Exclusive and rare Higgs boson decays

Konstantinos Nikolopoulos
University of Birmingham
on behalf of the ATLAS and CMS Collaborations

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement no 714893 (ExclusiveHiggs)
Higgs-fermion interactions: Yukawa couplings

- Higgs interactions to vector bosons: defined by electroweak symmetry breaking
- Higgs interactions to fermions: ad-hoc hierarchical Yukawa couplings $\propto m_f$

\[g_{hVV} = \frac{2m_V^2}{v} \]
\[g_{hff} = \frac{m_f}{v} \]

- Yukawa couplings not imposed by fundamental principle
- Probing fermion mass generation scale→independent task
- Fermion mass generation scale from unitarity bounds:

\[\Lambda \approx 23, 31, 52, 77, 84 \text{ TeV} \]

- Modified Higgs-fermion couplings in BSM scenarios
 - Concise summary in LHC Higgs Cross-section WG YR4 [arxiv:1610.07922]
 - Effects suppressed $1/\Lambda^2$ or proportional to mixing angles with extra scalars.
Higgs-fermion interactions: The story so far

Progress in Higgs boson properties:
- **mass** known to better than 0.19%
- **bosonic decays** measured to ~10-20%

For 3rd generation fermions:
- **t-quark**: several significant ttH excesses; indirect evidence
- **b-quark**: evidence for $h \rightarrow bb$ at LHC and Tevatron
- **τ-lepton**: $h \rightarrow \tau\tau$ observation established

For 1st/2nd generation fermions, different picture:
- **e/µ**: no evidence yet → established non-universality
- **c-quark**: no direct evidence, loose bounds from $h \rightarrow bb$
- **u/d/s-quarks**: no inclusive searches available

Higgs couplings: margin for undetected/unobserved decays

K. Nikolopoulos / Higgs Hunting, 24 July 2017 / Exclusive and rare Higgs boson decays
Exclusive Decays $h \rightarrow Q\gamma$

- **h→Qγ decays: clean probe** for Higgs-quark couplings for 1st/2nd generation quarks
 - Q is a vector meson or quarkonium state
- **Two contributions**: direct and indirect amplitude
 - **Direct amplitude**: provides sensitivity to Higgs-quark couplings
 - **Indirect amplitude**: insensitive to Higgs-quark couplings; larger than direct amplitude
 - Destructive interference

\[
\Gamma(H \rightarrow J/\psi + \gamma) = \left| (11.9 \pm 0.2) - (1.04 \pm 0.14)\kappa_c \right|^2 \times 10^{-10} \text{ GeV}
\]

Substantial interest from theory community on branching ratio estimates and feasibility

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Br(h → ργ)</td>
<td>19.0 ± 1.5</td>
<td></td>
<td>16.8 ± 0.8</td>
<td></td>
</tr>
<tr>
<td>Br(h → ωγ)</td>
<td>1.60 ± 0.17</td>
<td></td>
<td>1.48 ± 0.08</td>
<td></td>
</tr>
<tr>
<td>Br(h → φγ)</td>
<td>3.00 ± 0.13</td>
<td></td>
<td>2.31 ± 0.11</td>
<td></td>
</tr>
<tr>
<td>Br(h → J/ψγ)</td>
<td>2.79 ±0.16</td>
<td></td>
<td>2.95 ± 0.17</td>
<td></td>
</tr>
<tr>
<td>Br(h → Υ(1S)γ)</td>
<td>(0.61 ±0.61) \cdot 10^{-3}</td>
<td></td>
<td>(4.61 ±1.76) \cdot 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Br(h → Υ(2S)γ)</td>
<td>(2.02 ±1.28) \cdot 10^{-3}</td>
<td></td>
<td>(2.34 ±0.76) \cdot 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Br(h → Υ(3S)γ)</td>
<td>(2.44 ±1.75) \cdot 10^{-3}</td>
<td></td>
<td>(2.13 ±0.76) \cdot 10^{-3}</td>
<td></td>
</tr>
</tbody>
</table>

Z → Qγ decays also interesting

- Experimentally unconstrained
 - LEP: accurately measured b-/c-quark couplings (~1%)
 - Light quark couplings less constrained
- Sensitive to BSM contributions
Dataset and pile-up

Z →μμ candidate with 25 reconstructed vertices from the 2012 run. Only good quality tracks with pT>0.4GeV are shown.
First search, with 2.7 fb⁻¹ at 13 TeV collected in 2015

h→φγ sensitive to strange quark Yukawa coupling
- challenging to access with inclusive h→ss decays!

