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Aspects of  Machine Learning (ML) in HEP 

•  Optimization 
–  Bottom line is performance 
–  But can we build new better (simple?) features? 

•  Teaching the learning 
–  Guide and boost performance of  ML algorithms 

using physics knowledge (i.e. domain specific 
knowledge) 

–  We don’t want ML to relearn special relativity 

•  Learning from Learning …(if  we can) 
–  Can we extract information about what the ML 

is learning? 
–  Can we use this information to design new 

variables? 
–  Often visualization is a key component 
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Machine Learning Applied Widely in HEP 
•  In analysis: 

–  Classifying signal from background, especially 
in complex final states 

–  Reconstructing heavy particles and improving 
the energy / mass resolution 

•  In reconstruction: 
–  Improving detector level inputs to 

reconstruction  
–  Particle identification tasks 
–  Energy / direction calibration 

•  In the trigger: 
–  Quickly identifying complex final states 

•  In computing: 
–  Estimating dataset popularity, and determining 

needed number and location of  dataset replicas 
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Neural Networks and Deep Learning 4	  



Neural Networks 

•  “Typical” neural network circa 2005 

•  Typical questions of  optimization 
–  Which variables to choose as inputs?  How correlated are they? 
–  How many nodes in the hidden layer? 

5	  
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Neural Networks 

•  “Typical” neural network circa 2005 

•  Typical questions of  optimization 
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z = �(Wx+ b)

y = �(Uz + c)

σ(x)	  =	  sigmoid	  func(on	  
	  is	  the	  Ac#va#on	  Func#on	  	  

x = input vector 



Training a Neural Network 

•  Define a loss function that 
depends on predictions 
f(x;w) and targets y 
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•  Add regularization to control the 
model complexity and reduce overfitting 

LMSE =
1
N

(yi − f (xi ))
2

i=1

Nexamples

∑

LBCE =
1
N

−yi log f (xi )− (1− yi )log(1− f (xi ))
i=1

Nexamples

∑

!L = L + 1
2

wj
2

j
∑
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depends on predictions 
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LMSE =
1
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Nexamples

∑
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•  Minimize the loss function using 
backpropagation  
–  Fancy word for chain rule 
–  Compute average gradient on training set 

∇wj
L = ∂L

∂f
∂f
∂gn

∂gn
∂gn−1

...∂gk+1
∂gk

∂gk
∂wj

•  Update weights with gradient descent 

–  α is called the learning rate 

wj ← wj −α∇wj
L

!L = L + 1
2

wj
2

j
∑•  Add regularization to control the 

model complexity and reduce overfitting 
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Deep Neural Networks 

•  As data complexity grows, need exponentially large number of  
neurons in a single-hidden-layer network to capture all the 
structure in the data 

•  Deep neural networks have many hidden layers 
–  Factorize the learning of  structure in the data across many layers 

•  Difficult to train, only recently has this become possible… 
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Why did it take so long to train DNN’s? 

•  Big Data: Large datasets vital for 
training (hundreds of) millions of  
parameters 

•  GPU’s: Dramatically increased 
speed of  training 

•  Improved optimization 
algorithms 

•  New regularization techniques: 
dropout, batch normalization, etc. 

•  New activation functions, like 
Rectified Linear Units 

•  … 
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Deep NNs in HEP analysis 
•  Compare dense Deep NN against 

BDT’s and shallow NN’s 

•  Deep NN found to outperform 
shallow NN and BDT’s 
–  small but statistically significant gain 

over simpler ML algorithms 

•  Physicists are good at doing 
physics! 
– Typical physics variables are high 

performing (e.g. invariant mass, 
Razor, etc.) 

– But Deep NN’s can learn well from 
only 4-vector inputs 

12	  
Nature	  Communica(ons	  5,	  4308	  (2014)	  
Phys.	  Rev.	  LeM.	  114,	  111801	  (2015)	  

H→ττ benchmark 

BSM Higgs benchmark  



What is deep learning doing? 

