Experimental Challenges Triggered by the ILC Physics Programme

M. Winter (PICSEL team IPHC-Strasbourg)

TYL/FJPPL-FKPPL workshop / 11 May 2017

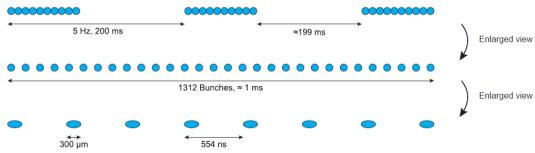
- The ILC and some of its prominent physics goals
- Specific aspects of the ILC running conditions
- Prominent experimental requirements to meet the required sensitivity
- Subsystem requirements
 - Vertexing and tracking devices
- Calorimetry
- Beam related infrastructure not addressed
- Technical solutions: examples of achievements & on-going R&D
- Summary

Sources: Talks at ECFALC-16, ICHEP-16, LCWS-16, INSTR-17, CALICE Web-site, ILC-TDR

1

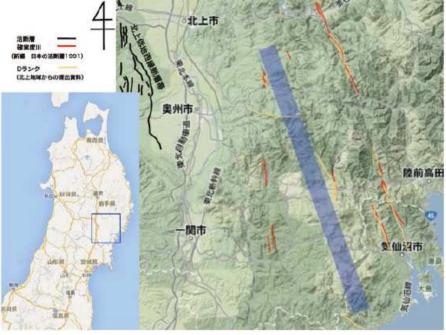
International Linear Collider (ILC)

Project status:


- Electron-positron linear collider project under discussion
- Possibly starting its physics programme in the early 2030's in Japan
- Expected to be integrated in the update of the European Strategy

Collision energies:

- Emblematic E_{CM} : 250 GeV (Higgs), 350 GeV (top), > 500 GeV (Higgs and gauge couplings)
- o Upgradable ≥ 1 TeV
- Tunable & known precisely: threshold scan capability (e.g. top or New Phys. production)


Beams:

- Polarisable: P(e $^-$ /e $^+$) $\sim \pm$ 80/30 % (0(0.1)% precision)
- Luminosity: few 10³⁴/cm²/s
- $_{\circ}$ O(10 3) bunches concentrated in \lesssim 1 ms long trains separated by \sim 200 ms

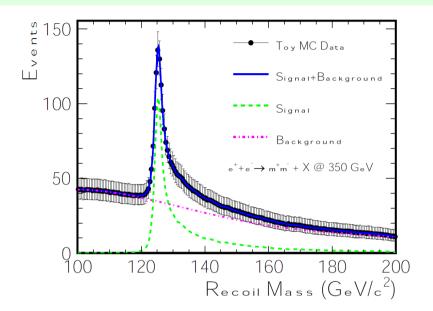
Northern Japanese Site

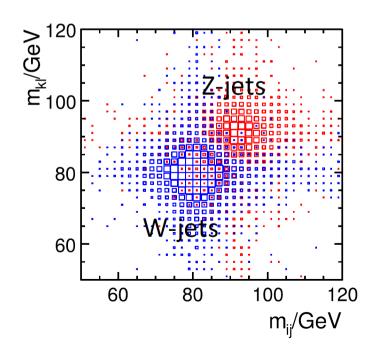
Geologically very stable area
Thinly populated, still well accessible
through major roads and high speed
rail roads

Closed big city: Sendai

The Physics Programme: Benchmarks for Detector Requirements

Higgs physics:


- gauge and fermion couplings
- \circ M_H, Γ_H
- CP, quantum numbers, etc.
- $_{\circ}$ Γ_{inv} vs DM


Top physics:

- $_{\circ}$ m $_{top} \equiv$ input parametre of the SM (extracted from threshold scan)
- top couplings from asymmetries

Direct investigation of new physics:

- Final states not seen at LHC (e.g. WIMP tagged by associated prompt photon radiation, light Higgsino)
- Characterise new particles discovered at LHC or ILC (gauge couplings, threshold scan → mass)