Looking for new physics through anomalous couplings
- possible in various BSM scenarios, modifies BR(h→φγ)

Z→φγ not directly constrained by existing measurements

<table>
<thead>
<tr>
<th>Branching Fraction Limit (95% CL)</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(H → φγ) [10⁻³]</td>
<td>1.5⁺0.7₋0.4</td>
<td>1.4</td>
</tr>
<tr>
<td>B(Z → φγ) [10⁻⁶]</td>
<td>4.4⁺2.0₋1.2</td>
<td>8.3</td>
</tr>
</tbody>
</table>

New results for Summer 2017!
- updated h/Z→φγ
- added h/Z→ργ probing up- and down quark couplings to Higgs boson
Analysis Strategy

- **Exclusive decays** → distinct experimental signature
 - Pair of collimated high-pT isolated tracks recoils against high-pT isolated photon

- **Meson decays:**
 - \(\phi \rightarrow K^+K^- \), \(\text{BR}=49\% \)
 - \(\rho \rightarrow \pi^+\pi^- \), \(\text{BR} \approx 100\% \)

- **Small opening angles between decay products**
 - Particularly for \(\phi \rightarrow K^+K^- \)
 - Tracking in dense environments

Physics Overview

- **ATLAS Simulation**
 - \(H \rightarrow \phi \gamma \)
 - Events / 0.01

- **ATLAS Simulation**
 - \(s=13 \text{ TeV}, 3.2 \text{ fb}^{-1} \)
 - Statistical Uncertainty
 - Total Uncertainty
 - Data 2015

K. Nikolopoulos / Higgs Hunting, 24 July 2017 / Exclusive and rare Higgs boson decays
Trigger Strategy

- Two-level trigger system
 - Level-1: Hardware-based
 - HLT: Software-based

Enabled by dedicated trigger items
- Modified τ-lepton algorithms
- Activated: 9/2015 ($\varphi\gamma$) and 5/2016 ($\rho\gamma$)
- Efficiency \sim80% w.r.t offline selection

Level-1: Isolated EM object
- Lowest p_T unprescaled EM object

HLT: Collimated/isolated high-p_T track pair recoiling against high-p_T photon
- Isolated di-track (leading $p_T>$15 GeV)
 consistent with m_{Meson}
- Photon ($p_T>$35 GeV)

Efficiency \sim80% w.r.t offline selection

ATLAS Trigger Operation
- L1 Group Rates (with overlaps)
 pp Data July 2016, \sqrt{s}= 13 TeV

ATLAS Trigger Operation
- HLT Physics Group Rates (with overlaps)
 pp Data July 2016, \sqrt{s}= 13 TeV

Triggers:
- Level-1: Isolated EM object
- HLT: Collimated/isolated high-p_T track pair recoiling against high-p_T photon

Efficiency \sim80% w.r.t offline selection

Small angular separation of decay products

Higgs
photon
meson
decay products

ATLAS-CONF-2017-061

ATLAS

Data 2015 \sqrt{s} = 13 TeV
offline track $p_T >$ 1 GeV
25 GeV Tau Trigger
- Fast Track Finder (Stage 1)
- Fast Track Finder (Stage 2)
- Precision Tracking (Stage 2)