•  Hierarchical learning of  representations  

•  Use low level inputs in smart ways 
–  e.g. Feed in image pixels, rather than pre-computed features  
–  Learn the structure in the data, rather than engineer it 
–  No explicit need for feature engineering… unless you want to 

•  What deep learning is NOT: 
–  A silver bullet 
–  Replacement for thinking + domain knowledge  
–  Always better than BDT, SVM, … 
–  Just feedforward neural networks!  
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Luke	  de	  Oliveira	  



Higher Level Representations 

•  Successive layers build upon information learned 
in lower layers to construct progressively higher 
level representations of  data 
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Op(mal	  s(mulus	  
of	  a	  given	  neuron	  
hMp://arxiv.org/abs/1112.6209	  	  	  



NOT Simple Feedforward Neural Networks 15	  

•  NN’s as a complex graph 
–  Nodes of  graph are the layers 
–  Edges of  graph are data flow 

–  Layers added to achieve a specific 
task, e.g. regularization 

•  Better to ask:    
–  What does each layer / module do?  
–  How is it connected to the previous 

and next layer? 

Incep#on	  module	  
“Network-‐in-‐network”	  

GoogLeNet	  
ILSVRC	  2014	  Winner	  
4M	  parameters	  



The Tip of  the Iceberg 16	  

Luke	  de	  Oliveira	  

State of  the art in 
image recognition and 
computer vision tasks 



Convolution in 2D 17	  



Convolutions in 2D 

•  Scan the filters over the 2D image, producing the 
convolved images 

18	  

Input image Convolved image 



What do filters do? 19	  



VGGNet (2014) 20	  

•  Runner up, 2014 ILSVRC 
image recognition challenge 
– 140M parameters 
– 2-3 week training time on  

4-GPU system 



Representation Learning 21	  

L.	  Monier,	  G.	  Renard,	  hMps://github.com/holbertonschool/deep-‐learning	  	  

Layer	  1	  



Representation Learning 22	  

L.	  Monier,	  G.	  Renard,	  hMps://github.com/holbertonschool/deep-‐learning	  	  



Representation Learning 23	  

L.	  Monier,	  G.	  Renard,	  hMps://github.com/holbertonschool/deep-‐learning	  	  



Deep Learning for Image Recognition 

•  Deep Convolutional Networks now have super-human 
performance in image recognition (ILSVRC Challenge) 
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Deep learning and High Energy Physics 

•  How can we make use of  high-performance deep 
learning algorithms in HEP? 

•  Can deep learning find interesting and useful 
high-level representations of  physics data? 
– Can they teach us something new? 

•  Think about our low-level data in news ways that 
are amenable to deep learning 
– Can we frame HEP questions as if  they were image 

recognition tasks? 

26	  



Neutrino Identification at NOνA 

•  Two 2D projections of  the interactions 

•  Goal: discriminate between different 
neutrino interactions / backgrounds 

27	  arXiv:1604.01444	  



Neutrino Identification at NOνA 

•  Treat 2D projections as images 
–  Convolutional Neural network for imaging 

tasks 

•  Make use of  GoogLeNet 
–  Use first layers with useful representations for 

structures in NOνA detector (e.g. edges, …) 
–  Train with two image inputs, one for each view 

28	  arXiv:1604.01444	  



Neutrino Identification at NOνA 

•  Convolution filters and outputs show interesting features about how 
the NN is providing discrimination 

•  Major gains over current algorithms in νe-CC discrimination: 
35% → 49% signal efficiency for the same background rejection 

29	  

Image	  Y-‐view	   First	  CONV	  layer	  filters	   Output	  of	  convolu(on	  

arXiv:1604.01444	  



Jets at the LHC 30	  



Machine Learning and Jet Physics 

•  Can we use in internal structure of  a jet (i.e. the individual 
energy depositions) to classify different kinds of  jets? 

31	  

(a)

−0.2 0 0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

1.8

2

2.2
Boosted W Jet, R = 0.6

η

φ

(b)

(c)

−1.2 −1 −0.8 −0.6 −0.4 −0.2

4.6

4.8

5

5.2

5.4

5.6

5.8
Boosted QCD Jet, R = 0.6

η

φ

(d)

Figure 1: Left: Schematic of the fully hadronic decay sequences in (a) W+W− and (c) dijet QCD
events. Whereas a W jet is typically composed of two distinct lobes of energy, a QCD jet acquires
invariant mass through multiple splittings. Right: Typical event displays for (b) W jets and (d)
QCD jets with invariant mass near mW . The jets are clustered with the anti-kT jet algorithm [31]
using R = 0.6, with the dashed line giving the approximate boundary of the jet. The marker size
for each calorimeter cell is proportional to the logarithm of the particle energies in the cell. The
cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.

with τN ≈ 0 have all their radiation aligned with the candidate subjet directions and

therefore have N (or fewer) subjets. Jets with τN " 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that

QCD jet can also have small τ2, as shown in Fig. 2(b). Similarly, though W jets are likely
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Boson	  jet	   QCD	  jet	  

•  Subfield of  jet-substructure tries to answer this question using 
physics motivated features 

•  Can we learn the important information for discrimination 
directly from the data?  And understand what we learned? 