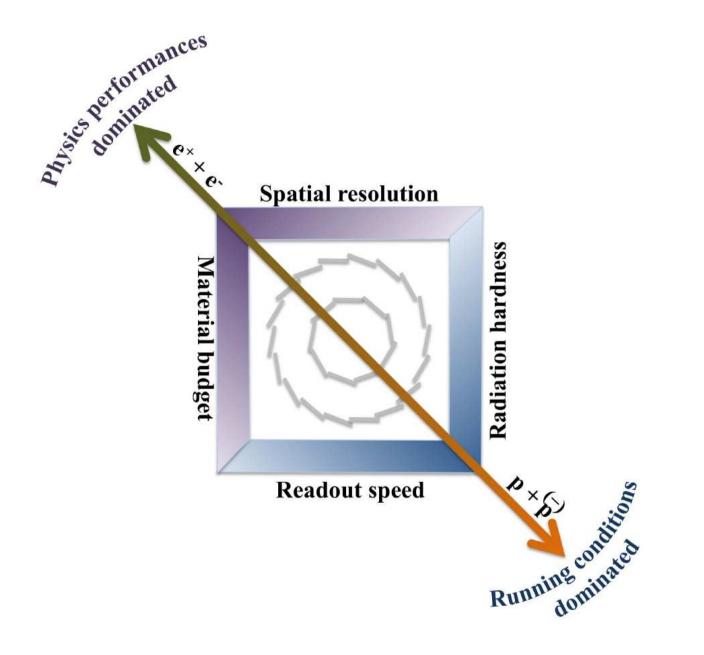
Running Conditions Driving the Detector Designs

Electrons are elementary:

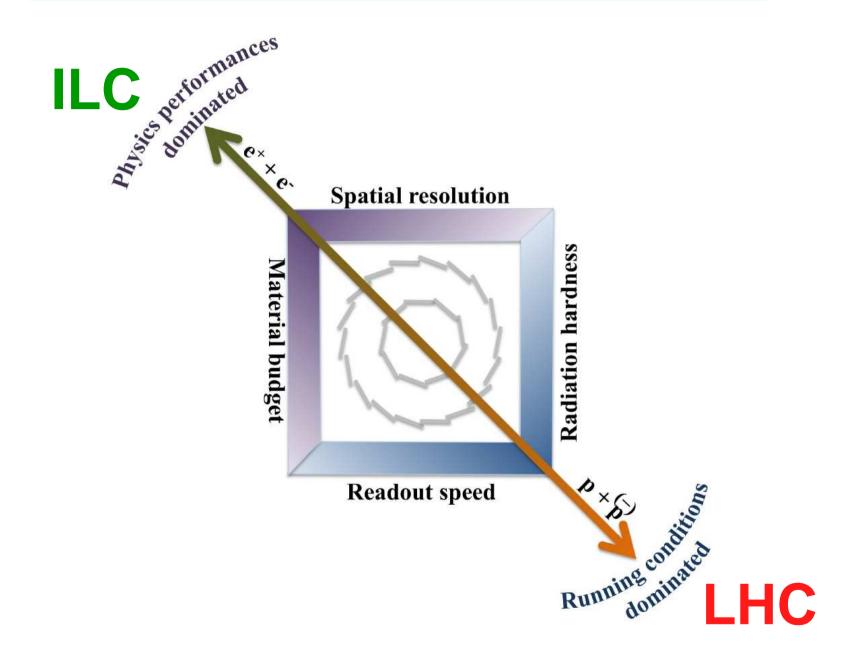
- o no underlying event ⇒ clean final state
- \circ precisely known E_{CM} , Pol(beams) using redundant beam instrumentation

• Interaction cross-sections:

EW cross-sections are low ⇒ no pile-up BUT scarce signal (few Hz!)


e.g.
$$\sigma \ (e^+e^- \rightarrowtail HX) \ \sim 10^{-3} \ \sigma \ (pp \rightarrowtail HX)$$
 at 14 TeV

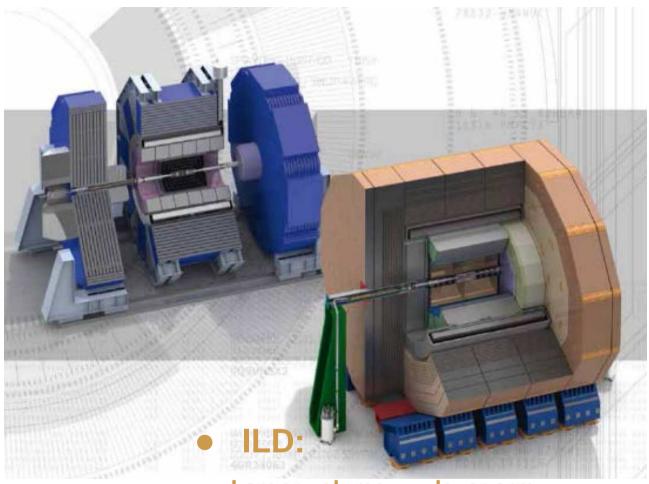
- $_{\circ}$ Higgs production: S/B \sim O(10 $^{-2}$) while at LHC: S/B \sim 10 $^{-9/-10}$
- $_{\circ}$ Radiation loads are modest (\sim 10 4 smaller than at LHC)