Efficiency

Offline track p_T [GeV]
Event Selection

Tracks
- No particle identification available at momentum range, all tracks considered K/π
- Two opposite charged tracks
- Leading $p_T > 20$ GeV, sub-leading $p_T > 15$ GeV
- di-track consistent to $m_\phi \pm 8$ MeV or $m_\rho \pm 140$ MeV
- track-based isolation
- di-track system must satisfy:
 \[
 p_T^M > \begin{cases}
 40 \text{ GeV}, & \text{for } m_{M\gamma} \leq 91 \text{ GeV} \\
 40 + 5/34 \times (m_{M\gamma} - 91) \text{ GeV}, \quad \text{for } 91 \text{ GeV} < m_{M\gamma} < 140 \text{ GeV} \\
 47.2 \text{ GeV}, \quad \text{for } m_{M\gamma} \geq 140 \text{ GeV}
 \end{cases}
 \]

Photons
- “Tight” identification criteria
- $p_T^\gamma > 35$ GeV
- $|\eta| < 2.47$ and not in $1.37 < |\eta| < 1.52$
- Isolated (calorimeter- and track-based)
- $\Delta\phi(M,\gamma) > \pi/2$
- Total signal acceptance/efficiency
 - $h(Z) \rightarrow \phi \gamma \rightarrow K^+K^-\gamma \sim 17\% \ (8\%)$
 - $h(Z) \rightarrow \rho \gamma \rightarrow \pi^+\pi^-\gamma \sim 10\% \ (0.4\%)$
Efficiency and Resolution

- No categorisation
- Mass resolution ~1.8%
- Signal Model
 - Higgs: double Gauss
 - Z: double Voigt with eff. corr.
- Signal Systematic Uncertainty

<table>
<thead>
<tr>
<th>Source of systematic uncertainty</th>
<th>Yield uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total H cross section</td>
<td>6.3%</td>
</tr>
<tr>
<td>Total Z cross section</td>
<td>2.9%</td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td>3.4%</td>
</tr>
<tr>
<td>Photon ID efficiency</td>
<td>2.5%</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>2%</td>
</tr>
<tr>
<td>Tracking efficiency</td>
<td>6%</td>
</tr>
</tbody>
</table>

Phys. Rev. Lett. 117, 111802 $m_{K\K\gamma}$ [GeV]
Background Modelling

- Dominated by QCD production γ+jet and multi-jet events
- Exclusive “peaking” backgrounds (e.g. $h/Z \rightarrow \mu\mu\gamma_{\text{FSR}}$) estimated to be negligible
- Non-parametric data-driven background model; common for ATLAS $Q\gamma$ searches
 - Begin with loose sample of candidates
 - Model kinematic and isolation distributions
 - Generate “pseudo”-background events
 - Apply selection to “pseudo”-candidates

- Background Normalisation: Directly from the data in the Signal Region
- Background Shape Uncertainty: Estimated from modifications to modelling procedure (e.g. shifting/warping input distributions), shape uncertainty included in likelihood as a shape morphing nuisance parameter

ATLAS Preliminary + Data $s = 13$ TeV, 32.3 fb$^{-1}$

Region : VR1

<table>
<thead>
<tr>
<th>ATLAS Preliminary + Data $s = 13$ TeV, 32.3 fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region : VR2</td>
</tr>
<tr>
<td>Region : VR3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meson p_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{\gamma\gamma}$ [GeV]</td>
</tr>
</tbody>
</table>

Data/Model

K. Nikolopoulos / Higgs Hunting, 24 July 2017 / Exclusive and rare Higgs boson decays
Background validation in side-bands

ATLAS Preliminary

\[\bar{\nu}s = 13 \text{ TeV}, \, 35.6 \text{ fb}^{-1} \]

- Data
- Fit Result
- \(\phi \to K^+K^- \)
- Total Background

Sideband Region

- Background Model
- Model Shape Uncertainty

Data/Model

ATLAS-CONF-2017-057

\[m_{KK} \text{ [GeV]} \]

\[m_{\pi\pi} \text{ [GeV]} \]

ATLAS-CONF-2017-057
Results

- **Final discriminant** is $m_{KK\gamma}$ and $m_{\pi\pi\gamma}$
- **No significant signal observed**
- **95% confidence level upper limit**
 - CLs with profile likelihood test statistic
 - Limit on production cross-section times branching ratio
 - $h\rightarrow\phi\gamma < 25.3$ fb
 - $h\rightarrow\rho\gamma < 45.5$ fb