Boson:	  
h,	  W,	  Z	  

q	  

q	  
QCD:	  
q,	  g	  



•  Typical approach: 
Use physics inspired variables to 
provide signal / background 
discrimination 

•  Typical physics inspired variables 
exploit differences in: 
•  Jet mass  
•  N-prong structure:  

o  1-prong (QCD)  
o  2-prong (W,Z,H) 
o  3-prong (top) 

•  Radiation pattern: 
o  Soft gluon emission 
o  Color flow 

•  Motivated data compressions, 
inspired by understanding of  what 
should be discriminating…  
•  We are likely losing information! 

Jet tagging using jet substructure 32	  
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Figure 2: Distributions of (a) τ1 and (b) τ2 for boosted W and QCD jets. For these plots, we
impose an invariant mass window of 65 GeV < mjet < 95 GeV on jets of R = 0.6, pT > 300 GeV,
and |η| < 1.3. By themselves, the τN do not offer that much discriminating power for boosted
objects beyond the invariant mass cut.
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Figure 3: (a): Distribution of τ2/τ1 for boosted W and QCD jets. The selection criteria are the
same as in Fig. 2. One sees that the τ2/τ1 ratio gives considerable separation between W jets and
QCD jets beyond the invariant mass cut. (b): Density plot in the τ1–τ2 plane. Marker sizes are
proportional to the number of jets in a given bin. In principle, a multivariate cut in the τ1–τ2 plane
would give further distinguishing power.

to have large τ1, QCD jets with a diffuse spray of large angle radiation can also have large

τ1, as shown in Fig. 2(a). However, those QCD jets with large τ1 typically have large values

of τ2 as well, so it is in fact the ratio τ2/τ1 which is the preferred discriminating variable.

As seen in Fig. 3(a), W jets have smaller τ2/τ1 values than QCD jets. Of course, one can

also use the full set of τN values in a multivariate analysis, as suggested by Fig. 3(b), and

we will briefly explore this possibility in Sec. 3.4.

As mentioned in the introduction, N -subjettiness is adapted from the similar quantity

N -jettiness introduced in Ref. [28]. There are three important differences: the sum over

k only runs over the hadrons in a particular jet and not over the entire event, we do not

have candidate (sub)jets corresponding to the beam directions, and our distance measure

– 5 –

Thaler	  &	  	  
Van	  Tilburg	  

τ N =
1
d0

pT ,kmin∑ {ΔRk,axis−1,...,ΔRk,axis−n}

N-‐subje7ness	  
Jet	  mass	  

W	  jet	  

QCD	  jet	  

arXiv:1510.05821	  



The Jet-Image 
•  Treat the detector as a camera: The Jet-Image 
– Calorimeter towers as pixels 
– Energy depositions as intensity 

•  Use all available information for jet classification 

33	  
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Image Preprocessing 

13"

•  Use subjets of  large radius jet as focal points ! like eyes in an image 
•  Make use of  symmetries ! Center, Rotate, and Flip 
•  Introduces some smearing, but huge gain in discrimination! 

Average of  
unrotated W jet 
 
Not much info! 

Average of  
rotated W jet 
 
Much better! 

Image pre-processing 34	  
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Use subjets to align  
images. Make use of   
symmetries:  
center, rotate, translate  

Pixelate → Translate →  
Rotate → Re-grid → Flip 
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Pre-processing and space-time symmetries 

Pre-processing steps 
may not be Lorentz 
Invariant 
 
•  Translations in η are 

Lorentz boosts along z-axis  
–  Do not preserve the pixel 

energies  
–  Use transverse energy 

rather than energy as pixel 
intensity 

 
 
 

•  Jet mass is not invariant 
under Image normalization  

35	  

Image	  
normaliza(on	  

Naïve	  
Transla(on	  

m2
J = EiEj

i< j
∑ (1− cos(θij ))
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bright	  	  
side	  

dark	  
side	  

Uniform	  intensity	  
	  

In	  both	  pictures	  the	  total	  intensity	  of	  
Einstein’s	  face	  is	  about	  the	  same.	  
However,	  the	  image	  mass	  is	  different!	  
	  

hMp://mentalfloss.com/ar(cle/49222/11-‐unserious-‐photos-‐albert-‐einstein	  

Pre-processing and space-time symmetries 
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bright	  	  
side	  

dark	  
side	  

Uniform	  intensity	  
	  

In	  both	  pictures	  the	  total	  intensity	  of	  
Einstein’s	  face	  is	  about	  the	  same.	  
However,	  the	  image	  mass	  is	  different!	  
	  

hMp://mentalfloss.com/ar(cle/49222/11-‐unserious-‐photos-‐albert-‐einstein	  

Standard	  computer	  vision	  tasks	  would	  likely	  
not	  want	  to	  be	  sensi(ve	  to	  this!	  
	  
