Higgs fits to new physics

Veronica Sanz (Sussex)

Challenges ahead

The LHC

The LHC is in a mature stage, already providing precision tests for the SM in most channels (excl the Higgs)

Precise tests of the full structure of the SM, based on QFT, symmetries (global/gauge) and consistent ways to break them non-trivial tests of perturb.->non-

perturb. QCD

Absence of excesses: interpreted as new physics exclusions

exclusions: rather impressive, many at the TeV searches: outstanding coverage of possible topologies any hints: (like in flavor) extremely tempting

This is just the beginning

HL-LHC (High-Luminosity) LHC approved, to deliver 3000 inverse fb of data. Funding ensured until 2035.

Plus other collider experiments testing SM at high precision e.g. super-B factory

So here we are

So here we are again, post-LHC Run1

The Higgs as a key to new physics

A cosmological Higgs

The LHC provides the most precise, controlled way of studying the Higgs and direct access to TeV scales

Exploiting complementarity with cosmo/astro probes

Similar story for Axions and ALPs, scalars are versatile

The Higgs at the LHC

LHC Higgs in a nutshell (I)

The Higgs is **produced** in ggF, VBF, VH and ttH **decays** to channels with photons, leptons (e,mu), missing energy, tagged b's and taus

easy to difficult
diphotons
ZZ to 4L
WW to 2L
di-taus
bb

mass=125 GeV

LHC Higgs in a nutshell (II)

QUANTUM NUMBERS

using kinematic distributions in ZZ, WW, ...

determine the spin and parity as well as possible CP admixtures

kinematics

hypothesis discrimination

SM Higgs

Run1 (and now Run2) indicates a SM-like Higgs

but precision is poor (20-30%)

The low-hanging fruits: SUSY and Composite Higgs

SUSY Higgs (I)

SUSY Higgs: loop corrections compete with gluon fusion and Higgs to diphotons Main effect **stop contributions**

ESPINOSA, GROJEAN, **VS**, TROTT. 1207.7355

indirect searches for stops

BANFI, BOND, MARTIN, VS. 1708.XXXX

SUSY Higgs (II)

Higgs data vs direct searches for stops

Composite Higgs (I)

Usual paradigm:

potential generated via Coleman-Weinberg contributions

e.g. GAUGE

Georgi-Kaplan (80's) gauge-top *does not* trigger EWSB need new fermionic resonances TOP-PARTNERS

$$m_h^2 \sim \frac{N_c y_t^2}{16\pi^2} \frac{v^2}{f^2} m_T^2$$

pheno: New, light (below TeV) techni-baryons should couple to the Higgs, W, Z

Composite Higgs (II)

typical distribution of top-partners

Panico et al. 2016

resonances below ~ 800 GeV are excluded

$$m_h^2 \sim \frac{N_c y_t^2}{16\pi^2} \, \frac{v^2}{f^2} \, m_T^2$$
 tuning in the Higgs potential severe

Composite Higgs after Run2

Composite Higgs models
Many realizations,
but some common features

Boson couplings

$$\kappa_V = \sqrt{1-\xi} \approx 1 - \frac{1}{2} \xi$$

Fermion couplings

	1 26.11						
κ_F	Models						
$\kappa_F^A = \sqrt{1 - \xi}$	SO(5)/SO(4) - 89 $SO(6)/SO(4) \times SO(2) - 121$						
	$SO(6)/SO(4) \times SO(2) - 12 13$						
	SU(5)/SU(4) 14						
	SO(8)/SO(7) - [18, 19]						
$\kappa_F^B = rac{1-2\xi}{\sqrt{1-\xi}}$	SO(5)/SO(4) 9 11 17						
4. 2	SU(4)/Sp(4) - 3						
	$SU(5)/SO(5) - \boxed{4}$						
	$SO(6)/SO(4) \times SO(2) - 12 13$						