<table>
<thead>
<tr>
<th>Branching Fraction Limit (95% CL)</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(H \rightarrow \phi\gamma)$ [10$^{-4}$]</td>
<td>4.2$^{+1.8}_{-1.2}$</td>
<td>4.8</td>
</tr>
<tr>
<td>$B(Z \rightarrow \phi\gamma)$ [10$^{-6}$]</td>
<td>1.3$^{+0.6}_{-0.4}$</td>
<td>0.9</td>
</tr>
<tr>
<td>$B(H \rightarrow \rho\gamma)$ [10$^{-4}$]</td>
<td>8.4$^{+4.1}_{-2.4}$</td>
<td>8.8</td>
</tr>
<tr>
<td>$B(Z \rightarrow \rho\gamma)$ [10$^{-6}$]</td>
<td>33$^{+13}_{-9}$</td>
<td>25</td>
</tr>
</tbody>
</table>

x3 improvement in expected limits with respect to 2.7/fb result [PRL 117, 111802]
ATLAS search for exclusive $h/Z \rightarrow Q\gamma$ decays
- $Q = \psi$ or $Y(nS)$, $n=1,2,3$

Event Selection
- single muon and dimuon trigger
- $|\eta_\mu|<2.5$, $p_{T\mu}>20$, $p_{T\mu\mu}>36$ GeV
- $|\eta_\gamma|<2.47$ (excluding $1.37<|\eta_\gamma|<1.52$), $p_{T\gamma}>36$ GeV
- $\mu\mu$ and γ isolation,
- $|m_{\mu\mu} - m_{\psi}|<0.15$ (0.20) GeV barrel (endcap) $8<m_{\mu\mu}<12$ GeV
- $|L_{xy}/\sigma_{L_{xy}}|<3$
- $\Delta\phi(\mu\mu,\gamma)>0.5$

Total efficiency
- $h(Z) \rightarrow \psi\gamma \rightarrow \mu\mu\gamma\approx 22\%(12\%)$
- $h(Z) \rightarrow Y\gamma \rightarrow \mu\mu\gamma\approx 28\%$ (15%)
Mass Resolution

- Simple event categorisation
- 4 detector-driven categories
 - Muon pseudorapidity ($\times 2$)
 - Photon conversion ($\times 2$)
- Mass resolution ~1.2-1.8%

\[s = 8 \text{ TeV} \int \text{L} \, \text{dt} = 19.2 \text{ fb}^{-1} \]

ATLAS

- Fit
- J/ψ
- Background

\[\sigma = 44 \pm 1 \text{ MeV} \]

\[m_{\mu^+\mu^-} [\text{GeV}] \]

\[m_{Y(1S)} \quad m_{Y(2S)} \quad m_{Y(3S)} \]

\[\text{Phys.Rev.Lett. 114 (2015) 121801} \]

ATLAS Simulation

- Barrel Unconverted H\rightarrowJ/ψ γ
 - Sigma = 1.50 ± 0.02 GeV
 - Mean = 124.85 ± 0.02 GeV
- EndCap Converted H\rightarrowJ/ψ γ
 - Sigma = 2.23 ± 0.04 GeV
 - Mean = 124.89 ± 0.04 GeV

unconverted/barrel

unconverted/end-cap
Background Modelling

- **Inclusive quarkonium** with jet "seen" as γ
 - combinatoric background: small contribution
 - contribution from Q+γ production
- **Nonparametric data-driven** background model
 - Similar to h/Z→φγ and h/Z→ργ analyses
- **Y(nS)γ**: also Z→μμγ_{FSR} from side-band fit