Beam time structure:

- 0.5 % duty cycle of the machine allows switching off the detector inbetween trains
 - ⇒ factor 10 to 100 power saving !!!
- strong final focus (high lumi) generates challenging EM background (beamstrahlung) at small radii
- Running conditions are not an obstacle to the need for high precision

Hierarchy of Requirements at the ILC

Towards High Precision Detector Concepts



Two Complementary Detector Concepts

• SiD:

- Compact (cost driven)
 - highest magnetic field
- Specific aspect: main tracker
 - \hookrightarrow 5 layers of 2-sided Si μ strips

 2 multipurpose triggerless, "hermetic" detector concepts operated in push-pull mode (baseline)

- Larger volume → lever arm& topological separation power
- $_{\circ}$ Specific aspect: main tracker \equiv TPC providing \lesssim 200 points along particle trajectories

Driving Detector Design Concepts

A specific approach has been adopted:

- Final state characterisation proceeds through jet characterisation
- Precision decides ⇒ Priority to high granularity & low material budget

Particle flow drives the event reconstruction

- 3D "Imaging" calorimeter concept
- Extreme granularity more important than energy resolution
- Excellent shower separation/identification guides the whole design

Very powerful tracking over wide momentum range

- High efficiency tracking and momentum resolution in dense environnement
- High precision vertexing for flavour physics and low momentum tracking in a dense environnement

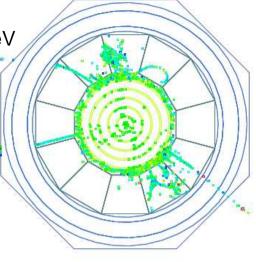
Prominent Requirements

Vertex Detector:

- $_{ extstyle o} <$ 4 μm precision in R Φ & Z (\sim 20 x 20 μm^2 pixels) $\rightarrowtail \gtrsim$ 3 times less than LHC
- $_{ extstyle o} \lesssim$ 0.15 % X $_{0}$ / layer (pixel sensors thinned to 50 μm)
- Adapted to challenging beam related background

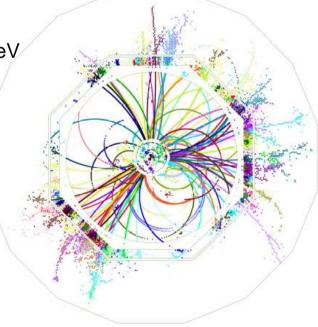
Tracker:

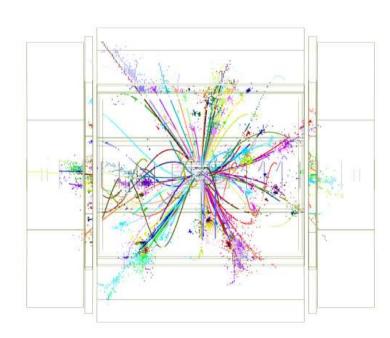
- $\sigma(1/P_t) \lesssim 2.10^{-5}$ (\sim 10 times better than at LHC)
- $_{\circ}$ overall \lesssim 10–20 % material budget in central region
- very good forward tracking


Calorimeters:

- $_{ullet}$ $\sigma(E_{jet})/E_{jet}\sim$ 3–4 % over wide energy range (> 100 GeV)
- Globally: Aim at single bunch tagging capability (against beam related background)

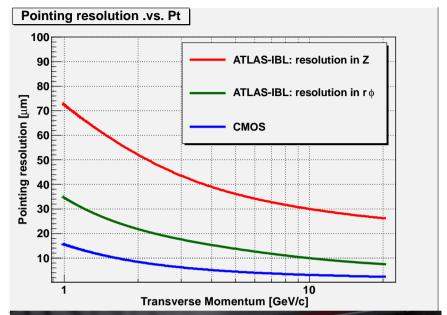
Fine Grained Event Reconstruction

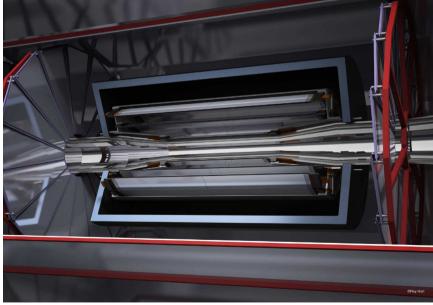

• **SiD**: ZH final state at 250 GeV


 $\mathsf{Z} \rightarrowtail \ \mu^+ \mu^- \ \mathsf{and} \ \mathsf{H} \rightarrowtail \ b \overline{b}$