The EFT approach

Looking for small deviations from the SM

EFT approach

Well-defined theoretical approach
Assumes New Physics states are heavy
Write Effective Lagrangian with only light (SM) particles
BSM effects can be incorporated as a momentum expansion

dimension-6 dimension-8

$$\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda^2} \, \mathcal{O}_i^{d=6} + \sum \frac{c_i}{\Lambda^4} \, \mathcal{O}_i^{d=8} + \dots$$
BSM effects SM particles

example:

2HDM

$$\frac{ig}{2m_W^2} \bar{c}_W \left[\Phi^{\dagger} T_{2k} \overleftrightarrow{D}_{\mu} \Phi \right] D_{\nu} W^{k,\mu\nu}$$
where $\bar{c}_W = \frac{m_W^2 \left(2\tilde{\lambda}_3 + \tilde{\lambda}_4 \right)}{192 \pi^2 \tilde{\mu}_2^2}$

Beyond the kappa formalism

Kappa-formalism is useful when new physics effects are *very simple*Just change the overall rates

squarks
EWinos
$$(\kappa_{\gamma},\,\kappa_{g})$$

non-linear, CHM singlet mixing
$$(\kappa_f, \kappa_V)$$

Models offer richer kinematics, and EFT approach captures them

$$-\frac{1}{4}h\,g_{hVV}^{(1)}V_{\mu\nu}V^{\mu\nu} \ -h\,g_{hVV}^{(2)}V_{\nu}\partial_{\mu}V^{\mu\nu} \ -\frac{1}{4}h\,\tilde{g}_{hVV}V_{\mu\nu}\tilde{V}^{\mu\nu}$$

$$h(p_1)$$

$$\begin{split} i\eta_{\mu\nu} \left(g_{hVV}^{(1)} \left(\frac{\hat{s}}{2} - m_V^2\right) + 2g_{hVV}^{(2)} m_V^2\right) \\ -ig_{hVV}^{(1)} p_3^\mu p_2^\nu & -i\tilde{g}_{hVV} \epsilon^{\mu\nu\alpha\beta} p_{2,\alpha} p_{3,\beta} \\ & + \textit{off-shell pieces} \end{split}$$

EFT approach

THEORY

Model-independent parametrization deformations respect to the SM

Well-defined theory
can be improved order by order in
momentum expansion
consistent addition of higherorder QCD and EW corrections

Connection to models is straightforward

EXPERIMENT

Beyond kappa-formalism: Allows for a richer and generic set of kinematic features

Higher-order precision in QCD/EW

The way to combine all Higgs channels and EW production

EFT: Matching with UV theories

To combine direct/indirect and evaluate the validity of the EFT approximation, matching of the EFT with a UV model is required

We did the matching to UV theories with extended Higgs sectors

	$ar{c}_H$	\bar{c}_6	$ar{c}_T$	$ar{c}_W$	$ar{c}_B$	\bar{c}_{HW}	\bar{c}_{HB}	$ar{c}_{3W}$	$ar{c}_{\gamma}$	$ar{c}_g$
Higgs Portal (G)		L	X	X	X	X	X	X	X	X
Higgs Portal (Spontaneous \mathcal{G})		L	RG	RG	RG	X	X	X	X	X
Higgs Portal (Explicit \mathcal{G})		Т	RG	RG	RG	X	X	X	X	X
2HDM Benchmark A $(c_{\beta-\alpha}=0)$		L	L	L	L	L	L	L	L	X
2HDM Benchmark B $(c_{\beta-\alpha} \neq 0)$		Т	L	L	L	L	L	L	L	X
Radion/Dilaton		Т	RG	Т	Т	Т	Т	L	Т	Т

combined EWPTs, direct searches and Higgs limits from the EFT 50 pages of gory details...