In	  jet-‐tagging,	  these	  differences	  can	  have	  
physical	  meaning	  
	  
Need	  physics-‐domain	  knowledge	  input	  for	  
how	  to	  pre-‐process	  

Pre-processing and space-time symmetries 



Discriminating Signal and Background  
•  In the past, explored linear 

classification techniques 
applied  to Jet-Images  

–  Similar / improved 
performance over physics-
inspired variables 

–  Image paradigm allows 
excellent insight into the 
“physics” governing 
discrimination through 
visualization 

38	  

Fisher Discriminant 
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•  Take Fisher 
solution and plot 
it’s components on 
image grid 

•  Fisher-Jet! 

•  Used for 
discrimination 

•  Can be visualized 
and explored to 
understand physics 
of  discrimination! 

 

•  Linear methods can be limited 
–  All the physics inside of  a jet is not linear 

hMp://arxiv.org/abs/1407.5675	  	  

Discriminant	  f(x)	  =	  w*x	  
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout
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learning	  jet	  mass?	  
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Extracting the Physics 

Looking “into” the network to better see 
what it is learning 

43	  
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Convolved	  jet	  image	  differences	  
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Learning about learning

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Advantage of CNN is that we can visualize the filters

First	  layer	  11x11	  convolu(onal	  filters	  

Xsig*w – Xbkg*w 



Average Most Activating Jet Images 45	  



Physics in deep representations 46	  

Pearson	  Correla(on	  Coefficient	  of	  the	  pixels	  intensity	  with	  the	  network	  
output:	  how	  discrimina(ng	  informa(on	  is	  contained	  within	  the	  network	  	  
	  

signal-‐like	  
background-‐like	  
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Pearson	  Correla(on	  Coefficient	  of	  the	  pixels	  intensity	  with	  the	  network	  
output:	  how	  discrimina(ng	  informa(on	  is	  contained	  within	  the	  network	  	  
	  

SoF	  QCD	  
gluon	  emission	  

AddiHonal	  
radiaHon	  in	  
QCD	  jets	  

signal-‐like	  
background-‐like	  

Physics in deep representations 
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Where is DL in HEP going next? 
•  Computer vision and imaging techniques may have broad 

applicability… 
–  Calorimeter shower classification? 
–  Energy calibration regression? 
–  Pileup reduction? 
–  Tracking? 

•  Sequential learning techniques (not discussed in this talk) 
may be useful in tasks with variable length data 
–  Typical neural networks and BDT’s require a fixed input size 
–  But not all discrimination tasks in HEP have a fixed size data 

representation, e.g. jets with variable numbers of  constituents, 
variable number of  jets in an events, … 

•  New network training paradigms may help with statistical 
inference, fast simulations, or reduce systematic 
uncertainties… 

49	  



Dealing with Systematic Uncertainties 
•  Systematic uncertainties encapsulate our incomplete 

knowledge of  physical processes and  detectors 
–  Systematic uncertainty encoded as nuisance parameters, Z 

•  Can we teach a classifier to be robust to these kinds of  
uncertainties? 

50	  

arXiv:1609.00607	  



Adversarial Networks 
•  Adversarial training: a mini-max game 

–  Train one neural network (f) to perform 
the classification task 

–  Train a second network (r) to predict the 
nuisance parameter Z from f  

•  The loss encodes the performance of  
both classifiers, but is penalized when r 
does well 

51	  
G.	  Louppe,	  M.	  K.,	  K.	  Cranmer,	  	  
arXiv:1611.01046	  	  



Learning to Pivot: Toy Example 

•  2D example 

52	  

•  Without adversary 
(top) large variations 
in network output 
with nuisance 
parameter 

•  With adversary 
(bottom) performance 
is independent! 

