

Simultaneous measurement of the neutron-induced ²³³U capture and fission cross sections @ n_TOF

<u>M. Bacak</u>^{1,2,3}, E. Berthoumieux², M. Aiche⁴, G. Bélier⁵, R. Cardella¹, A. Chatillon⁵, M. Diakaki², E. Dupont², F. Gunsing^{1,2}, J. Heyse⁶, S. Kopecky⁶, B. Laurent⁵, H. Leeb³, L. Mathieu⁴, P. Schillebeeckx⁶, J. Taieb⁵, V. Vlachoudis¹ and the n_TOF Collaboration

¹ CERN, Geneva, Switzerland
² Irfu, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
³ TUW Atominstitut, Vienna, Austria
⁴ CENBG, CNRS/IN2P3-Université de Bordeaux, Gradignan, France
⁵ CEA, DAM, DIF, F-91297 Arpajon, France
⁶ JRC Geel, Belgium

WHAT: Neutron-induced reactions

Radiative capture (n, γ)

Particle to be detected:

γ-ray

BG

Joint Research Centre

WIEN

rticle to be detected: fission fragments

Charged particle emission (n,cp)

WHERE: The CERN accelerator complex

- CERN: European Organization for Nuclear Research (Geneva, Switzerland)
 - Since 1954
 - Various accelerators
 - Most recent discovery: 2012 Higgs Boson

WHY: n_ToF in a nutshell

Cea

loint Research Cent

WIEN

Nuclear Technologies

Nuclear reactors (energy production) Waste management

HOW: n_TOF in a nutshell

Some figures

	EAR1	EAR2
Wide energy range	thermal to 1 GeV	thermal to 300 MeV
High instantaneous neutron flux	10 ⁵ n/cm²/pulse	10 ⁶ n/cm²/pulse
Low repetition rate	< 0.8 (1 pulse/2	3 Hz 4 s max)
High energy resolution	ΔΕ/Ε=10 ⁻⁴ (@10 eV)	ΔΕ/Ε=10 ⁻² (@10 eV)

HOW: n_TOF EAR1

neutron beam

HOW: n_TOF EAR2

beam

HOW: time-of-flight (TOF) technique

HOW: time-of-flight (TOF) technique

The ²³³U case - Motivation

• Th-U fuel cycle / Gen-IV systems

• NEA Nuclear Data High Priority Request List

²³³ U(n,γ)	σ	σ
En	Thermal – 10 keV	10 keV – 1 MeV
Target accuracy	5%	9%

 Challenging R&D to measure (n,γ)-XS of fissile actinides

BG

²³³U targets

- Molecular plated by JRC-Geel
- 14 unsealed spots
 - 4 cm diameter
 - 46.5 mg total mass
 - 264.5 μ g/cm² on average

lsotope	w%
²³³ U	99.936
²³⁴ U	0.0496
²³⁵ U	0.0012
²³⁶ U	0.0002
²³⁸ U	0.0128

- Complicated mounting in glove box
 - risk of contamination due to self-sputtering and high activity (1.2 MBq per target)

Measuring $(n,\gamma) \& (n,f)$

Radiative capture (n,γ)

Detection of γ -rays i.e. with scintillators

Fission (n,f)

Detection of heavy charged particles i.e. with a gaseous detector

Secondary Ionization (due to δ-electrons)

Experimental Setup I

• (n, y) with Total Absorption Calorimeter TAC

• Spherical array of 40 BaF₂ crystals

NBG

- Inner diameter 20 cm
- Absorber (polyethylene + 7.5% Li) to reduce neutron scattering into the BaF₂

$$E_{Sum} = E_1 + E_2 + E_3$$

$$m_{cr} = 1 + 1 + 1$$

Experimental Setup II

- (n,f) with compact ionisation chamber (FICH) for fission tagging
 - Must fit in TAC/absorber
 - High α -count rates require:
 - Fast ionizing gas CF₄ @ 1100 mbar
 - Dedicated electronics (CEA/DAM/DIF)
 - Dummy for background measurement

2 stacks inside the chamber

The Analysis

FICH – total amplitude spectrum

WIEN

Joint Research Centr

FICH – Fission events in coincidence

WIEN

Joint Research Centr

Cea

Anti-/Coincidence - E_{Sum}

Joint Research Centre

JITOF

Fission vs. Capture – 10% of statistics

Joint Research Cent

WIEN

PHENIICS | M. Bacak | 30. May 2017 | 20

Summary & Outlook

- Successful data taking
 - 4.4e18 protons on target
 - 1.5 months of beam time
 - Auxilliary measurements
 - Gold for normalization
 - Dummy/Background
 - Calibrations with radioactive sources
 - 950 TB of data
- Extraction of preliminary count rates

- Numerical simulations:
 - GARFIELD: fission chamber
 - E_{dep} for FF/ α
 - α pile-up correction
 - Efficiency
 - Geant4: TAC/full setup
 - E_{Sum} and m_{cr}
 - Efficiency
 - Dead time correction
 - Background study
- Extraction of final cross sections
- R-Matrix analysis of resonances

Merci beaucoup

Gain drift correction

• ²²⁶Ra impurities in the crystals from production

cts/trigger

- Leads to alpha decay chain
- Can be distinguished by pulse shape

Gain drift correction II

Joint Research Centro

JOTOF

Gain drift correction III

χ² (a.u.)

• χ^2 method* for varying gain factor α

$$\chi^{2}(\alpha) = \sum_{i=1}^{nbins} \left(h_{Ref}[i] - h_{Example}[i](\alpha) \right)^{2}$$

• Gain factor = $min(\chi^2)$

*Javier Balibrea Correra & CIEMAT

Gain drift correction II

• Proof it works with Cs peak positions throughout the campaign

Energy Calibration I – γ -sources

Time Calibration I - method

- Detectors misaligned in time due to different electronic chains, i.e. cable lengths
- Coincidence analysis requires alignment of the detectors
- Method:
 - Use ⁸⁸Y source (2 simultaneous γ)
 - Choose one reference detector (#29)
 - Look for coincidences with other detectors in a big time window (± 100 ns) and calculate the time difference δT :

$$\delta T = tof_{Ref} - tof_{det}$$

- Expected δT shape : sharp peak (real coincidences) sitting on constant background
- Determine the centroid of the peak which will corresponds to the T_{Offset} between the detectors

Time Calibration II

Joint Research Centre

Time Calibration III

PHENIICS | M. Bacak | 30. May 2017 | 31

Coincidence - δT

WIEN

Joint Research Centre

Coincidence I - δT

WIEN

Joint Research Centre

Coincidence II - δT

Coincidence III - δT

Coincidence IV - δT

- Left peak:
 - Strict time correlation (16 ns)
 - Mostly appears after high amplitude fission signal

E_{Sum} – Fission vs. "Capture"

Coincidence/Fission

ENBG

Cea

TŲ

WIEN

European

Joint Research Centro

AntiCoincidence/"Capture"

Multiplicity m_{cr} – Fission vs. "Capture"

WIEN

Coincidence – Fission

Joint Research Centre

JOTOF

AntiCoincidence – "Capture"

WIEN

Joint Research Cent

PHENIICS | M. Bacak | 30. May 2017 | 40