$, but no labels, find structure in the data

- Clustering: partition the data into groups $D = \{D_1 \cup D_2 \cup D_3 \dots \cup D_k\}$
- Dimensionality reduction: find a low dimensional (less complex) representation of the data with a mapping Z=h(X)

<u>Reinforcement learning</u>

 Learn to make the best sequence of decisions to achieve a given goal when feedback is delayed until you reach the goal

What do we use ML for?

<u>Supervised Learning</u>

- Given data with variables / features $\{x_i \!\in\! X\}$ and targets $\{y_i \!\in\! Y\},$ learn the function mapping f(X)=Y
- Classification: Y is a finite set of labels
- **Regression**: $Y \in \text{Real Numbers}$

Main focus today on supervised learning in HEP

- Given some data $D = \{x_i \in X\}$, but no labels, find structure in the data

Unsupervised Learning

- Clustering: partition the data into groups

Won't Discuss this today... But there are existing and future applications in HEP
Dimensionality reduction: find a low dimensional (less complex)
Tepresentation of the data with a mapping Z=h(X)

Reinforcement learning

- Learn to make the best sequence of decisions to achieve a given goal when feedback is delayed until you reach the goal

Won't Discuss this at all today... Not yet clear how it will be used in HEP

Supervised Learning

• Estimate final performance on *test-set*

Classification

- Learn a function to separate different classes of data
- Avoid over-fitting: -
 - Learning too fined details about your training sample that will not generalize to unseen data

Machine Learning in High Energy Physics

- Many recent application of ML in HEP rely on Ensembles of decision trees, such as **Boosted Decision Trees** and Random Forests
- Powerful algorithms that are relatively simple, easy to train, and tend not to overfit (especially Random Forests)
- They are very popular in general:
 - Test 179 classifiers (no deep neural networks) on 121 datasets http://jmlr.csail.mit.edu/papers/volume15/delgado14a/delgado14a.pdf
 - The classifiers most likely to be the bests are the random forest (RF) versions, the best of which (...) achieves 94.1% of the maximum accuracy overcoming 90% in the 84.3% of the data sets
- But, **Deep Neural Networks** have outperformed such algorithms in certain domains, like Object Recognition in images

Decision Trees

Optimizing a Decision Tree

- Building an optimal decision tree is an NP-complete problem
 - Hard to find a global optimization for all splittings at the same time
- Greedy optimization \rightarrow optimize one split at a time
 - Start with one leaf
 - Split leaf in two
 - Repeat as needed

Optimizing a Decision Tree

- When to split? Minimize impurity = Σ_{leaf} Impurity(leaf)*size(leaf)
 - Typical leaf impurity functions:
 - Gini = $p^{*}(1-p)$
 - Entropy = -p*log(p) (1-p)*log(1-p)
 - Where p is the fraction of signal events in leaf, and size is the number of events falling into that leaf
 - Mean Square Error (regression): (1/n_i) $\Sigma_{i \ in \ leaf} \ (y_i m)^2$
 - Where y_i is the true value, and m is the average y of events in the leaf
- When to stop splitting? Many criteria
 - Fixed tree depth
 - Information gain is not enough
 - Fix minimum samples needed in leaf
 - Fix minimum number of samples needed to split leaf

Overfitting

- Single decision trees can quickly overfit
- Especially when increasing the depth of the tree

- Combine many decision trees, use the ensemble for prediction
- Averaging: $D(x) = \frac{1}{N_{tree}} \sum_{i=1}^{N_{tree}} d_i(x)$
 - Random Forest, averaging combined with:
 - **Bagging:** Only use a subset of events for each tree training
 - Feature subsets: Only use a subset of features for each tree
- Boosting (weighted voting): $D(x) = \sum_{i=1}^{N_{tree}} \alpha_i d_i(x)$
 - Weight computed such that events in current tree have higher weight misclassified in previous trees
 - Several boosting algorithms
 - AdaBoost
 - Gradient Boosting
 - XGBoost

Ensembles of Trees

- Ensembles of trees tend to work very well
 - Relatively simple
 - Relatively easy to train
 - Tend not to overfit (especially random forests)
 - Work with different feature types: continuous, categorical, etc.

optimal boundary

2000 trees

CMS h→γγ (8 TeV)

Neural Networks

Non-Linear Activations

- The activation function in the NN must be a non-linear function – If all the activations were linear, the network would be linear: $f(X) = W_n(W_{n-1}(...W_1|X)) = UX$, where $U = \Pi_i W_i$
- Linear functions can only correctly classify linearly separable data!
- For complex datasets, need nonlinearities to properly learn data structure

Neural Networks and Local Minima

- Large NN's difficult to train...trapping in local minimum?
- Not in large neural networks <u>https://arxiv.org/abs/1412.0233</u>
 - Most local minima equivalent, and resonable
 - Global minima may represent overtraining
 - Most bad (high error) critical points are saddle points (different than small NN's)