Matching procedure

Example: 2HDM

also matching with the broken phase

obtained EFT limits, dimension-6 and dimension-8 and EWPTs

Matching EFT: unbroken phase

$$\begin{split} \bar{c}_{H} &= -\left[-4\tilde{\lambda}_{3}\tilde{\lambda}_{4} + \tilde{\lambda}_{4}^{2} + \tilde{\lambda}_{5}^{2} - 4\tilde{\lambda}_{3}^{2}\right] \frac{v^{2}}{192\,\pi^{2}\,\tilde{\mu}_{2}^{2}} \\ \bar{c}_{G} &= -\left(\tilde{\lambda}_{4}^{2} + \tilde{\lambda}_{5}^{2}\right) \frac{v^{2}}{192\,\pi^{2}\,\tilde{\mu}_{2}^{2}} \\ \bar{c}_{T} &= (\tilde{\lambda}_{4}^{2} - \tilde{\lambda}_{5}^{2}) \frac{v^{2}}{192\,\pi^{2}\,\tilde{\mu}_{2}^{2}} \\ \bar{c}_{T} &= (\tilde{\lambda}_{4}^{2} - \tilde{\lambda}_{5}^{2}) \frac{v^{2}}{192\,\pi^{2}\,\tilde{\mu}_{2}^{2}} \\ \bar{c}_{Y} &= \frac{m_{W}^{2}\,\tilde{\lambda}_{3}}{256\,\pi^{2}\,\tilde{\mu}_{2}^{2}} \\ \bar{c}_{W} &= -\bar{c}_{HW} = \frac{m_{W}^{2}\,(2\,\tilde{\lambda}_{3} + \tilde{\lambda}_{4})}{192\,\pi^{2}\,\tilde{\mu}_{2}^{2}} = \frac{8}{3}\,\bar{c}_{Y} + \frac{m_{W}^{2}\,\tilde{\lambda}_{4}}{192\,\pi^{2}\,\tilde{\mu}_{2}^{2}} \\ \bar{c}_{B} &= -\bar{c}_{HB} = \frac{m_{W}^{2}\,(-2\,\tilde{\lambda}_{3} + \tilde{\lambda}_{4})}{192\,\pi^{2}\,\tilde{\mu}_{2}^{2}} = -\frac{8}{3}\,\bar{c}_{Y} + \frac{m_{W}^{2}\,\tilde{\lambda}_{4}}{192\,\pi^{2}\,\tilde{\mu}_{2}^{2}} \\ \bar{c}_{3W} &= \frac{\bar{c}_{2W}}{3} = \frac{m_{W}^{2}}{1440\,\pi^{2}\,\tilde{\mu}_{2}^{2}} \end{split}$$

$$\bar{c}_T(m_Z) \simeq \bar{c}_T(\tilde{\mu}_2) - \frac{3 g'^2}{32 \pi^2} \bar{c}_H(\tilde{\mu}_2) \log \left(\frac{\tilde{\mu}_2}{m_Z}\right)$$

$$\bar{c}_W(m_Z) + \bar{c}_B(m_Z) \simeq c_W(\tilde{\mu}_2) + \bar{c}_B(\tilde{\mu}_2) + \frac{1}{24 \pi^2} \bar{c}_H(\tilde{\mu}_2) \log \left(\frac{\tilde{\mu}_2}{m_Z}\right).$$

Matching to UV theories

Within the EFT, connection to models is straightforward

EFT

p_ (leading lepton) [GeV]

MODELS

EFT: Global analyses

EFTs induce effects in many channels ideal framework for combination

\mathcal{L}_{3h} Couplings $vs\ SU(2)_L \times U(1)_Y\ (D \le 6)$ Wilson Coefficients