ILD : $t\overline{t}H$ final state at 1 TeV

 $t\overline{t}$ \longrightarrow 6 jets and H \longrightarrow $b\overline{b}$

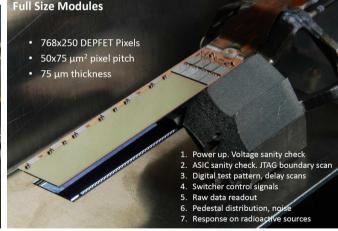

Vertex Detector: Main Requirements

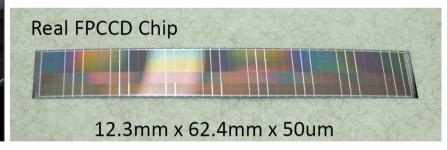

Vertexing goal:

- * achieve high efficiency & purity flavour tagging
- $\hookrightarrow \sigma_{R\phi,Z} \le 5 \oplus 10/p \cdot sin^{3/2}\theta \ \mu m$ $\rhd \ \ \mathsf{LHC} : \sigma_{R\phi} \simeq 12 \oplus 70/p \cdot sin^{3/2}\theta \ \mu m$

Major R&D directions:

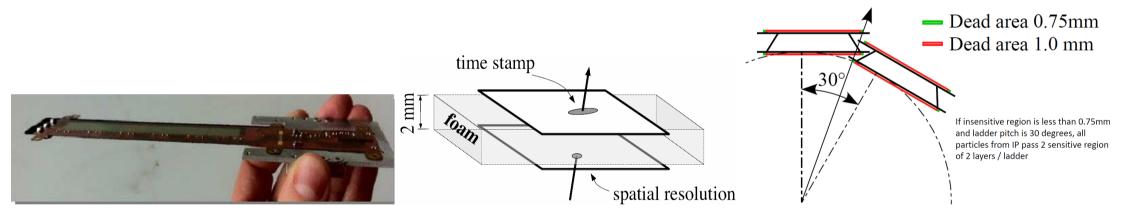
- highly granular, thin, low power, swift pixel sensors
- highly integrated, low power, SEE safe, r.o. μ circuits
- high data transfer bandwith (no trigger)
- rigid, ultra-light, heat but not electrically conductive, mechanical supports, possibly with $\mathsf{C}_{\Delta t} \simeq \mathsf{C}_{\Delta t}^{Si}$
- very low mass, preferably air, cooling system
- micrometer level alignment capability





Vertex Detector: Sensor Development

- Various technologies developed, some since 15–20 years
 - Fine Pixel (5 μm x 5 μm) CCDs derived from the SLD vertex detector (SLC) with inter-train read-out \Rightarrow no power pulsing
 - \circ CMOS Pixel Sensors derived from the EUDET BT \rightarrowtail STAR-PXL \rightarrowtail ALICE-ITS \rightarrowtail CBM-MVD sensors \rightarrowtail 4 μm , 2 4 μs with continuous read-out
 - DEPFETs derived from BELLE2-PXD with continuous read-out
 - Other approaches with specific advantages: e.g. Sol-CMOS, ChronoPix (inter-train read-out)



- Pending concerns:
 - Mitigation of beam-related background
- Power pulsing in high magnetic field

Vertex Detector: Ultra-Light Ladder Development

- Double-sided ladders providing mini-vectors
 - more robust & efficient tracking (minimises confusion between physics & background impacts),
 in particular at low momentum (\$\leq\$ 150 MeV/c)
 - improves pointing resolution on track origin
 - objective: 0.3 % X₀ total material budget / 2-sided layer

 Stable behaviour in a power pulsed mode inside high magnetic field needs to be established ⇒ concern: high precision alignment with limited amount of tracks (rate of physics final states: few Hz) try to use beam related background (and cosmic) tracks at best

Vertex Detector: Spin-Offs

Beam telescopes

- EUDET (and AIDA) BT used at numerous beam lines
- low energy electron (450 MeV) high precision BT part of LNF equipemnt

Subatomic physics experiments

- $_{\circ}$ STAR vertex detector based on CPS (evidence of Λ_c production in HI collisions)
- $_{\circ}$ ALICE Inner Tracker Upgrade: > 10 m 2 covered with CPS
- BELLE-2 vertex detecor: 2 layers of DEPFETs
- CBM Micro-Vertex Detector at FAIR based on CPS

Applications in other domains

- Hadrontherapy, X-Ray and Beta imaging, ...
- satellite instrumentiaton, ...