G.	  Louppe,	  M.	  K.,	  K.	  Cranmer,	  	  
arXiv:1611.01046	  	  



Learning to Pivot: Physics Example 

•  Tune the classification vs 
robustness in training to 
maximize significance, even 
beyond standard approaches 

•  Example: 
–  W-tagging vs QCD  
–  Physics inspired variables as 

inputs 
–  Systematic: noise from 

additional “pileup” interactions 
in collision 

–  Count events passing minimum 
network output threshold  
→ compute significance 
including uncertainty (AMS) 

53	  

Op(mal	  tradeoff	  of	  	  
performance	  vs.	  robustness	  

Non-‐Adversarial	  training	  

G.	  Louppe,	  M.	  K.,	  K.	  Cranmer,	  	  
arXiv:1611.01046	  	  



Conclusion 

•  Machine learning already used widely in HEP 

•  Deep learning is a new and powerful paradigm for 
machine learning in certain contexts 

•  Framing HEP data in the new ways can allow us to 
benefit from deep learning 

•  Already seen performance improvements and new 
insights when using deep learning in HEP 

•  Large potential for new image recognition and deep 
learning applications in HEP 

54	  
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Useful Python ML software 
•  Anaconda / Conda  → easy to setup python ML / scientific computing 

environments 
–  https://www.continuum.io/downloads  
–  http://conda.pydata.org/docs/get-started.html  

•  Integrating ROOT / PyROOT into conda 
–  https://nlesc.gitbooks.io/cern-root-conda-recipes/content/index.html  
–  https://conda.anaconda.org/NLeSC  

•  Converting ROOT trees to python numpy arrays / panda dataframes 
–  https://pypi.python.org/pypi/root_numpy/  
–  https://github.com/ibab/root_pandas  

•  Scikit-learn → general ML library 
–  http://scikit-learn.org/stable/  

•  Deep learning frameworks / auto-differentiation packages 
–  https://www.tensorflow.org/  
–  http://deeplearning.net/software/theano/  

•  High level deep learning package build on top of  Theano / Tensorflow 
–  https://keras.io/  

56	  
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What is Machine Learning? 

•  Giving computers the ability to learn without 
explicitly programming them (Arthur Samuel, 1959) 

•  Statistics + Algorithms 

•  Computer Science + Probability + Optimization 
Techniques 

•  Fitting data with complex functions 

•  Pattern recognition: identifying patterns and 
regularities in data 

58	  



What do we use ML for? 
•  Supervised Learning 

–  Given data with variables / features {xi ∈ X} and targets {yi ∈  Y}, 
learn the function mapping f(X)=Y 

–  Classification: Y is a finite set of  labels  
–  Regression:    Y ∈ Real Numbers            

•  Unsupervised Learning 
–  Given some data D={xi ∈ X}, but no labels, find structure in the data 

–  Clustering: partition the data into groups  
D={D1 ∪ D2 ∪ D3 … ∪ Dk} 

–  Dimensionality reduction: find a low dimensional (less complex) 
representation of  the data with a mapping Z=h(X) 

•  Reinforcement learning 
–  Learn to make the best sequence of  decisions to achieve a given goal 

when feedback is delayed until you reach the goal 

59	  



•  Supervised Learning 
–  Given data with variables / features {xi ∈ X} and targets {yi ∈  Y}, 

learn the function mapping f(X)=Y 

–  Classification: Y is a finite set of  labels  
–  Regression:    Y ∈ Real Numbers            

•  Unsupervised Learning 
–  Given some data D={xi ∈ X}, but no labels, find structure in the data 

–  Clustering: partition the data into groups  
D={D1 ∪ D2 ∪ D3 … ∪ Dk} 

–  Dimensionality reduction: find a low dimensional (less complex) 
representation of  the data with a mapping Z=h(X) 

•  Reinforcement learning 
–  Learn to make the best sequence of  decisions to achieve a given goal 

when feedback is delayed until you reach the goal 

What do we use ML for? 60	  

Won’t Discuss this at all today… Not yet clear how it will be used in HEP 

Main focus today on 
supervised learning in HEP  

Won’t Discuss this today… But there are existing and future applications in HEP 



Supervised Learning 

•  Design function with adjustable parameters 

•  Use a labeled training-set to compute error 

•  Adjust parameters to reduce error function 

•  Repeat until parameters stabilize 

•  Estimate final performance on test-set 

61	  

Func(on	  with	  
adjustable	  
parameters	  

Error/Loss	  
Func(on	   Error	  

True	  labels:	  
Higgs	  =	  1	  
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Classification 