<table>
<thead>
<tr>
<th>Category</th>
<th>Observed (Expected Background)</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mass Range [GeV]</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>80–100</td>
<td>115–135</td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>H</td>
</tr>
<tr>
<td>J/ψγ</td>
<td>5 (5.0±0.9)</td>
<td>1.29±0.07</td>
</tr>
<tr>
<td>BC</td>
<td>3 (5.5±0.6)</td>
<td>0.63±0.03</td>
</tr>
<tr>
<td>EU</td>
<td>10 (5.8±0.8)</td>
<td>1.37±0.07</td>
</tr>
<tr>
<td>EC</td>
<td>2 (3.0±0.4)</td>
<td>0.99±0.05</td>
</tr>
<tr>
<td>Y(nS)γ</td>
<td>16 (12.9±2.0)</td>
<td>1.67±0.09</td>
</tr>
<tr>
<td>BC</td>
<td>5 (9.7±1.2)</td>
<td>0.79±0.04</td>
</tr>
<tr>
<td>EU</td>
<td>16 (17.8±2.4)</td>
<td>2.24±0.12</td>
</tr>
<tr>
<td>EC</td>
<td>18 (12.3±1.9)</td>
<td>1.55±0.08</td>
</tr>
</tbody>
</table>

Systematic Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Signal Yield Uncertainty</th>
<th>Estimated From</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total H cross section</td>
<td>12%</td>
<td>QCD scale variation and PDF uncertainties</td>
</tr>
<tr>
<td>Total Z cross section</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Integrated Luminosity</td>
<td>2.8%</td>
<td>Calibration observable and vdM scan uncertainties</td>
</tr>
<tr>
<td>Trigger Efficiency</td>
<td>1.7%</td>
<td></td>
</tr>
<tr>
<td>Photon ID Efficiency</td>
<td>Up to 0.7%</td>
<td></td>
</tr>
<tr>
<td>Muon ID Efficiency</td>
<td>Up to 0.4%</td>
<td></td>
</tr>
<tr>
<td>Photon Energy Scale</td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td>Muon Momentum Scale</td>
<td>Negligible</td>
<td></td>
</tr>
</tbody>
</table>
Multi-observable fit
- $m_{\mu\mu\gamma}$, $p_{T\mu\mu\gamma}$ for $J/\psi\gamma$
- $m_{\mu\mu\gamma}$, $p_{T\mu\mu\gamma}$, $m_{\mu\mu}$ for $\Upsilon(nS)\gamma$

No significant excess
above background observed

95% CL upper limits on decay Branching Ratios:

- \(\mathcal{O}(10^{-3}) \) for Higgs boson (SM production)
- \(\mathcal{O}(10^{-6}) \) for Z boson

Indicate non-universal Higgs boson coupling to quarks

CMS search for $h \to \gamma^* \gamma \to \ell \ell \gamma$ and $h \to J/\psi \gamma$
- used 19.7 fb$^{-1}$ at 8 TeV
- Event Selection [for $h \to J/\psi \gamma$]
 - single muon and a photon, both $p_T > 22$ GeV
 - $|\eta_\mu| < 2.4$, $p_T \mu > 23.4$ GeV, $p_T \mu > 40$ GeV
 - $|\eta_\gamma| < 1.44$, $p_T \gamma > 40$ GeV
 - $\mu \mu$ and γ isolation,
 - $2.9 < m_{\mu\mu} < 3.3$ GeV
 - $\Delta R(\mu, \gamma) > 1$ for each muon
 - muon impact parameter requirements

- Source
<table>
<thead>
<tr>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated luminosity (ref. [37])</td>
</tr>
<tr>
<td>Theoretical uncertainties:</td>
</tr>
<tr>
<td>PDF</td>
</tr>
<tr>
<td>Scale</td>
</tr>
<tr>
<td>$H \to \gamma^* \gamma \to \ell \ell \gamma$ branching fraction</td>
</tr>
<tr>
<td>Experimental uncertainties:</td>
</tr>
<tr>
<td>Pileup reweighting</td>
</tr>
<tr>
<td>Trigger efficiency, μ (e) channel</td>
</tr>
<tr>
<td>Muon reconstruction efficiency</td>
</tr>
<tr>
<td>Electron reconstruction efficiency</td>
</tr>
<tr>
<td>Photon reconstruction efficiency</td>
</tr>
<tr>
<td>$m_{\ell \ell \gamma}$ scale, μ (e) channel</td>
</tr>
<tr>
<td>$m_{\ell \ell \gamma}$ resolution, μ (e) channel</td>
</tr>
</tbody>
</table>