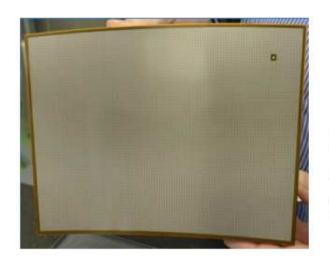
TPC as a Main Tracker

Prominent advantages:

- Continuous tracking

 inks to other detectors, find kinks & tracks starting far from IP
- Very low material budget (/ measurement)
- dE/dX for PID

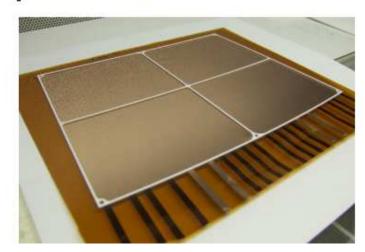
Major challenges

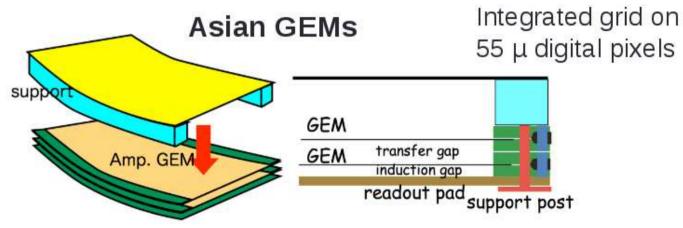

- Slow read-out (150 BX): time resolution improved by surrounding detectors
- Modest spatial resolution (benefits from surrounding high precision Si detectors)
- Ion backflow deteriorates spatial resolution
- Distortions induced by voltage differences between cage and read-out system

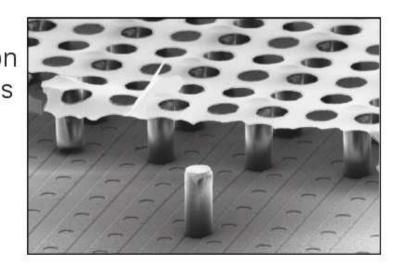
Main R&D topics

- Pixellated micro-pattern read-out chambers: Micromegas, GEMs, Ingrid, etc.
- Ion backflow mitigation
- Low material budget end-plates

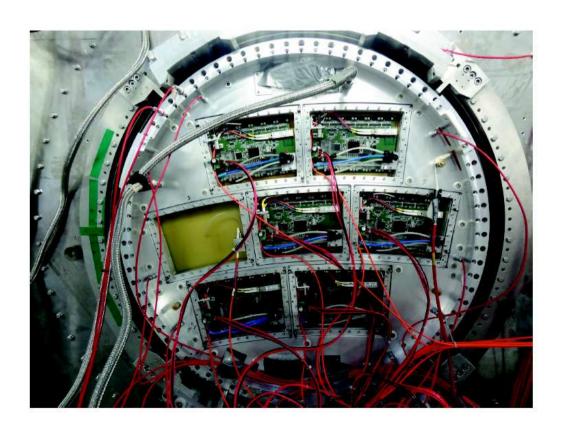
TPC Development: Alternative Read-Out Technologies