$$\begin{split} g_{hhh}^{(1)} &= 1 + \frac{5}{2} \, \bar{c}_6 \ , \quad g_{hhh}^{(2)} = \frac{g}{m_W} \, \bar{c}_H \, , \quad g_{hgg} = g_{hgg}^{\text{SM}} - \frac{4 \, g_s^2 \, v \, \bar{c}_g}{m_W^2} \ , \quad g_{h\gamma\gamma} = g_{h\gamma\gamma}^{\text{SM}} - \frac{8 \, g \, s_W^2 \, \bar{c}_\gamma}{m_W} \\ g_{hww}^{(1)} &= \frac{2g}{m_W} \bar{c}_{HW} \ , \quad g_{hzz}^{(1)} = g_{hww}^{(1)} + \frac{2g}{c_W^2 m_W} \Big[\bar{c}_{HB} \, s_W^2 - 4 \bar{c}_\gamma \, s_W^4 \Big] \ , \quad g_{hww}^{(2)} = \frac{g}{2m_W} \Big[\bar{c}_W + \bar{c}_{HW} \Big] \\ g_{hzz}^{(2)} &= 2 \, g_{hww}^{(2)} + \frac{g \, s_W^2}{c_W^2 m_W} \Big[(\bar{c}_B + \bar{c}_{HB}) \Big] \ , \quad g_{hww}^{(3)} = g \, m_W \ , \quad g_{hzz}^{(3)} = \frac{g_{hww}^{(3)}}{c_W^2} (1 - 2 \, \bar{c}_T) \\ g_{hez}^{(1)} &= \frac{g \, s_W}{c_W \, m_W} \Big[\bar{c}_{HW} - \bar{c}_{HB} + 8 \, \bar{c}_\gamma \, s_W^2 \Big] \ , \quad g_{haz}^{(2)} = \frac{g \, s_W}{c_W \, m_W} \Big[\bar{c}_{HW} - \bar{c}_{HB} - \bar{c}_B + \bar{c}_W \Big] \end{split}$$

\mathcal{L}_{4h} Couplings $vs\ SU(2)_L \times U(1)_Y\ (D \leq 6)$ Wilson Coefficients

$$\begin{split} g_{hhhh}^{(1)} &= 1 + \frac{15}{2} \, \bar{c}_6 \ , \quad g_{hhhh}^{(2)} &= \frac{g^2}{4 \, m_W^2} \, \bar{c}_H \ , \quad g_{hhgg} = -\frac{4 \, g_s^2 \, \bar{c}_g}{m_W^2} \ , \quad g_{hh\gamma\gamma} = -\frac{4 \, g^2 \, s_W^2 \, c_\gamma}{m_W^2} \\ g_{hhwy}^{(1,2)} &= \frac{g}{2 \, m_W} \, g_{hxy}^{(1,2)} \quad (x,y=W,Z,\gamma) \ , \quad g_{hhww}^{(3)} &= \frac{g^2}{2} \ , \quad g_{hhww}^{(3)} = \frac{g_{hhww}^2}{c_W^2} (1-6 \, \bar{c}_T) \\ g_{haww}^{(1)} &= \frac{g^2 \, s_W}{m_W} \, \Big[2 \, \bar{c}_W + \bar{c}_{HW} + \bar{c}_{HB} \Big] \ , \quad g_{hzww}^{(1)} &= \frac{g^2}{c_W \, m_W} \, \Big[c_W^2 \, \bar{c}_{HW} - s_W^2 \, \bar{c}_{HB} + (3-2s_W^2) \, \bar{c}_W \Big] \\ g_{haww}^{(2)} &= \frac{2 \, g^2 \, s_W}{m_W} \, \bar{c}_W \ , \quad g_{hzww}^{(2)} &= \frac{g^2}{c_W \, m_W} \Big[\bar{c}_{HW} + (3-2s_W^2) \, \bar{c}_W \Big] \\ g_{haww}^{(3)} &= \frac{g^2 \, s_W}{m_W} \, \Big[\bar{c}_W + \bar{c}_{HW} \Big] \ , \quad g_{hzww}^{(3)} &= \frac{s_W}{c_W} \, g_{haww}^{(3)} \end{split}$$