- CMS Preliminary

K. Nikolopoulos / Higgs Hunting, 24 July 2017 / Exclusive and rare Higgs boson decays
$h \to \gamma^* \gamma \to ll\gamma$ and $h \to J/\psi \gamma$

- $h \to J/\psi \gamma$: fit over the 110-150 GeV mass range
 - Background: 2nd degree polynomial
 - Signal: Crystal Ball + Gaussian
- **No excess** above background observed
- 95% CL upper limit $H \to \gamma^* \gamma \to ll\gamma$: $6.7(5.9) \times$SM
- 95% CL upper limit BR($H \to J/\psi \gamma$) < 1.5×10^{-3}
 - 540 times the SM prediction

Table

<table>
<thead>
<tr>
<th>Sample</th>
<th>Signal events before selection $m_H = 125$ GeV</th>
<th>Signal events after selection $m_H = 125$ GeV</th>
<th>Number of events in data $120 < m_{\mu\mu} < 130$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu\mu\gamma$</td>
<td>13.9</td>
<td>3.3</td>
<td>151</td>
</tr>
<tr>
<td>$ee\gamma$</td>
<td>25.8</td>
<td>1.9</td>
<td>65</td>
</tr>
<tr>
<td>($J/\psi \to \mu\mu)\gamma$</td>
<td>0.065(J/ψ) + 0.32 (non-res.)</td>
<td>0.014(J/ψ) + 0.078 (non-res.)</td>
<td>12</td>
</tr>
</tbody>
</table>

Graphs

- **CMS**
 - **Data**
 - **Background model**
 - $\pm 1 \sigma$
 - $\pm 2 \sigma$
 - **500x SM $H \to (J/\psi)\gamma \to \mu\mu\gamma$**
 - background-only fit to the data

- **95% CL limit on σ_{SM}**
 - **Observed**
 - **Expected ± 1σ**
 - **Expected ± 2σ**
 - **10x SM $H \to \gamma^*\gamma \to \mu\mu\gamma$**
 - **ee\gamma**

UNIVERSITY OF BIRMINGHAM

K. Nikolopoulos / Higgs Hunting, 24 July 2017 / Exclusive and rare Higgs boson decays
Search for $h \rightarrow Z\gamma$

- Modified BR($H \rightarrow Z\gamma$) predicted in several BSM scenarios
 - $H \rightarrow Z\gamma$ proceeds by loop diagrams similar to $H \rightarrow \gamma\gamma$
 - SM BR $\approx 1.5 \times 10^{-3}$ ($m_H = 125$ GeV)
- Signal extracted by signal+background fit to $m_{Z\gamma}$
 - Mass resolution essential
 - M_Z constraint improves $m_{\mu\mu\gamma}$ ($m_{ee\gamma}$) resolution by 7(13)%
 - FSR recovery in $\mu\mu\gamma$ channel 3% improvement
- 6 categories are used to enhance sensitivity

Diagrams:

- VBF BDT
- $p_T^\gamma / m_{Z\gamma}$
- Lepton flavour
- p_T^l
- N_{jets}
- ATLAS Simulation Preliminary
 - $\sqrt{s} = 13$ TeV
 - $pp \rightarrow H \rightarrow Z\gamma$
 - $m_H = 125$ GeV
 - p_T^{γ}
 - MC - Fit
 - ATLAS Preliminary
 - $\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
 - $N_{jets} \geq 2, 115$ GeV $< m_{Z\gamma} < 170$ GeV
 - VBF $m_H = 125$ GeV
 - ggF $m_H = 125$ GeV

Figures:

- 1/N dN/d$m_{Z\gamma}$ [GeV$^{-1}$]
- 1/N dN/d m$_{Z\gamma}$ [GeV$^{-1}$]
- 1/N dN/d (BDT output)
Search for \(h \to Z\gamma \)