Micromegas

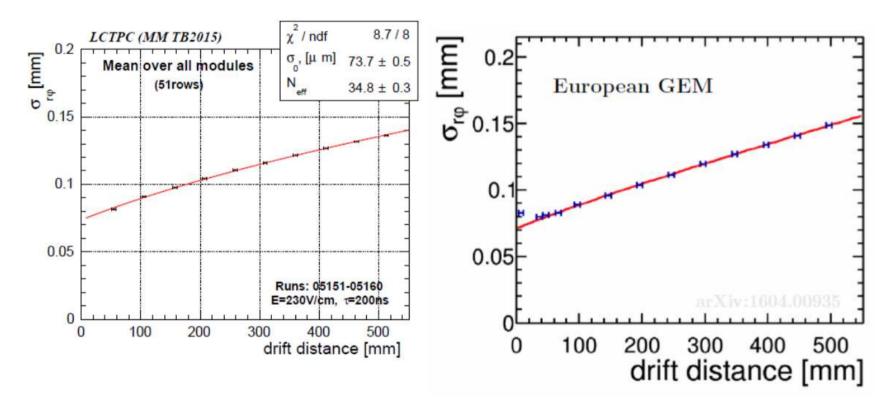

European GEMs

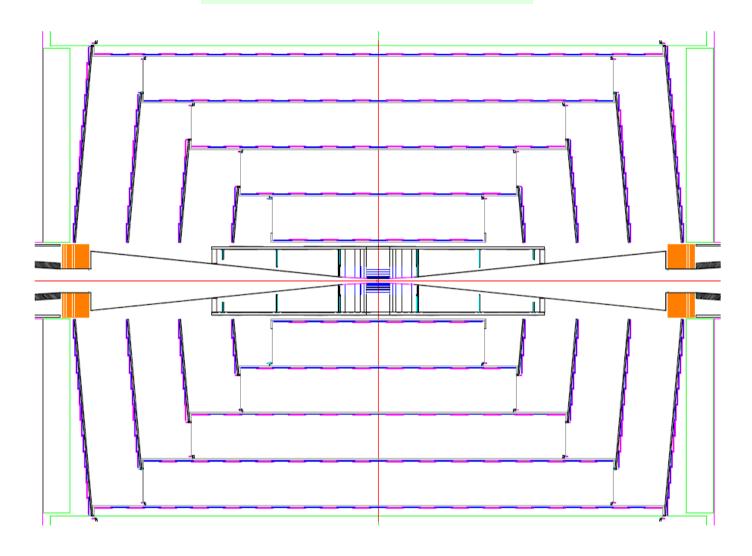

Standard kapton triple GEM with ceramic spacers

Mesh on top of a charge-dispersing resistive anode


GridPix

TPC Development: Tests realised on Electron Beam

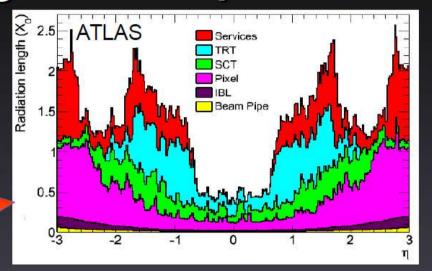

- R&D widely based on prototype TPC with 50 cm drift distance:
 - Eventually inserted in high magnetic field
 - May be operated on particle beams (e.g. DESY e— beam)
 - Different read-out chambers mounted and tested (predominently MicroMegas and GEMs)

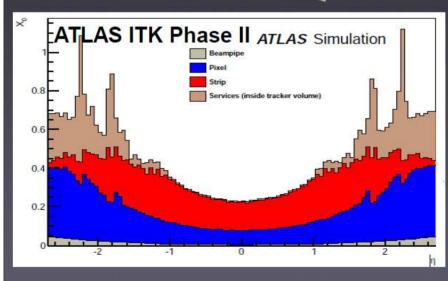

TPC Development: Observed Spatial Resolution

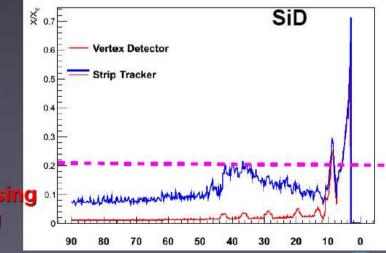
 Single point resolution (in absence of magnetic field) as a function of drift distance for MicroMegas (left) and Triple-GEM read-outs

- No significant difference between both read-out chambre types
- Observed resolution in 1 T mag. field indicates that \lesssim 100 μm may be reached with foreseen high magnetic field (\geq 3.5 T)

SiD Main Tracker


- Si μ trips \rightarrow 0.9 % X₀ / layer material budget constrains nb of layers (\equiv measured points: 5)
- ullet Imposes track seeding with vertex detector against fake hit association \Rightarrow fast vertex detector

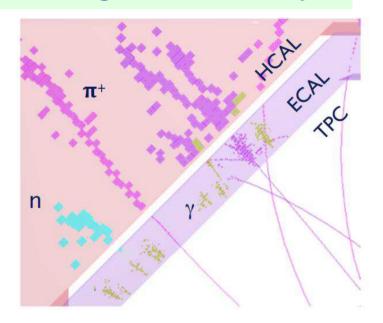


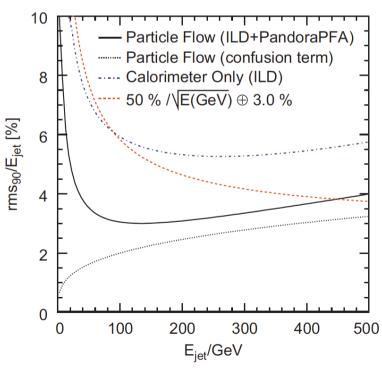

Comparing with LHC/HL-LHC

R&D on Services, Mechanics, Cooling

ILC Calorimeters: Motivation for High Granularity

High granularity are mandatory for:

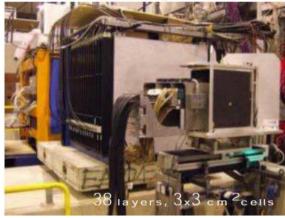

- high precision physics programme underlying the ILC
- particle flow
- several other experiments (e.g. at LHC or CLIC)


Particle flow relies on:

- Ability to separate energy depositions from close-by particles
- Connecting information from all sub-systems:
 - charged particles measured in trackers
 - photons (and hadron showers) measured in ECAL
 - neutral hadrons measured in HCAL

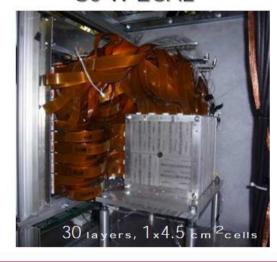
Objective: excellent JET 4-momentum resolution:

- crucial for W/Z jet separation
- $_{\rm o}$ target value: \lesssim 30%/ $\sqrt{E(GeV)}$ for di-jet energies of typically 100 GeV


ILC Calorimeters: Beam tests of Various Real Scale Prototypes

The CALICE physics prototypes

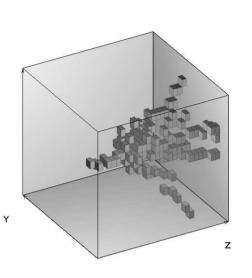

Si-W ECAL

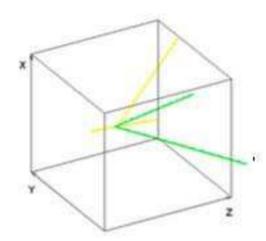

Sc-AHCAL, Fe&W

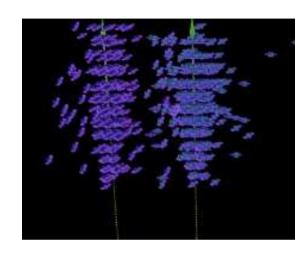
GRPC-SDHCAL, Fe

Se-W ECAL

RPC-DHCAL, Fe&W

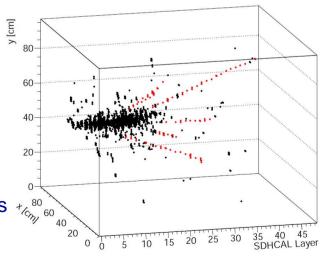


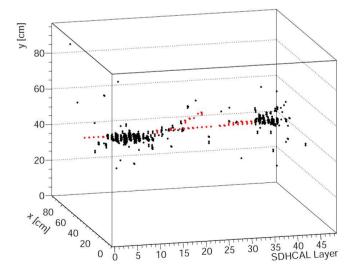

- Various beam tests
- Detector concepts validated with physics prototypes
- Large data sets for precision shower studies

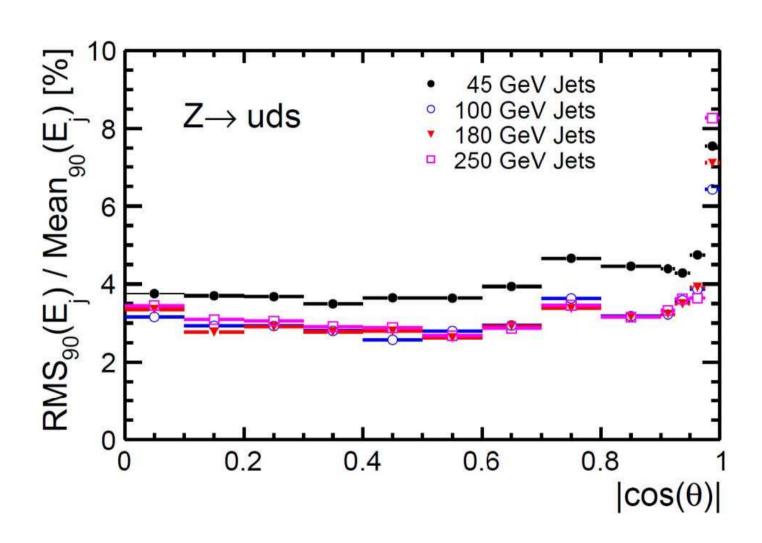

ILC Calorimeters: Establishing Fine Grained Shower Reconstruction

SiW ECAL beam tests:

- Granularity 1x1 cm² cells
- Reconstruction of hadronic shower starting in ECAL
- Photon Pion separation

