

YSF talks which are relevant

SM Higgs boson to a pair of tau leptons with the CMS LHC Run II data

Speaker: Y.Wen (DESY)

Young Scientist Forum part 3

Search for SM VH -> bb with the ATLAS detector

Speaker: A.Bell (University of London)

Search with CMS for the Higgs boson produced in association with a Z or W boson in the leptonic+beauty final state

Speakers: G.Perrin (ETH Zurich), Perrin

1

CMS ATLAS H(125) fermion decays results

(1) 1h 35m

CMS bb

Speakers: Donato, S.Donato (Univ. Zurich)

ATLAS bb 15

Speaker: T.Scanlon (University of London)

CMS leptons

Speaker: A.Raspereza (DESY)

HToLeptons_CMS.pdf

ATLAS leptons

Speaker: E.Coniavitis (Freiburg)

YSF talks which are relevant

SM Higgs boson to a pair of tau leptons with the CMS

Speaker: Y.Wen (DESY)

Young Scientist Forum part 3

Search for SM VH -> bb with the ATLAS detector

Speaker: A.Bell (University of London)

Request from the organisers for these slides:

"Summarise rapidly the facts and problems"

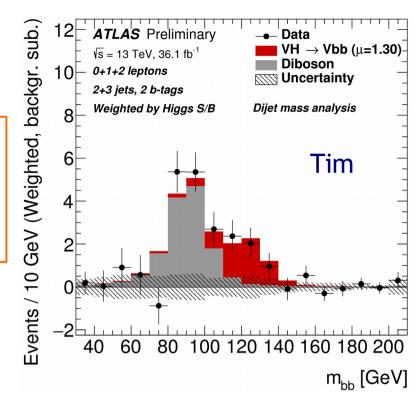
Given that typically only one experiment has a full Run-2 analysis in each area, I will not say much on "comparison" (as written on indico) - we are in a fleeting moment of almost perfect complementarity!

Many thanks to the speakers!

Search with CMS for the Higgs boson produced in association with a Z or W boson in the leptonic+beauty final state

Speakers: G.Perrin (ETH Zurich), Perrin

Tevatron	CDF+D0	2.8σ @m _H =125 GeV
Run-1	ATLAS+CMS	2.6σ (3.7σ e)
Run-2	ATLAS VH	$3.5\sigma (3.0\sigma e)$
Run-1+Run-2	ATLAS VH	$3.6\sigma (4.0\sigma e)$


Evidence obtained by ATLAS in VH

Experimental challenges include, with high pileup:

- Signal modelling uncertainties
- Background modelling uncertainties
- Flavour tagging
- Improved mass resolution

Next steps:

- Observation!
- Moving from search to measurements in VH
 - Modifications to analysis strategies?
 - Disentangling production diagrams?
- See channels beyond VH: VBF H→bb, VBF H(→bb)+γ, ttl.
 - Boosted channel has new challenges as discussed by Silvio

VH, H(bb) Considerations

Source of uncertainty		σ_{μ}			
Total		0.39			
Statistical	Statistical				
Systematic	Systematic				
Experimenta	Experimental uncertainties				
Jets		0.03			
$E_{ m T}^{ m miss}$		0.03			
Leptons	•				
b-tagging	b-jets c -jets light jets extrapolation	0.09 0.04 0.04 0.01			
Pile-up Luminosity		0.01 0.04			
Theoretical and modelling uncertainties					
Signal Floating permalisations		0.17			
Floating normalisations Z +jets		0.07			
W+jets		0.07			
tt̄		0.07			
Single top-quark		0.08			
Diboson		0.02			
Multijet		0.02			
MC statistic	0.13				

Tim

Limiting factors

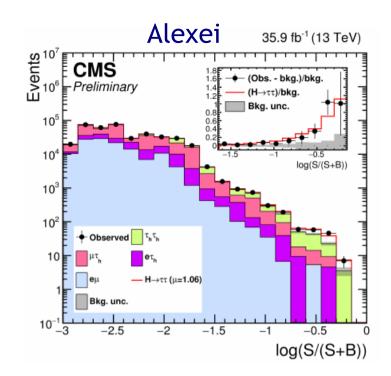
- Signal modelling
- Monte Carlo statistics
- Flavour tagging
- Background modelling

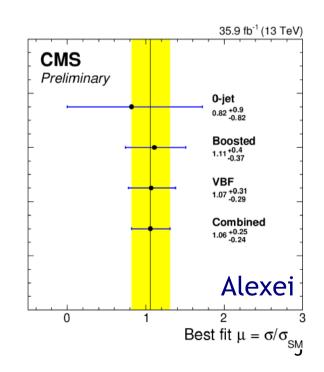
Η→ττ

Run-1 ATLAS+CMS 5	$5.5\sigma (5.0\sigma e)$
-------------------	---------------------------