- Fit over the 115-150 GeV mass range.
 - Signal Modelled by double sided Crystal-Ball
 - Background: Bernstein polynomials,
 - Shape studied on \(Z+\gamma \) (fast) simulation
 - Parameters extracted from fit to data
- Background composition (\(Z+jets, Z+\gamma \)) is estimated by data-driven method using looser isolation requirements
 - \(Z+jets<20\% \) in all categories
- 95\% CL upper limit 6.6(4.4)xSM observed(expected)
- Run 1 results:
 - ATLAS 11(9)xSM (\(m_H=125.5 \) GeV) [Phys. Lett. B 732C (2014) 8-27]
h/\rightarrow Z\gamma$: in the future

- HL-LHC is a Higgs boson factory
 - \(\mathcal{O}(200M)\) Higgs bosons produced
- HL-LHC projections for \(h \rightarrow Z\gamma\)
 - Significance 3.9\(\sigma\) \(\delta\mu/\mu \sim 25\) (30%)
 - [ATL-PHYS-PUB-2014-006]
- HL-LHC projections for \(h/\rightarrow J/\psi\gamma\)
 - Simple and, relatively, clean final state
 - Small branching ratio, few events expected
 - At SM sensitivity \(h \rightarrow \mu\mu_{\text{FSR}}\)
 - contribution \(\sim 3\times h \rightarrow J/\psi\gamma\) and \((Z \rightarrow \mu\mu_{\text{FSR}}\) for Z)
- Sensitive to “anomalous” \(h \rightarrow \gamma\gamma\); use ratio
- Future colliders: leap in Higgs production
 - FCC-hh 100 TeV 20/ab: \(\mathcal{O}(15G)\) Higgs bosons

ATLAS Simulation

<table>
<thead>
<tr>
<th>(E_\text{T}) (TeV)</th>
<th>(m_{h/\gamma}) (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>50</td>
</tr>
</tbody>
</table>

Preliminary

- Data (Bkg. Only)
- S+B Fit
- Background
- H Signal \(\times 100\)
- Z Signal \(\times 10\)

ATLAS-Phys-PUB-2015-043

<table>
<thead>
<tr>
<th>Expected branching ratio limit at 95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B (H \rightarrow J/\psi\gamma) [10^{-6}])</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>(300 \text{ fb}^{-1})</td>
</tr>
<tr>
<td>Cut Based: (185^{+81}_{-52})</td>
</tr>
<tr>
<td>(55^{+24}_{-15})</td>
</tr>
</tbody>
</table>

Standard Model expectation

| \(B (H \rightarrow J/\psi\gamma) [10^{-6}]\) | \(B (Z \rightarrow J/\psi\gamma) [10^{-7}]\) |
|---|
| \(2.9 \pm 0.2\) | \(0.80 \pm 0.05\) |
HL-LHC upgrade proposed

Goal to collect 3000 fb^{-1} by 2035

Central feature of ATLAS upgrade programme: new, all silicon tracking system

Higgs boson-fermion interactions is the least explored (and motivated) part of the SM → Particularly 1^{st}/2^{nd} generation.

New Physics could be hiding here!

A number of complementary approaches appear currently in the literature: exclusive decays, inclusive (e.g. charm tagging), Higgs boson kinematic properties (somewhat less direct), etc.

New field of study in Higgs sector; novel ideas available to elucidate this corner of the SM!
Additional Slides
Background: $\phi\gamma$

- Dominated by QCD production $\gamma + \text{jet}$ and multi-jet events
- Exclusive “peaking” backgrounds (e.g. $h/Z \rightarrow \mu\mu\gamma_{\text{FSR}}$) estimated to be negligible
- Nonparametric data-driven model; same procedure as in $h/Z \rightarrow J/\psi\gamma$

![Graphs showing data and model for pTM, γ-isolation, and M-isolation](Image)
h/Z → J/ψγ and h/Z → Y(nS)γ: Mass Resolution

mass resolution
~1.2-1.8%
h/Z → J/ψγ and h/Z → Y(nS)γ: Mass Resolution

ATLAS

$h/Z \rightarrow J/\psi \gamma$ and $h/Z \rightarrow Y(ns)\gamma$