•  Learn a function to separate 
different classes of  data 

•  Avoid over-fitting: 
– Learning too fined details about 

your training sample that will not 
generalize to unseen data 
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Machine Learning in High Energy Physics 
•  Many recent application of  ML in HEP 

rely on Ensembles of  decision trees, such 
as Boosted Decision Trees and Random 
Forests 

•  Powerful algorithms that are relatively 
simple, easy to train, and tend not to 
overfit (especially Random Forests) 
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•  They are very popular in general: 
–  Test 179 classifiers (no deep neural networks) on 121 datasets 

http://jmlr.csail.mit.edu/papers/volume15/delgado14a/delgado14a.pdf    

–  The classifiers most likely to be the bests are the random forest (RF) versions, the 
best of  which (…) achieves 94.1% of  the maximum accuracy overcoming 90% in 
the 84.3% of  the data sets 

•  But, Deep Neural Networks have outperformed such algorithms in certain 
domains, like Object Recognition in images 
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Optimizing a Decision Tree 

•  Building an optimal decision tree is an NP-complete 
problem 
– Hard to find a global optimization for all splittings at 

the same time 

•  Greedy optimization → optimize one split at a time 
– Start with one leaf  
– Split leaf  in two 
– Repeat as needed 
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Optimizing a Decision Tree 
•  When to split? Minimize impurity = Σleaf Impurity(leaf)*size(leaf) 

–  Typical leaf  impurity functions: 
–  Gini = p*(1-p) 
–  Entropy = -p*log(p) – (1-p)*log(1-p) 

•  Where p is the fraction of  signal events in leaf, and size is the number of  
events falling into that leaf  

–  Mean Square Error (regression):  (1/ni)  Σi in leaf  (yi – m)2 

•  Where yi is the true value, and m is the average y of  events in the leaf  

•  When to stop splitting? Many criteria 
–  Fixed tree depth 
–  Information gain is not enough 
–  Fix minimum samples needed in leaf  
–  Fix minimum number of  samples needed to split leaf  
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Overfitting 

•  Single decision trees can quickly overfit 
•  Especially when increasing the depth of  the tree 
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Ensemble Methods 

•  Combine many decision trees, use the ensemble for prediction 

•  Averaging: 

–  Random Forest, averaging combined with: 
•  Bagging: Only use a subset of  events for each tree training 
•  Feature subsets: Only use a subset of  features for each tree 

•  Boosting (weighted voting): 

–  Weight computed such that events in  
current tree have higher weight misclassified in previous trees  

–  Several boosting algorithms 
•  AdaBoost 
•  Gradient Boosting 
•  XGBoost 
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∑
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∑



Ensembles of  Trees 

•  Ensembles of  trees 
tend to work very well 

–  Relatively simple 

–  Relatively easy to train 

–  Tend not to overfit 
(especially random 
forests) 

–  Work with different 
feature types: 
continuous, categorical, 
etc. 
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Non-Linear Activations 

•  The activation function in the NN must be a non-linear function 
–  If  all the activations were linear, the network would be linear:  

f(X) = Wn( Wn-1 (… W1 X)) = UX,        where U = Πi Wi 

•  Linear functions can only correctly classify linearly separable data! 

•  For complex datasets, need nonlinearities to properly learn data 
structure 
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Neural Networks and Local Minima 

•  Large NN’s difficult to train…trapping in local minimum? 

•  Not in large neural networks https://arxiv.org/abs/1412.0233  
–  Most local minima equivalent, and resonable 
–  Global minima may represent overtraining 
–  Most bad (high error) critical points are saddle points (different than 

small NN’s) 
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Weight Initializations and Training Procedures 
•  Used to set weights to some small 

initial value 
–  Creates an almost linear classifier 

•  Now initialize such that node outputs 
are normally distributed 

•  Pre-training with auto-encoder 
–  Network reproduces the inputs 
–  Hidden layer is a non-linear 

dimensionality reduction 
–  Learn important features of  the input 
–  Not as common anymore, except in 

certain circumstances… 

•  Adversarial training, invented 2014 
–  Will potential HEP applications later 

74	  



MaxOut  75	  

x1	   x2	   x3	   x4	   x5	   x6	  

z1	   z2	   z3	   z4	  output	  

Hidden	  layer	  
Different	  Colors	  represent	  	  
different	  weights	  W*x	  

input	  

Max{z1,	  z2,	  z3,	  z4}	  



ReLU Networks 

•  Sparse propagation of  activations and gradients in a network of  rectifier 
units. The input selects a subset of  active neurons and computation is 
linear in this subset. 

