

KEK, SuperKEKB, Belle II

Journée Belle II, LAL Orsay

22 mars 2017

Francesco Forti, INFN and University, Pisa

Asymmetric B factories: flavour physics at the intensity frontier

Confirmation of the Kobayashi-Maskawa mechanism of CPV.

The next decade: the power of quantum loops

(

The intensity frontier

How to increase the luminosity?

SuperKEKB design parameters

parameters		KEKB		SuperKEKB		maita
		LER	HER	LER	HER	UNITS
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	¢	11		41.5		mrad
Horizontal emittance	Ex	18	24	3.2	4.6	nm
Emittance ratio	κ	0.88	0.66	0.37	0.40	7.
Beta functions at IP	β _x */β _y *	1200/5.9		32/0.27	25/0.30	mm
Beam currents	l _b	1.64	1.1 9	<u>3.60</u>	2.60	A
beam-beam parameter	ξγ	0.1 29	0.090	0.0881	0.0807	
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

• Nano-beams and a factor of two more beam current to increase luminosity

- Large crossing angle
- Change beam energies to solve the problem of short lifetime for the LER

- Phase I (2016)
 - Circulated both beams but no collisions;
 - Tune accelerator optics, etc.; vacuum scrubbing
 - Beam Background studies with dedicated BEAST II/1 detector
- Phase II
 - First collisions
 - Beam Commissioning
 - Background measurements with BEAST II/2
 - Physics run with Belle II w/o VTX
 - on Y(4S) and Y(6S)
- Phase III
 - Physics run

K_L and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

EM Calorimeter: CsI(Tl), waveform sampling (baseline) (opt.) Pure CsI for end-caps

electron (7GeV)

Beryllium beam pipe 2cm diameter

INFN

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

0110001

Lots of Data

positron (4GeV) COMPUTING

10

$Belle \ II \ Detector \ (\text{in comparison with Belle})$

Vertex Detector

First pixel sensor

An VXD Slice tested in DESY

Belle II CDC

Wire Configuration

1200 mm

Much bigger than in Belle!

Wire stringing in a clean room

- thousands of wires,
- 1 year of work...

Particle Identification Devices

ECL Endcap installation

EM calorimeter: upgrade needed because of higher rates (electronics \rightarrow waveform sampling) and radiation load

Tsukuba Hall

Feb 2017: Final Focus installation

June 2016: Magnetic Field Mapping

Belle II Collaboration

>700 members,101 institutions,23 countries

North Pacific Ocean

INFN March 22, 2017

F.Forti, KEK-SKB-BelleII

Belle II Organization

- 1971: National Laboratory for High Energy Physics (KEK) was established.
- 1976: The proton synchrotron (PS) produced an 8 GeV beam as designed. The PS achieved 12 GeV.
- 1978: The Booster Synchrotron Utilization Facility and a Photon Factory (PF) were founded.
- 1982: The PF succeeded in storing a 2.5 GeV electron beam.
- 1984: The Transposable Ring Intersecting Storage Accelerator in Nippon (TRISTAN) Accumulation Ring (AR) accelerated an electron beam to 6.5 GeV.
- 1985: The AR accelerated a positron beam to 5 GeV.
- 1986: The TRISTAN Main Ring (MR) accelerated both electron and positron beams to 25.5 GeV.
- 1988: The MR energy was upgraded to 30 GeV with the help of superconducting accelerating cavities.
- 1989: Accelerator and Synchrotron Radiation Science departments were established in the Graduate University for Advanced Studies.
- 1994: KEKB B-factory construction began.
- 1995: TRISTAN experiments finished.
- 1997: The High Energy Accelerator Research Organization was established.
- 1998: First beam storage at KEKB (KEK B-factory) ring.
- 1999: The Long-baseline Neutrino Oscillation experiment (K2K) began. The Belle experiment at the KEKB began operation.
- 2001: Construction of High Intensity Proton Accelerators (J-PARC) started.
- 2004: Became the Inter-University Research Institute Corporation High Energy Accelerator Research Organization. K2K experiment ended.
- 2005: Tokai Campus was opened. Experiments at PS ended.
- 2006: J-PARC Center was established.
- 2008: Prof. Makoto Kobayashi won the 2008 Nobel Prize in Physics.
- 2009: J-PARC construction was completed.
- 2016: First turns and successful storage of beams in the SuperKEKB electron and positron rings^[3]

Electron machines in Tsukuba and proton machines in Tokai Sapporo

Tokai

Japan TSUKUDa Nagoya Chiba Kobe Osaka

> @ 2010 ZENRIN © 2010 Europa Technologies © 2010 Geocentre Consulting Data © 2010 MIRC/JHA 139"30'09 59" E elev 42 m 38"24'54 24" N

orea

Fukuoka

lanega-shima

INFN

Diversity in accelerator based sciences