ALLOUL, FUKS, VS. 1310.5150 GORBAHN, NO, VS. 1502.07352

EFTs induce effects in many channels ideal framework for combination

TGCs, QGCs

 \mathcal{L}_{3V} Couplings $vs\ SU(2)_L \times U(1)_Y\ (D \leq 6)$ Wilson Coefficients

$$\begin{split} g_1^Z &= 1 - \frac{1}{c_W^2} \Big[\bar{c}_{HW} - (2s_W^2 - 3) \bar{c}_W \Big] \ , \quad \kappa_Z = 1 - \frac{1}{c_W^2} \Big[c_W^2 \bar{c}_{HW} - s_W^2 \bar{c}_{HB} - (2s_W^2 - 3) \bar{c}_W \Big] \\ g_1^\gamma &= 1 \ , \quad \kappa_\gamma = 1 - 2 \, \bar{c}_W - \bar{c}_{HW} - \bar{c}_{HB} \ , \quad \lambda_\gamma = \lambda_Z = 3 \, g^2 \, \bar{c}_{3W} \end{split}$$

 \mathcal{L}_{4V} Couplings $vs\ SU(2)_L \times U(1)_Y\ (D \le 6)$ Wilson Coefficients

$$\begin{split} g_2^W &= 1 - 2\,\bar{c}_{HW} - 4\,\bar{c}_W \ , \quad g_2^Z = 1 - \frac{1}{c_W^2} \Big[2\,\bar{c}_{HW} + 2\,(2 - s_W^2)\,\bar{c}_W \Big] \\ \\ g_2^\gamma &= 1 \ , \quad g_2^{\gamma Z} = 1 - \frac{1}{c_W^2} \Big[\bar{c}_{HW} + (3 - 2s_W^2)\,\bar{c}_W \Big] \\ \\ \lambda_W &= \lambda_{\gamma W} = \lambda_{\gamma Z} = \lambda_{WZ} = 6\,g^2\,\bar{c}_{3W} \end{split}$$

Although the EFT has many parameters, the LHC is sensitive to a handful of them

State of the art: Global fit

ELLIS, **VS**, YOU. 1410.0773

LEP and LHC Run1 data

green: one-by-one

black: global fit

sensitivity relies on combination of channels and on use of differential information

theorists are working closely with the experiments to bring this to higher precision in the 13 TeV runs

EFT: Precision

Precision in the EFT

Within the EFT approach incorporate higher-order QCD and EW effects

higher-order EFT effects (dimension-8)

check validity of the approach

Need to exploit differential information simulate cuts and detector effects in analysis MC tools should match the level of SM BGs

we started incorporating the EFT at QCD NLO NLO EW & dim-8 underway

Monte Carlo EFT@NLO QCD

At LO there are a handful of EFT implementations, incl SM NLO

WHIZARD, JHU, VBFNLO, AMC@NLO, POWHEG

Largest collection of EFT operators in one MC (39 operators)

ALLOUL, FUKS, **VS**. 1310.5150

written in the SILH basis, we link to Rosetta for change of basis

MIMASU, **VS** ET AL. 1508.05895

we started incorporating QCD NLO EFT effects for a handful of operators codes are now public

POWHEG-BOX

Mimasu, **VS**, williams. 1512.02572. JHEP

aMC@NLO

DEGRANDE, FUKS, MAWATARI, MIMASU, **VS**. 1609.04833. EPJC

Conclusions

- The Higgs may be the key to discover new physics: lightness and association with the origin of mass
- The discovery of the Higgs in 2012 opened a new way to look for new physics via quantum effects (indirect). With Run2 at 13 TeV, the LHC is approaching a precision stage for Higgs measurements
- The EFT approach to interpret Higgs data is a theorist-friendly procedure and with a well-defined procedure for systematic improvement. It is motivated by the absence of excesses in direct searches
- To reach the precision needed for discovery, theorists are developing NLO MC tools to facilitate the communication with experimentalists. Expect to reach scales into the TeV