•  Model is “linear-by-parts”, and can thus be seen as an exponential 
number of  linear models that share parameters 

•  Non-linearity in model comes from path selection 
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hMp://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf	  	  



Convolutions in 2D 

•  Scan the filters over the 2D image, producing the 
convolved images 

77	  

Input image Convolved image 



Max Pooling 

•  Down-sample the input by taking MAX or 
average over a region of  inputs 
– Keep only the most useful information 
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Daya Bay Neutrino Experiment 

•  Aim to reconstruct inverse β-decay interactions from 
scintillation light recorded in 8x24 PMT’s 

•  Study discrimination power using CNN’s 
–  Supervised learning  → observed excellent performance (97% 

accuracy) 
–  Unsupervised learning: ML learns itself  what is interesting! 
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Jet tagging using jet substructure 82	  

•  Typical approach: 
Use physics inspired variables to 
provide signal / background 
discrimination 

•  Typical physics inspired variables 
exploit differences in: 

•  Jet mass  
•  N-prong structure:  

o  1-prong (QCD)  
o  2-prong (W,Z,H) 
o  3-prong (top) 

•  Radiation pattern: 
o  Soft gluon emission 
o  Color flow 
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Figure 1: Left: Schematic of the fully hadronic decay sequences in (a) W+W− and (c) dijet QCD
events. Whereas a W jet is typically composed of two distinct lobes of energy, a QCD jet acquires
invariant mass through multiple splittings. Right: Typical event displays for (b) W jets and (d)
QCD jets with invariant mass near mW . The jets are clustered with the anti-kT jet algorithm [31]
using R = 0.6, with the dashed line giving the approximate boundary of the jet. The marker size
for each calorimeter cell is proportional to the logarithm of the particle energies in the cell. The
cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.

with τN ≈ 0 have all their radiation aligned with the candidate subjet directions and

therefore have N (or fewer) subjets. Jets with τN " 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that

QCD jet can also have small τ2, as shown in Fig. 2(b). Similarly, though W jets are likely
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events. Whereas a W jet is typically composed of two distinct lobes of energy, a QCD jet acquires
invariant mass through multiple splittings. Right: Typical event displays for (b) W jets and (d)
QCD jets with invariant mass near mW . The jets are clustered with the anti-kT jet algorithm [31]
using R = 0.6, with the dashed line giving the approximate boundary of the jet. The marker size
for each calorimeter cell is proportional to the logarithm of the particle energies in the cell. The
cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.

with τN ≈ 0 have all their radiation aligned with the candidate subjet directions and

therefore have N (or fewer) subjets. Jets with τN " 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that

QCD jet can also have small τ2, as shown in Fig. 2(b). Similarly, though W jets are likely
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QCD jets with invariant mass near mW . The jets are clustered with the anti-kT jet algorithm [31]
using R = 0.6, with the dashed line giving the approximate boundary of the jet. The marker size
for each calorimeter cell is proportional to the logarithm of the particle energies in the cell. The
cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.
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therefore have N (or fewer) subjets. Jets with τN " 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that
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Figure 2: Distributions of (a) τ1 and (b) τ2 for boosted W and QCD jets. For these plots, we
impose an invariant mass window of 65 GeV < mjet < 95 GeV on jets of R = 0.6, pT > 300 GeV,
and |η| < 1.3. By themselves, the τN do not offer that much discriminating power for boosted
objects beyond the invariant mass cut.
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Figure 3: (a): Distribution of τ2/τ1 for boosted W and QCD jets. The selection criteria are the
same as in Fig. 2. One sees that the τ2/τ1 ratio gives considerable separation between W jets and
QCD jets beyond the invariant mass cut. (b): Density plot in the τ1–τ2 plane. Marker sizes are
proportional to the number of jets in a given bin. In principle, a multivariate cut in the τ1–τ2 plane
would give further distinguishing power.

to have large τ1, QCD jets with a diffuse spray of large angle radiation can also have large

τ1, as shown in Fig. 2(a). However, those QCD jets with large τ1 typically have large values

of τ2 as well, so it is in fact the ratio τ2/τ1 which is the preferred discriminating variable.

As seen in Fig. 3(a), W jets have smaller τ2/τ1 values than QCD jets. Of course, one can

also use the full set of τN values in a multivariate analysis, as suggested by Fig. 3(b), and

we will briefly explore this possibility in Sec. 3.4.

