Charmonium production in Pb-Pb collisions at 5.02 TeV with CMS

Andre Stahl Laboratoire Leprince-Ringuet

Quantum Chromo-Dynamics

QCD is the theory of strong nuclear force, which describes the interactions between quarks and gluons

Hadrons **Coupling Strength vs Energy** Baryon Nonperturbative QCD $\alpha_{B_I}(\mathcal{O})$ (Ouark confinement) Lifetime: >10³⁰ years (proton) ≈15 minutes (neutron) <10⁻¹⁰ seconds (others 0.8 Transition scale Q_{α} FAMILIAR STATES 0.6 Meson Perturbative QCD Lifetime: 0.4(Quark asymptotic freedom) <10⁻⁸ seconds 0.2 Confinement

0

10 -1

Quark-Gluon Plasma

Asymptotic Freedom

Pheniics Fest 2017

Q(GeV)

Quark-Gluon Plasma

State of matter where quarks and gluons are deconfined

Quark-Gluon Plasma

Nuclear collisions and the QGP expansion

Charmonium in Heavy-Ion collisions

Suppression: Production suppressed via color screening in the QGP

Proposed by T. Matsui and H. Satz in 1986

Andre Stahl

Suppression: Production suppressed via color screening in the QGP

Proposed by T. Matsui and H. Satz in 1986

Andre Stahl

Suppression: Production suppressed via color screening in the QGP

 Sequential Differences in binding energies lead to sequential Melting: melting with temperature

PHENIX, Phys.Rev C91, 024913

Pheniics Fest 2017

Suppression: Production suppressed via color screening in the QGP

 Sequential Differences in binding energies lead to sequential Melting: melting with temperature

PHENIX, Phys.Rev C91, 024913

6

05/30/17

Suppression: Production suppressed via color screening in the QGP

 Sequential Differences in binding energies lead to sequential Melting: melting with temperature

PHENIX, Phys.Rev C91, 024913

Pheniics Fest 2017

Charmonium Regeneration

 \rightarrow Recombination: Number of CC pairs increase with collision energy

Regeneration: Charmonium production enhanced via recombination <u>at hadronization phase</u>

Charmonium in p-p and Pb-Pb

Hot Matter Effects: Suppression vs Regeneration

Large Hadron Collider

LHC Collider

Andre Stahl

Pheniics Fest 2017

LHC Runs: Recorded by CMS

Run 1 (2011-2013)			
р-р	$\sqrt{s_{_{NN}}}$ = 2.76 TeV	L = 5 pb ⁻¹	
Pb-Pb	$\sqrt{s_{NN}}$ = 2.76 TeV	L = 150 µb ⁻¹	

Run 2 (2015)			
р-р	$\sqrt{s_{NN}}$ = 5.02 TeV	L = 28 pb ⁻¹	
Pb-Pb	$\sqrt{s_{NN}}$ = 5.02 TeV	L = 460 µb ⁻¹	

~2x increase in Energy

~3x increase in Pb-Pb Luminosity (~information stored)

Pheniics Fest 2017

Compact Muon Solenoid Detector

J/Ψ Reconstruction

Main Observables

Nuclear Modification Factor R_{AA}

Medium effects quantified comparing the Pb-Pb charmonium yield with the p-p cross section, scaled by a geometrical factor (from Glauber model)

- No medium effects $\rightarrow R_{AA} = 1$
- Hot matter effects $\rightarrow R_{AA} \neq 1$

Andre Stahl

$J/\Psi R_{AA}$ in Run 1

Stronger suppression seen in central events

Pheniics Fest 2017

A2'

Charmonia in Run 2

Phys. Rev. Lett. 118 (2017) 162301

Andre Stahl

Sequential Melting: Ratio of R_{AA} Ψ(2S)/Jpsi < 1

05/30/17

- \rightarrow $\Psi(2S)$ more suppressed than J/ Ψ at 5.02 TeV
- Ψ(2S) slightly less suppressed compared to J/Ψ at 2.76 TeV central events

Summary

Suppression of J/Ψ mesons observed in Pb-Pb collisions at 2.76 TeV

Suppression of Ψ(2S) with respect to J/Ψ mesons observed in Pb-Pb collisions at 5.02 TeV

$J/\Psi R_{AA} @ 5.02 \text{ TeV}$ results coming soon!