Run-2 CMS $4.9\sigma (4.7\sigma e)$

Run-1+Run-2 CMS 5.9 σ (5.9 σ e)


Observation of this decay in combined A+C Run-1 sample surpassed by CMS alone (Run-1+Run-2)


Experimental challenges include, with high pileup:

- τ identification and backgrounds
- τ and jet energy scale and resolution
- Control of backgrounds from data, especially Z+jets can peak (e+h) under signal
 - Embedding or not?
 - MC statistics a large uncertainty
- Triggering (esp τ_{had} τ_{had})
- Hadronic decay mode separation

Next steps:

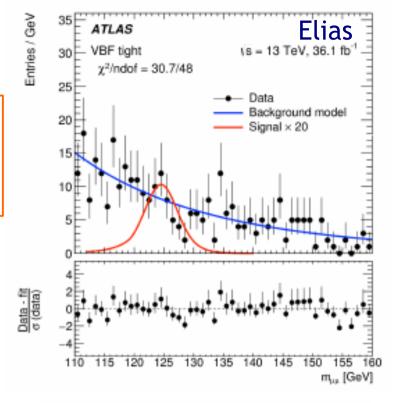
- Study H properties
 - In production processes such as VBF CP test
 - Run-1 analysis shown by Elias
 - Via spin correlation uniquely
 - Does selection affect/bias sensitivity?

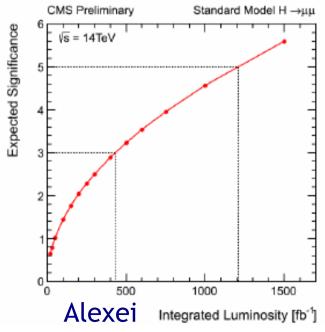
CMS tt analysis post-fit systematic error breakdown (from Yiwen's talk)

systematics

refined uncertainty model

- split jet energy scale into 27 different sources
- more detailed tau ID and scale uncertainties
- control regions in fit


Source of uncertainty	Magnitude	Postfit
	Prefit	
τ _h energy scale	1.2% on energy scale	0.2-0.3%
e energy scale	1-2.5% on energy scale	
e misidentified as τ_h energy scale	3% on energy scale	0.6-0.89
μ misidentified as τ_h energy scale	1.5% on energy scale	0.3-1.0%
Jet energy scale	27 sources, event-by-event	-
E _T ^{miss} energy scale	Event-by-event	-
τ _h ID & isolation	5% per $\tau_{\rm h}$	3.5%
τ _h trigger	5% per τ _h	3%
τ _h reconstruction per decay mode	3% migration between decay modes	2%
e ID & isolation & trigger	2%	-
μ ID & isolation & trigger	2%	-
e misidentified as τ_h rate	12% per τ _h decay mode	5%
μ misidentified as τ_h rate	25% per τ _h decay mode	3-8%
Jet misidentified as τ_h rate	20% per 100 GeV $\tau_h p_T$	
$Z \rightarrow \tau \tau / \ell \ell$ estimation	Normalization: 7-15%	3-15%
	Uncertainty on $m_{\ell\ell/\tau\tau}$, $p_T(\ell\ell/\tau\tau)$,	-
	and m_{ii} corrections	
W + jets estimation	Normalization, $e\mu$ and $\tau_h\tau_h$: 4-20%	-
,	Extrap. from high- m_T region, $e\tau_h$ and $\mu\tau_h$: 5-10%	
	Unc. from CR, $e\tau_h$ and $\mu\tau_h$: $\simeq 5-15\%$	-
QCD multijet estimation	Normalization, eµ: 10-20%	5-20%
,	Unc. from CR, $e\tau_h$, $\tau_h\tau_h$, and $\mu\tau_h$: $\simeq 5-15\%$	-
	Extrap. from anti-iso. region, $e\tau_h$ and $\mu\tau_h$: 20%	7-10%
	Extrap. from anti-iso. region, $\tau_h \tau_h$: 3-15%	3-10%
Diboson normalization	5%	-
Single-top normalization	5%	-
tt estimation	Normalization from CR: ≈ 5%	-
	Uncertainty on top quark p _T reweighting	-
Luminosity	2.5%	-
b-tagged jet veto (eµ)	3.5-5.0%	
Limited number of events	Statistical uncertainty in every bin	
Signal theoretical uncertainty	Up to 20%	-


Within sight: H→µµ

Run-1	CMS	< 7.4 x SM (6.5 e)
Run-2	ATLAS	< 3.0 x SM (3.1 e)
Run-1+Run-2	ATLAS	< 2.8 x SM (2.9 e)

Category splitting enhances sensitivity - boosted and VBF topologies - refine further

Statistics limited, no show-stoppers?