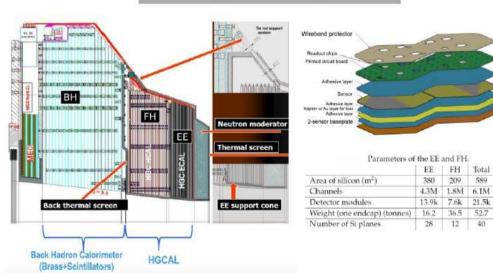




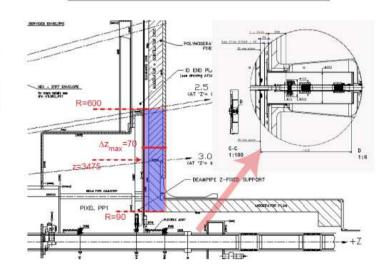

Fe/RPC SDHCAL beam tests:

- $_{ extstyle e$
- Reconstruction of track segments inside (80 & 30 GeV) hadronic showers

PFA Performance: Jet Energy Resolution derived from Beam Tests



ILC Calorimeters: Spin-Offs


Applications to LHC experiments

- LHC experiments: Phase II upgrades to cope with high luminosity
 - Many challenges: high pile-up, high-level radiation, etc.
 - Good spatial resolution → high granularity
 - Timing separation between vertices → good timing resolution
- Phase II upgrades of both ATLAS and CMS detectors involve technologies developed by CALICE

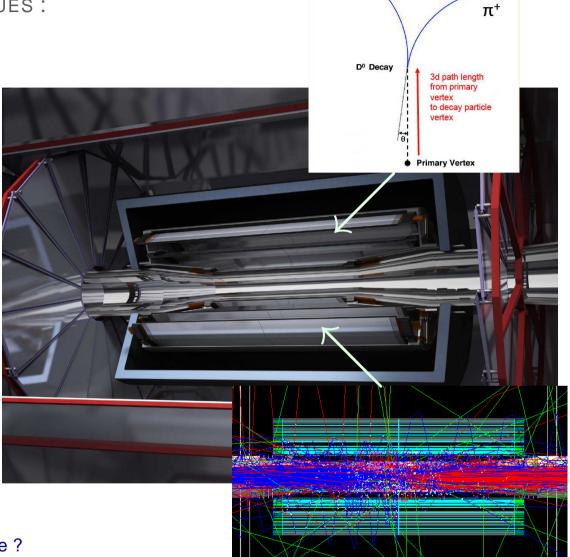
ATLAS: High Granularity Timing Detector (ATLAS-HGTD)

SUMMARY

The challenges of the ILC project have triggered breakthroughs in HEP instrumentation

- o compliance with most ILC requirements is achieved → a few years needed to complete the R&D
- new standards established in high precision devices relevant for future experiments
- o new technologies (& strategies) have been validated, driven by the need for granularity (e.g. PFA): pixel sensors, SiPM, μ pattern gas detectors, high precision SC EM \oplus Hadronic calorimeters, ...)

The progress achieved has irrigated other (subatomic physics) domains


- High precision pixellated vertexing & tracking devices
 (STAR at RHIC, ALICE at LHC, BELLE-2 at SuperKEKB, CBM at FAIR, etc.)
- Highly granular calorimetres: CMS and ATLAS at LHC, ...
- Detector concepts for future e⁺e⁻ colliders: CLIC, CEPC, ... (watch power saving!)
- Numerous spin-offs outside HEP: hadrontherapy, X-Ray & beta imaging, ROC for industrial needs, ...

Outlook:

- coming two years decisive for ILC (e.g. wrt European Strategy update)
- if ILC goes ahead, fully integrated subsystems are to be built & validated
 before technological choices can take place ≥ 2025 → start of physics < 2035

The Central Conflict of Vertexing

- A COMPLEX SET OF STRONGLY CORRELATED ISSUES :
 - * Charged particle sensor technology:
 - highly granular, thin, low power, swift pixel sensors
 - * Micro-electronics:
 - highly integrated, low power, SEE safe, r.o. μ circuits
 - * Electronics:
 - high data transfer bandwith (no trigger), some SEE tol.
 - low mass power delivery, allowing for power cycling
 - * Mechanics:
 - rigid, ultra-light, heat but not electrically conductive, mechanical supports, possibly with $\mathsf{C}_{\Delta t} \simeq \mathsf{C}_{\Delta t}^{Si}$
 - very low mass, preferably air, cooling system
 - micron level alignment capability
 - * EM compliance:
 - power cycling in high B field ⇒ F(Lorentz)
 - higher mode beam wakefield disturbance ⇒ pick-up noise ?
 - st Radiation load and SEE compliance at T_{room}
 - ⇒ reduced material budget