As mentioned in the introduction, N -subjettiness is adapted from the similar quantity

N -jettiness introduced in Ref. [28]. There are three important differences: the sum over

k only runs over the hadrons in a particular jet and not over the entire event, we do not

have candidate (sub)jets corresponding to the beam directions, and our distance measure
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N-‐subje7ness	  

•  Typical approach: 
Use physics inspired variables to 
provide signal / background 
discrimination 

•  Typical physics inspired variables 
exploit differences in: 

•  Jet mass  
•  N-prong structure:  

o  1-prong (QCD)  
o  2-prong (W,Z,H) 
o  3-prong (top) 

•  Radiation pattern: 
o  Soft gluon emission 
o  Color flow 
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•  Jet mass is not invariant 
under Image normalization  
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the	  image	  the	  network	  is	  looking	  for	  discrimina(ng	  features	  
	  



Typical Neural Network Hidden Layer 87	  

x1	   x2	   x3	   x4	   x5	   x6	  

z1	   z2	   z3	   z4	  output	  

Hidden	  layer	  
Different	  Colors	  represent	  	  
different	  weights	  W*x	  

input	  



Local Connectivity 88	  

x1	   x2	   x3	   x4	   x5	   x6	  

Local connectivity: each neuron has a small “field of  view” of  a few inputs 

z1	   z2	   z3	   z4	  output	  

Hidden	  layer	  
Different	  Colors	  represent	  	  
different	  weights	  W*x	  

input	  



Shared Weights → Convolutions 89	  

x1	   x2	   x3	   x4	   x5	   x6	  

Shared weights:  each neuron uses the same weights…  
 

Effect → the neuron is scanned over different fields of  view → Convolution 

z1	   z2	   z3	   z4	  output	  

Hidden	  layer	  
Different	  Colors	  represent	  	  
different	  weights	  W*x	  

input	  



Convolutional Layer 90	  

x1	   x2	   x3	   x4	   x5	   x6	  

Add more neurons which scans the field of  view 
 

Each neuron is a Filter being convolved with the input 
 

Convolutional Layer with 4 filters production 4x4 output vector size 

z11	   z12	   z13	   z14	  output	  

z21	   z22	   z23	   z24	  

z31	   z32	   z33	   z34	  

z41	   z42	   z43	   z44	  

Hidden	  layer	  
Different	  Colors	  represent	  	  
different	  weights	  W*x	  

input	  



Why did it take so long to train DNN’s? 

•  Big Data 
–  (Hundreds of) Millions of  parameters → large dataset vital for training 

•  GPU’s 
–  NN’s require a lot of  matrix multiplications… perfect for GPU’s 
–  Dramatically increased the speed of  training 

•  But these aren’t the only reasons… 
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Training Improvements 
•  Gradient descent is computationally 

costly (since we compute gradient 
over full training set) 

•  Stochastic gradient descent 
–  Compute gradient on one event at a 

time (in practice a small batch) 
–  Noisy estimates average out 
–  Stochastic behavior can allow “jumping” 

out of  bad critical points 

–  Scales well with dataset and model size 
–  But can have some convergence 

difficulties 

–  Improvements include: 
Momentum, RMSprop, AdaGrad, … 
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w2	  

w1	  

w2	  

w1	  



Better Activation Functions 

•  Vanishing gradient problem 
–  Derivative of  sigmoid: 

 
–  Nearly 0 when x is far from 0! 
–  Gradient descent impossible! 
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∂σ (x)
∂x

=σ (x)(1−σ (x))

•  Rectified Linear Unit (ReLU) 
–  ReLU(x) = max{0, x} 
–  Derivative is constant! 

–  ReLU gradient doesn’t vanish 

∂ReLU(x)
∂x

= 1
0

when x > 0
otherwise

"
#
$

%$



Better Regularization Inside the Network 

•  Dropout 
– Randomly remove nodes during training 
– Avoid co-adaptation of  nodes 
– Essentially a large model averaging procedure  
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New way to train networks… Potential for HEP? 

•  Train two networks “against” 
each other 
–  One to generates an image  
–  Second one to distinguish 

real / fake images 

–  Potential applications for fast 
simulation? 

•  Domain adaptation: train with 
one dataset (MC) and apply on 
a slightly different one (data) 
–  Minimize use of  information 

not in both domains 

–  Potential to reduce data/MC 
differences and systematic 
uncertainties during 
training? 
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Generative Adversarial Nets  

Gradient Reversal Layers and Domain Adaptation 

Y. Le Cun 

http://arxiv.org/abs/1409.7495  

https://arxiv.org/abs/1406.2661  