Weight Initializations and Training Procedures

- Used to set weights to some small initial value
 - Creates an almost linear classifier
- Now initialize such that node outputs are normally distributed
- Pre-training with auto-encoder
 - Network reproduces the inputs
 - Hidden layer is a non-linear dimensionality reduction
 - Learn important features of the input
 - Not as common anymore, except in certain circumstances...
- Adversarial training, invented 2014

 Will potential HEP applications later

MaxOut

ReLU Networks

http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf

- Sparse propagation of activations and gradients in a network of rectifier units. The input selects a subset of active neurons and computation is linear in this subset.
- Model is "linear-by-parts", and can thus be seen as an exponential number of linear models that share parameters
- Non-linearity in model comes from path selection

Convolutions in 2D

Input image

Convolved image

• Scan the filters over the 2D image, producing the convolved images

Max Pooling

Layer N

- Down-sample the input by taking MAX or average over a region of inputs
 - Keep only the most useful information

Daya Bay Neutrino Experiment

- Aim to reconstruct inverse β -decay interactions from scintillation light recorded in 8x24 PMT's
- Study discrimination power using CNN's
 - Supervised learning \rightarrow observed excellent performance (97% accuracy)
 - Unsupervised learning: ML learns itself what is interesting!

arXiv:1601.07621

Jet-Images

Jet tagging using jet substructure

- **Typical approach:** Use physics inspired variables to provide signal / background discrimination
- Typical physics inspired variables exploit differences in:
 - Jet mass
 - N-prong structure:
 - 1-prong (QCD)
 - 2-prong (W,Z,H)
 - \circ 3-prong (top)
 - Radiation pattern:
 - Soft gluon emission
 - \circ Color flow

Jet tagging using jet substructure

- **Typical approach:** Use physics inspired variables to provide signal / background discrimination
- Typical physics inspired variables exploit differences in:
 - Jet mass
 - N-prong structure:
 - 1-prong (QCD)
 - 2-prong (W,Z,H)
 - o 3-prong (top)
 - Radiation pattern:
 - Soft gluon emission
 - Color flow

Pre-processing and space-time symmetries

Pre-processing steps may not be Lorentz Invariant

- Translations in η are Lorentz boosts along z-axis
 - Do not preserve the pixel energies
 - Use p_T rather than E as pixel intensity
- Jet mass is not invariant under Image normalization

Pythia 8, $\sqrt{s} = 13 \text{ TeV}$

 $240 < p_T/GeV < 260 GeV, 65 < mass/GeV < 95$

Restricted phase space

Restrict the phase space in very small mass and τ_{21} bins: Improvement in discrimination from new, unique, information learned by the network

Deep correlation jet images

Spatial information indicative of radiation pattern for W and QCD: where in the image the network is looking for discriminating features

Typical Neural Network Hidden Layer

<u>Hidden layer</u> Different Colors represent different weights W*x

Local Connectivity

<u>Hidden layer</u> Different Colors represent different weights W*x

Local connectivity: each neuron has a small "field of view" of a few inputs

Shared weights: each neuron uses the same weights...

Effect \rightarrow the neuron is scanned over different fields of view \rightarrow **Convolution**

Convolutional Layer

Add more neurons which scans the field of view
Each neuron is a *Filter* being convolved with the input
Convolutional Layer with 4 filters production 4x4 output vector size

Why did it take so long to train DNN's?

91

- Big Data
 - (Hundreds of) Millions of parameters \rightarrow large dataset vital for training
- GPU's
 - NN's require a lot of matrix multiplications... perfect for GPU's
 - Dramatically increased the speed of training
- But these aren't the only reasons...

Training Improvements

- Gradient descent is computationally costly (since we compute gradient over full training set)
- Stochastic gradient descent _____
 - Compute gradient on one event at a time (in practice a small batch)
 - Noisy estimates average out
 - Stochastic behavior can allow "jumping" out of bad critical points
 - Scales well with dataset and model size
 - But can have some convergence difficulties
 - Improvements include:
 Momentum, RMSprop, AdaGrad, ...

Better Activation Functions

Vanishing gradient problem

- Derivative of sigmoid:

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))$$

- Nearly 0 when x is far from 0!
- Gradient descent impossible!

- Rectified Linear Unit (ReLU)
 - $\operatorname{ReLU}(x) = \max\{0, x\}$
 - Derivative is constant!

 $\frac{\partial \operatorname{Re} LU(x)}{\partial x} = \begin{cases} 1 & \text{when } x > 0\\ 0 & \text{otherwise} \end{cases}$

ReLU gradient doesn't vanish

Better Regularization Inside the Network

(a) Standard Neural Net

(b) After applying dropout.

- Dropout
 - Randomly remove nodes during training
 - Avoid co-adaptation of nodes
 - Essentially a large model averaging procedure

New way to train networks... Potential for HEP?

95

- Train two networks "against" each other
 - One to generates an image
 - Second one to distinguish real / fake images
 - Potential applications for fast simulation?

Domain adaptation: train with one dataset (MC) and apply on a slightly different one (data)

- Minimize use of information not in both domains
- Potential to reduce data/MC differences and systematic uncertainties during training?

http://arxiv.org/abs/1409.7495